Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-13T22:29:06.258Z Has data issue: false hasContentIssue false

15 - The Partially Cloud-Topped Boundary Layer: Shallow Cumulus

from Part IV - Processes Related to Boundary Layer Clouds

Published online by Cambridge University Press:  05 July 2015

Jordi Vilà-Guerau de Arellano
Affiliation:
Wageningen Universiteit, The Netherlands
Chiel C. van Heerwaarden
Affiliation:
Max-Planck-Institut für Meteorologie, Hamburg
Bart J. H. van Stratum
Affiliation:
Max-Planck-Institut für Meteorologie, Hamburg
Kees van den Dries
Affiliation:
Wageningen Universiteit, The Netherlands
Get access

Summary

The Influence of Condensation on the ABL Dynamics

When rising air plumes that originate at the surface reach the saturation level, clouds form. A relevant boundary layer cloud type that enables us to observe the saturation of plumes at a specific level is shallow cumulus. Figure 15.1 shows the water vapour distribution in a diurnal boundary layer characterized by the presence of shallow cumulus (SCu) simulated by means of the large-eddy simulation technique. Two characteristic layers shown conceptually in Figure 15.2 are easy to recognize. A well-mixed layer (sub-cloud layer) is dominated by convective turbulence with θl and qt profiles constant on height (see Box 5.1 for the definition of the variables). This layer therefore resembles dynamically the clear boundary layer studied in Chapters 4 and 5. In this particular case (see Figure 15.1), above 1100 meters the cloud layer is characterized by two shallow cumuli extending to 1800 meters dominated by strong updrafts, whereas the rest of the layer above 1100 meters is mainly characterized by a stable stratified atmosphere. The amount of water vapour that has condensed in the cloud layer is quantified by the ql variable, namely, the liquid water content. It is important to stress that although the relative humidity in the top of the sub-cloud layer can be, on average, lower than 100 percent, shallow cumulus still form as a result of the higher content of moisture within the upward thermals (relative humidity ≈ 100 percent).

The presence of SCu can have a profound influence on surface processes and atmospheric phenomena in the lower part of the troposphere. They are small and have a cauliflower-like shape and their cloud base is usually very sharply defined. The vertical extent of shallow cumulus ranges between 1 and 2 kilometers with widths on the order of hundreds of meters. These clouds are convectively driven and developed when the boundary layer is heated from below by surface heat fluxes and when the moisture transported by the upward thermals condenses within the ABL.

Type
Chapter
Information
Atmospheric Boundary Layer
Integrating Air Chemistry and Land Interactions
, pp. 190 - 212
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×