Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T01:33:59.211Z Has data issue: false hasContentIssue false

Chapter 4 - The thymus gland

Published online by Cambridge University Press:  05 February 2015

Alberto M. Marchevsky
Affiliation:
Cedars-Sinai Medical Center, Los Angeles
Mark R. Wick
Affiliation:
University of Virginia Health System
Alberto M. Marchevsky
Affiliation:
Cedars-Sinai Medical Center, Los Angeles
Mark R. Wick
Affiliation:
University of Virginia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Walter, E, Wilich, E, Webb WR. The Thymus: Diagnostic Imaging, Functions and Pathologic Anatomy (Medical Radiology/Diagnostic Imaging). 2012; New York: Springer.Google Scholar
Marchevsky, AM, Kaneko, M. Surgical Pathology of the Mediastinum. 1991; New York: Raven Press.Google Scholar
Ugalde, PA, Pereira, ST, Araujo, C et al. Correlative anatomy for the mediastinum. Thorac Surg Clin. 2011;21:251–72.CrossRefGoogle ScholarPubMed
Drake, RL, Vogl, W. Gray’s Anatomy for Students. 2009; New York: Churchill Livingstone.Google Scholar
Hammar, JA. Zur Histogenese und Involution der Thymus-druse. Anat Anz. 1905;39:41–89.Google Scholar
Schambacher, A. Uber die Persistenz vom DrusenKanalen in der Thymus in ihre Beziehung zur Entshehung der Hassalschen Korperchen. Virchows Arch Pathol Anat. 1003;172:368–94.CrossRefGoogle Scholar
Gordon, J, Manley, NR. Mechanisms of thymus organogenesis and morphogenesis. Development. 2011;138:3865–78.CrossRefGoogle ScholarPubMed
Shier, KJ. The thymus according to Schambacher: medullary ducts and reticular epithelium of thymus and thymomas. Cancer. 1981;48:1183–99.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Lee, DK, Hakim, FT, Gress, RE. The thymus and the immune system: layered levels of control. J Thorac Oncol. 2010;5:S273–S276.CrossRefGoogle Scholar
Strutman, O. Two main features of T cell development: thymus traffic and postthymic maturation. 1977; New York: Plenum Press.Google Scholar
Wong, A, Garrett, KL, Anderson, JE. Myoid cell density in the thymus is reduced during mdx dystrophy and after muscle crush. Biochem Cell Biol. 1999;77:33–40.CrossRefGoogle ScholarPubMed
Chan, AS. Ultrastructure of myoid cells in the chick thymus. Br Poult Sci. 1995;36:197–203.CrossRefGoogle ScholarPubMed
Sato, T, Tamaoki, N. Myoid cells in the human thymus and thymoma revealed by three different immunohistochemical markers for striated muscle. Acta Pathol Jpn. 1989;39:509–19.Google ScholarPubMed
Hanzlikova, V. Histochemical and ultrastructural properties of myoid cells in the thymus of the frog. Cell Tissue Res. 1979;197:105–12.CrossRefGoogle ScholarPubMed
Hayward, AR. Myoid cells in the human foetal thymus. J Pathol. 1972;106:45–8.CrossRefGoogle ScholarPubMed
Hayward, A. The detection of myoid cells in the human foetal and neonatal thymus by immunofluorescence. J Med Microbiol. 1970;3.Google ScholarPubMed
Ito, T, Hoshino, T, Abe, K. The fine structure of myoid cells in the human thymus. Arch Histol Jpn. 1969;30:207–15.CrossRefGoogle ScholarPubMed
Bockman, DE. Myoid cells in adult human thymus. Nature. 1968;218:286–7.CrossRefGoogle ScholarPubMed
Drenckhahn, D, von GB, Muller-Hermelink, HK et al. Myosin and actin containing cells in the human postnatal thymus. Ultrastructural and immunohistochemical findings in normal thymus and in myasthenia gravis. Virchows Arch B Cell Pathol Incl Mol Pathol. 1979;32:33–45.CrossRefGoogle ScholarPubMed
Kendall, MD, Johnson, HR, Singh, J. The weight of the human thymus gland at necropsy. J Anat. 1980;131:483–97.Google ScholarPubMed
McLean, G, DeSilva, A, Bergman, P et al. Solid ectopic cervical thymus in neonates with thyroid agenesis. J Ultrasound Med. 2012;31:1281–3.CrossRefGoogle ScholarPubMed
Wang, J, Fu, H, Yang, H et al. Clinical management of cervical ectopic thymus in children. J Pediatr Surg. 2011;46:e33–e36.CrossRefGoogle ScholarPubMed
Segni, M, di, NR, Pucarelli, I et al. Ectopic intrathyroidal thymus in children: a long-term follow-up study. Horm Res Paediatr. 2011;75:258–63.CrossRefGoogle ScholarPubMed
Ahsan, F, Allison, R, White, J. Ectopic cervical thymus: case report and review of pathogenesis and management. J Laryngol Otol. 2010;124:694–7.CrossRefGoogle ScholarPubMed
Herman, TE, Siegel, MJ. Cervical ectopic thymus. J Perinatol. 2009;29:173–4.CrossRefGoogle ScholarPubMed
Pai, I, Hegde, V, Wilson, PO et al. Ectopic thymus presenting as a subglottic mass: diagnostic and management dilemmas. Int J Pediatr Otorhinolaryngol. 2005;69:573–6.CrossRefGoogle ScholarPubMed
Kacker, A, April, M, Markentel, CB et al. Ectopic thymus presenting as a solid submandibular neck mass in an infant: case report and review of literature. Int J Pediatr Otorhinolaryngol. 1999;49:241–5.CrossRefGoogle Scholar
Nagoya, A, Kanzaki, R, Nakagiri, T et al. Ectopic cervical thymoma accompanied by Good’s Syndrome. Ann Thorac Cardiovasc Surg. 2013.
Shien, K, Shien, T, Soh, J et al. Ectopic cervical thymoma: a case report with 18F-fluorodeoxyglucose positron emission tomography findings. Acta Med Okayama. 2012;66:357–61.Google ScholarPubMed
Suster, S, Rosai, J. Histology of the normal thymus. Am J Surg Pathol. 1990;14:284–303.CrossRefGoogle ScholarPubMed
Anderson, G, Takahama, Y. Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol. 2012;33:256–63.CrossRefGoogle Scholar
Alexandropoulos, K, Danzl, NM. Thymic epithelial cells: antigen presenting cells that regulate T cell repertoire and tolerance development. Immunol Res. 2012;54:177–90.CrossRefGoogle ScholarPubMed
Alves, NL, Huntington, ND, Rodewald, HR et al. Thymic epithelial cells: the multi-tasking framework of the T cell “cradle”. Trends Immunol. 2009;30:468–74.CrossRefGoogle Scholar
Rouse, RV, Bolin, LM, Bender, JR et al. Monoclonal antibodies reactive with subsets of mouse and human thymic epithelial cells. J Histochem Cytochem. 1988;36:1511–17.CrossRefGoogle ScholarPubMed
Schmitt, D, Zambruno, G, Staquet, MJ et al. Antigenic thymus-epidermis relationships. Reactivity of a panel of anti-thymic cell monoclonal antibodies on human keratinocytes and Langerhans cells. Dermatologica. 1987;175:109–20.CrossRefGoogle ScholarPubMed
von Gaudecker, B. Ultrastructure of the age-involuted adult human thymus. Cell Tissue Res. 1978;186:507–25.CrossRefGoogle ScholarPubMed
Pinkel, D. Ultrastructure of human fetal thymus. Am J Dis Child. 1968;115:222–38.Google ScholarPubMed
Izon, DJ, Boyd, RL. The cytoarchitecture of the human thymus detected by monoclonal antibodies. Hum Immunol. 1990;27:16–32.CrossRefGoogle ScholarPubMed
Kampinga, J, Berges, S, Boyd, RL et al. Thymic epithelial antibodies: immunohistological analysis and introduction of nomenclature. Thymus. 1989;13:165–73.Google ScholarPubMed
Laster, AJ, Itoh, T, Palker, TJ et al. The human thymic microenvironment: thymic epithelium contains specific keratins associated with early and late stages of epidermal keratinocyte maturation. Differentiation. 1986;31:67–77.CrossRefGoogle ScholarPubMed
Savino, W, Dardenne, M. Immunohistochemical studies on a human thymic epithelial cell subset defined by the anti-cytokeratin 18 monoclonal antibody. Cell Tissue Res. 1988;254:225–31.CrossRefGoogle ScholarPubMed
von GB, Larche, M, Schuurman, HJ et al. Analysis of the fine distribution of thymic epithelial microenvironmental molecules by immuno-electron microscopy. Thymus. 1989;13:187–94.Google Scholar
Henry, K. The thymus – what’s new?Histopathology. 1989;14:537–48.CrossRefGoogle ScholarPubMed
Janossy, G, Bofill, M, Trejdosiewicz, LK et al. Cellular differentiation of lymphoid subpopulations and their microenvironments in the human thymus. Curr Top Pathol. 1986;75:89–125.CrossRefGoogle ScholarPubMed
Derbinski, J, Kyewski, B. How thymic antigen presenting cells sample the body’s self-antigens. Curr Opin Immunol. 2010;22:592–600.CrossRefGoogle ScholarPubMed
Masuda, K, Germeraad, WT, Satoh, R et al. Notch activation in thymic epithelial cells induces development of thymic microenvironments. Mol Immunol. 2009;46:1756–67.CrossRefGoogle ScholarPubMed
Geenen, V. Presentation of neuroendocrine self in the thymus: a necessity for integrated evolution of the immune and neuroendocrine systems. Ann N Y Acad Sci. 2012;1261:42–8.CrossRefGoogle ScholarPubMed
Savino, W, Dardenne, M. Neuroendocrine interactions in the thymus: from physiology to therapy. Neuroimmunomodulation. 2011;18:263.CrossRefGoogle Scholar
Moll, UM. Functional histology of the neuroendocrine thymus. Microsc Res Tech. 1997;38:300–10.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Colic, M, Matanovic, D, Hegedis, L et al. Immunohistochemical characterization of rat thymic non-lymphoid cells. I. Epithelial and mesenchymal components defined by monoclonal antibodies. Immunology. 1988;65:277–84.Google ScholarPubMed
Bearman, RM, Levine, GD, Bensch, KG. The ultrastructure of the normal human thymus: a study of 36 cases. Anat Rec. 1978;190:755–81.CrossRefGoogle ScholarPubMed
Bloodworth, JM, Hiratsuka, H, Hickey, RC et al. Ultrastructure of the human thymus, thymic tumors, and myasthenia gravis. Pathol Annu. 1975;10:329–91.Google ScholarPubMed
Cohen-Kaminsky, S, Berrih-Aknin, S, Savino, W et al. Immunodetection of the thymic epithelial P19 antigen in cultures of normal and pathological human thymic epithelium. Thymus. 1987;9:225–38.Google ScholarPubMed
Henry, L, Anderson, G. Immunoglobulins in Hassall’s corpuscles of the human thymus. J Anat. 1990;168:185–97.Google ScholarPubMed
Esposito, C, Romeo, C. Surgical anatomy of the mediastinum. Semin Pediatr Surg. 1999;8:50–3.CrossRefGoogle ScholarPubMed
Carter, DR. The anatomy of the mediastinum. Ear Nose Throat J. 1981;60:153–7.Google ScholarPubMed
Kendall, MD. The morphology of perivascular spaces in the thymus. Thymus. 1989;13:157–64.Google ScholarPubMed
Karttunen, T. Basement membrane proteins and reticulin in a normal thymus and the thymus in myasthenia gravis. Virchows Arch A Pathol Anat Histopathol. 1987;411:245–52.CrossRefGoogle Scholar
Bubanovic, IV. Failure of blood-thymus barrier as a mechanism of tumor and trophoblast escape. Med Hypotheses. 2003;60:315–20.CrossRefGoogle ScholarPubMed
Henry, L, Durrant, TE, Anderson, G. Pericapillary collagen in the human thymus: implications for the concept of the ‘blood-thymus’ barrier. J Anat. 1992;181 (Pt 1):39–46.Google ScholarPubMed
Stet, RJ, Wagenaar-Hilbers, JP, Nieuwenhuis, P. Thymus localization of monoclonal antibodies circumventing the blood-thymus barrier. Scand J Immunol. 1987;25:441–6.CrossRefGoogle ScholarPubMed
Raviola, E, Karnovsky, MJ. Evidence for a blood-thymus barrier using electron-opaque tracers. J Exp Med. 1972;136:466–98.CrossRefGoogle ScholarPubMed
Hofmann, WJ, Momburg, F, Moller, P. Thymic medullary cells expressing B lymphocyte antigens. Hum Pathol. 1988;19:1280–7.CrossRefGoogle ScholarPubMed
Wirt, DP, Grogan, TM, Nagle, RB et al. A comprehensive immunotopographic map of human thymus. J Histochem Cytochem. 1988;36:1–12.CrossRefGoogle ScholarPubMed
Geenen, V. The thymus as an obligatory intersection between the immune and neuroendocrine systems: pharmacological implications. Curr Opin Pharmacol. 2010;10:405–7.CrossRefGoogle ScholarPubMed
Reggiani, PC, Morel, GR, Console, GM et al. The thymus-neuroendocrine axis: physiology, molecular biology, and therapeutic potential of the thymic peptide thymulin. Ann N Y Acad Sci. 2009;1153:98–106.CrossRefGoogle ScholarPubMed
Bai, M, Papoudou-Bai, A, Karatzias, G et al. Immunohistochemical expression patterns of neural and neuroendocrine markers, the neural growth factor receptors and the beta-tubulin II and IV isotypes in human thymus. Anticancer Res. 2008;28:295–303.Google ScholarPubMed
Bodey, B. Thymic reticulo-epithelial cells: key cells of neuroendocrine regulation. Expert Opin Biol Ther. 2007;7:939–49.CrossRefGoogle ScholarPubMed
Geenen, V. Thymus-dependent T cell tolerance of neuroendocrine functions: principles, reflections, and implications for tolerogenic/negative self-vaccination. Ann N Y Acad Sci. 2006;1088:284–96.CrossRefGoogle ScholarPubMed
Geenen, V, Brilot, F. Role of the thymus in the development of tolerance and autoimmunity towards the neuroendocrine system. Ann N Y Acad Sci. 2003;992:186–95.CrossRefGoogle ScholarPubMed
Savino, W, Dardenne, M. Neuroendocrine control of thymus physiology. Endocr Rev. 2000;21:412–43.Google ScholarPubMed
Trusen, A, Beissert, M, Hebestreit, H et al. Fibrosing mediastinitis with superior vena cava obstruction as the initial presentation of Langerhans’ cell histiocytosis in a young child. Pediatr Radiol. 2003;33:485–8.CrossRefGoogle Scholar
Rausch, E, Kaiserling, E, Goos, M. Langerhans cells and interdigitating reticulum cells in the thymus-dependent region in human dermatopathic lymphadenitis. Virchows Arch B Cell Pathol. 1977;25:327–43.Google ScholarPubMed
Hoshino, T, Kukita, A, Sato, S. Cells containing Birbeck granules (Langerhans cell granules) in the human thymus. J Electron Microsc (Tokyo). 1970;19:271–6.Google ScholarPubMed
Evans, VA, Lal, L, Akkina, R et al. Thymic plasmacytoid dendritic cells are susceptible to productive HIV-1 infection and efficiently transfer R5 HIV-1 to thymocytes in vitro. Retrovirology. 2011;8:43.CrossRefGoogle ScholarPubMed
Vandenabeele, S, Hochrein, H, Mavaddat, N et al. Human thymus contains 2 distinct dendritic cell populations. Blood. 2001;97:1733–41.CrossRefGoogle ScholarPubMed
Vandenabeele, S, Wu, L. Dendritic cell origins: puzzles and paradoxes. Immunol Cell Biol. 1999;77:411–19.CrossRefGoogle ScholarPubMed
Safar, D, Aime, C, Cohen-Kaminsky, S et al. Antibodies to thymic epithelial cells in myasthenia gravis. J Neuroimmunol. 1991;35:101–10.CrossRefGoogle ScholarPubMed
Hakanson, R, Larsson, LI, Sundler, F. Peptide and amine producing endocrine-like cells in the chicken thymus. A chemical, histochemical and electron microscopic study. Histochemistry. 1974;39:25–34.CrossRefGoogle ScholarPubMed
Dooley, J, Liston, A. Molecular control over thymic involution: from cytokines and microRNA to aging and adipose tissue. Eur J Immunol. 2012;42:1073–9.CrossRefGoogle ScholarPubMed
Bach, JF. Thymic hormones. J Immunopharmacol. 1979;1:277–310.CrossRefGoogle ScholarPubMed
Bach, JF, Bach, MA, Charreire, J et al. The mode of action of thymic hormones. Ann N Y Acad Sci. 1979;332:23–32.CrossRefGoogle ScholarPubMed
Bach, JF. Thymic hormones: biochemistry, and biological and clinical activities. Annu Rev Pharmacol Toxicol. 1977;17:281–91.CrossRefGoogle ScholarPubMed
Trainin, N. Thymic hormones and the immune response. Physiol Rev. 1974;54:272–315.CrossRefGoogle ScholarPubMed
Goldstein, G. Thymic hormones. Triangle. 1972;11:7–14.Google ScholarPubMed
Goldstein, AL, Slater, FD, White, A. Preparation, assay, and partial purification of a thymic lymphocytopoietic factor (thymosin). Proc Natl Acad Sci U S A. 1966;56:1010–17.CrossRefGoogle Scholar
Low, TL, Thurman, GB, Chincarini, C et al. Current status of thymosin research: evidence for the existence of a family of thymic factors that control T-cell maturation. 1979. Ann N Y Acad Sci. 2012;1269:131–46.CrossRefGoogle ScholarPubMed
Goldstein, AL, Hannappel, E, Sosne, G et al. Thymosin beta4: a multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opin Biol Ther. 2012;12:37–51.CrossRefGoogle ScholarPubMed
Talle, MA, Brown, MJ, Blynn, CM et al. Use of monoclonal antibodies to identify thymopoietin in cultured human thymic epithelial cells. Thymus. 1991;18:169–84.Google ScholarPubMed
Dalakas, MC, Engel, WK, McClure, JE et al. Identification of human thymic epithelial cells with antibodies to thymosin alpha 1 in myasthenia gravis. Ann N Y Acad Sci. 1981;377:477–85.CrossRefGoogle ScholarPubMed
Goldstein, AL, Asanuma, Y, White, A. The thymus as an endocrine gland: properties of thymosin, a new thymus hormone. Recent Prog Horm Res. 1970;26:505–38.Google ScholarPubMed
Goldstein, G. The isolation of thymopoietin (thymin). Ann N Y Acad Sci. 1975;249:177–85.CrossRefGoogle Scholar
Goldstein, G, Scheid, M, Boyse, EA et al. Thymopoietin and bursopoietin: induction signals regulating early lymphocyte differentiation. Cold Spring Harb Symp Quant Biol. 1977;41 Pt 1:5–8.CrossRefGoogle ScholarPubMed
Bach, JF. The mode of action of thymic hormones and its relevance to T-cell differentiation. Transplant Proc. 1976;8:243–8.Google ScholarPubMed
Monier, JC, Dardenne, M, Pleau, JM et al. Characterization of facteur thymique serique (FTS) in the thymus. I. Fixation of anti-FTS antibodies on thymic reticulo-epithelial cells. Clin Exp Immunol. 1980;42:470–6.Google ScholarPubMed
Dalakas, MC, Engel, WK, McClure, JE et al. Immunocytochemical localization of thymosin-alpha 1 in thymic epithelial cells of normal and myasthenia gravis patients and in thymic cultures. J Neurol Sci. 1981;50:239–47.CrossRefGoogle ScholarPubMed
Monier, JC, Dardenne, M, Pleau, JM et al. Characterization of facteur thymique serique (FTS) in the thymus. I. Fixation of anti-FTS antibodies on thymic reticulo-epithelial cells. Clin Exp Immunol. 1980;42:470–6.Google ScholarPubMed
Schmitt, D, Monier, JC, Dardenne, M et al. Cytoplasmic localization of FTS (facteur thymique serique) in thymic epithelial cells. An immunoelectronmicroscopical study. Thymus. 1980;2:177–86.Google ScholarPubMed
Lynch, HE, Goldberg, GL, Chidgey, A et al. Thymic involution and immune reconstitution. Trends Immunol. 2009;30:366–73.CrossRefGoogle ScholarPubMed
Hogquist, KA, Baldwin, TA, Jameson, SC. Central tolerance: learning self-control in the thymus. Nat Rev Immunol. 2005;5:772–82.CrossRefGoogle ScholarPubMed
Miller, JF. The golden anniversary of the thymus. Nat Rev Immunol. 2011;11:489–95.CrossRefGoogle ScholarPubMed
Miller, JF. The role of the thymus in immune processes. Int Arch Allergy Appl Immunol. 1965;28:61–70.CrossRefGoogle ScholarPubMed
Miller, RE, Sullivan, FJ. Superior vena caval obstruction secondary to fibrosing mediastinitis. Ann Thorac Surg. 1973;15:483–92.CrossRefGoogle ScholarPubMed
Miller, JF. The thymus. Yesterday, today, and tomorrow. Lancet. 1967;2:1299–1302.CrossRefGoogle ScholarPubMed
Miller, JF, Mitchell, GF. The thymus and the precursors of antigen reactive cells. Nature. 1967;216:659–63.CrossRefGoogle ScholarPubMed
Miller, JF, Osoba, D, Dukor, P. A humoral thymus mechanism responsible for immunologic maturation. Ann N Y Acad Sci. 1965;124:95–104.CrossRefGoogle ScholarPubMed
Miller, JF. The thymus and the development of immunologic responsiveness. Science. 1964;144:1544–51.CrossRefGoogle ScholarPubMed
Miller, JF. Functions of the thymus. Sci Basis Med Annu Rev. 1964;218–33.Google Scholar
Miller, JF. The role of the thymus in immunity. Br Med J. 1963;2:459–64.CrossRefGoogle ScholarPubMed
Miller, JF. Immunological function of the thymus. Lancet. 1961;2:748–9.CrossRefGoogle ScholarPubMed
Di George, AM, Lischner, HW, Dacou, C et al. Absence of the thymus. Lancet. 1967;1:1387.CrossRefGoogle ScholarPubMed
Kendall, MD, van de Wijngaert, FP, Schuurman, HJ et al. Heterogeneity of the human thymus epithelial microenvironment at the ultrastructural level. Adv Exp Med Biol. 1985;186:289–97.Google ScholarPubMed
Hernandez, JB, Newton, RH, Walsh, CM. Life and death in the thymus–cell death signaling during T cell development. Curr Opin Cell Biol. 2010;22:865–71.CrossRefGoogle ScholarPubMed
Nakahama, M, Mohri, N, Mori, S et al. Immunohistochemical and histometrical studies of the human thymus with special emphasis on age-related changes in medullary epithelial and dendritic cells. Virchows Arch B Cell Pathol Incl Mol Pathol. 1990;58:245–51.CrossRefGoogle ScholarPubMed
Galy, AH, Spits, H. IL-1, IL-4, and IFN-gamma differentially regulate cytokine production and cell surface molecule expression in cultured human thymic epithelial cells. J Immunol. 1991;147:3823–30.Google ScholarPubMed
Galy, AH, Dinarello, CA, Kupper, TS et al. Effects of cytokines on human thymic epithelial cells in culture. II. Recombinant IL 1 stimulates thymic epithelial cells to produce IL6 and GM-CSF. Cell Immunol. 1990;129:161–75.CrossRefGoogle ScholarPubMed
Galy, AH, Hadden, EM, Touraine, JL et al. Effects of cytokines on human thymic epithelial cells in culture: IL1 induces thymic epithelial cell proliferation and change in morphology. Cell Immunol. 1989;124:13–27.CrossRefGoogle ScholarPubMed
Sempowski, GD, Gooding, ME, Liao, HX et al. T cell receptor excision circle assessment of thymopoiesis in aging mice. Mol Immunol. 2002;38:841–8.CrossRefGoogle ScholarPubMed
Sempowski, GD, Hale, LP, Sundy, JS et al. Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J Immunol. 2000;164:2180–7.CrossRefGoogle ScholarPubMed
Carpenter, AC, Bosselut, R. Decision checkpoints in the thymus. Nat Immunol. 2010;11:666–73.CrossRefGoogle ScholarPubMed
Griesemer, AD, Sorenson, EC, Hardy, MA. The role of the thymus in tolerance. Transplantation. 2010;90:465–74.CrossRefGoogle ScholarPubMed
Gardner, JM, Fletcher, AL, Anderson, MS et al. AIRE in the thymus and beyond. Curr Opin Immunol. 2009;21:582–9.CrossRefGoogle ScholarPubMed
Aw, D, Palmer, DB. It’s not all equal: a multiphasic theory of thymic involution. Biogerontology. 2012;13:77–81.CrossRefGoogle Scholar
Aw, D, Palmer, DB. The origin and implication of thymic involution. Aging Dis. 2011;2:437–43.Google ScholarPubMed
Calder, AE, Hince, MN, Dudakov, JA et al. Thymic involution: where endocrinology meets immunology. Neuroimmunomodulation. 2011;18:281–9.CrossRefGoogle ScholarPubMed
Hakim, FT, Gress, RE. Thymic involution: implications for self-tolerance. Methods Mol Biol. 2007;380:377–90.CrossRefGoogle Scholar
Hsu, HC, Li, L, Zhang, HG et al. Genetic regulation of thymic involution. Mech Ageing Dev. 2005;126:87–97.CrossRefGoogle ScholarPubMed
Oosterom, R, Kater, L. The thymus in the aging individual. I. Mitogen responsiveness of human thymocytes. Clin Immunol Immunopathol. 1981;18:187–94.CrossRefGoogle ScholarPubMed
Oosterom, R, Kater, L. The thymus in the aging individual. II. Thymic epithelial function in vitro in aging and in thymus pathology. Clin Immunol Immunopathol. 1981;18:195–202.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×