Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-04-30T20:14:32.682Z Has data issue: false hasContentIssue false

15 - Bose-Einstein Condensates in Artificial Gauge Fields

from Part III - Condensates in Atomic Physics

Published online by Cambridge University Press:  18 May 2017

L. J. Leblanc
Affiliation:
Department of Physics, University of Alberta, Edmonton AB, T6G 2E1, Canada
I. B. Spielman
Affiliation:
University of Maryland
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

Quantum mechanically, static or applied gauge fields manifest themselves by directly coupling to a system's phase. Artificial gauge field techniques manipulate the phase of a Bose-Einstein condensate's order parameter, yielding effects present in condensed matter systems subject to magnetic fields, electric fields, or spin-orbit coupling. In this chapter, we explore the impact of these artificial gauge fields on Bose- Einstein condensates and explain the consequences. Several analogues to traditional condensed matter systems are enabled by these techniques, including the Hall effect, superfluid vortex nucleation in systems with artificial magnetic fields, and magnetic-like phase transitions in systems with spin-orbit coupling.

Introduction

Since the first experiments with Bose-Einstein condensates (BECs), researchers have exploited the universality of physical laws to draw analogies between the behavior of ultracold quantum gases and systems ranging from material to astrophysical. These analogous situations are deliberately engineered, giving cold-atom “quantum simulators” [1] that exhibit behavior either observed or predicted in analogous quantum systems.

Superfluidity was one of the first many-body quantum phenomena demonstrated in BECs. For example, several experiments showed superfluid behavior by rapidly rotating the condensates and observing the formation of vortices [2, 3, 4, 5] – quantized point-defects in the BEC's order parameter. In the rotating frame of these experiments, this nucleation of vortices could be understood as the consequence of an artificial magnetic field [6] that arises via the formal equivalence of the rotating-frame Coriolis force and the Lorentz force, which we describe in Section 15.4.1. Together with other measurements, these results proved to be in excellent agreement with the predictions of the Gross-Pitaevskii equation (GPE) [7], a decades-old idealization of superfluid helium.

Buoyed by the prospect for studying magnetic field–driven strongly correlated systems using these nearly ideal quantum gases, proposals for alternate techniques to simulate gauge fields were developed. These methods primarily employ an internal state–selective atom–light coupling, where the photon momentum provides the forces necessary to mimic a Lorentz force [8, 9, 10, 11, 12, 13, 14, 15, 16]. The first demonstration of this type of technique used a spatially dependent Ramantransition scheme to effect a magnetic field [17], and experiments demonstrating artificial electric fields [18] and spin-orbit coupling [19, 20, 21, 22, 23, 24] soon followed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bloch, I., Dalibard, J., and Nascimbéne, S. 2012. Quantum simulations with ultracold quantum gases. Nat. Phys., 8, 267–276.Google Scholar
[2] Matthews, M. R., Anderson, B. P., Haljan, P. C., Hall, D. S., Wieman, C. E., and Cornell, E A. 1999. Vortices in a Bose-Einstein condensate. Phys. Rev. Lett., 83, 2498–2501.Google Scholar
[3] Maragó, O. M., Hopkins, S. A., Arlt, J., Hodby, E., Hechenblaikner, G., and Foot, C J. 2000. Observation of the scissors mode and evidence for superfluidity of a trapped Bose-Einstein condensed gas. Phys. Rev. Lett., 84, 2056–2059.Google Scholar
[4] Madison, K. W., Chevy, F., Wohlleben, W., and Dalibard, J. 2000. Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett., 84, 806.Google Scholar
[5] Haljan, P, Coddington, I., Engels, P., and Cornell, E. 2001. Driving Bose-Einsteincondensate vorticity with a rotating normal cloud. Phys. Rev. Lett., 87, 210403.Google Scholar
[6] Fetter, Alexander. 2009. Rotating trapped Bose-Einstein condensates. Rev. Mod. Phys., 81, 647–691.Google Scholar
[7] Dalfovo, F., Giorgini, S., Pitaevskii, L. P., and Stringari, S. 1999. Theory of Bose- Einstein condensation in trapped gases. Rev. Mod. Phys., 71, 463–512.Google Scholar
[8] Higbie, J., and Stamper-Kurn, D. 2002. Periodically dressed Bose-Einstein condensate: a superfluid with an anisotropic and variable critical velocity. Phys. Rev. Lett., 88, 090401.Google Scholar
[9] Sørensen, A., Demler, E., and Lukin, M. 2005. Fractional quantum Hall states of atoms in optical lattices. Phys. Rev. Lett., 94, 086803.Google Scholar
[10] Juzeliunas, G., Ruseckas, J., Öhberg, P., and Fleischhauer, M. 2006. Light-induced effective magnetic fields for ultracold atoms in planar geometries. Phys. Rev. A, 73.Google Scholar
[11] Zhu, Shi-Liang, Fu, Hao, Wu, C. J., Zhang, S. C., and Duan, L. M. 2006. Spin Hall effects for cold atoms in a light-induced gauge potential. Phys. Rev. Lett., 97, 240401.Google Scholar
[12] Cheneau, M., Rath, S. P., Yefsah, T., Günter, K. J., Juzeliunas, G., and Dalibard, J. 2008. Geometric potentials in quantum optics: a semi-classical interpretation. Europhys. Lett., 83, 60001.Google Scholar
[13] Günter, K., Cheneau, M., Yefsah, T., Rath, S., and Dalibard, J. 2009. Practical scheme for a light-induced gauge field in an atomic Bose gas. Phys. Rev. A, 79, 011604.Google Scholar
[14] Klein, A., and Jaksch, D. 2009. Phonon-induced artificial magnetic fields in optical lattices. Europhys. Lett., 85, 13001.Google Scholar
[15] Spielman, I. 2009. Raman processes and effective gauge potentials. Phys. Rev. A, 79, 063613.Google Scholar
[16] Dalibard, J., Gerbier, F., Juzeliunas, G., and Öhberg, P. 2011. Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys., 83, 1523–1543.Google Scholar
[17] Lin, Y.-J., Compton, R. L., Jimenez-Garcıa, K., Porto, J. V., and Spielman, I. B. 2009. Synthetic magnetic fields for ultracold neutral atoms. Nature, 462, 628–632.Google Scholar
[18] Lin, Y.-J., Compton, R. L., Jimenez-Garcıa, K., Phillips, W. D., Porto, J. V., and Spielman, I. B. 2011a. A synthetic electric force acting on neutral atoms. Nat. Phys., 7, 531.Google Scholar
[19] Lin, Y.-J., Jimenez-Garcıa, K., and Spielman, I. B. 2011b. Spin-orbit-coupled Bose- Einstein condensates. Nature, 471, 83–86.Google Scholar
[20] Cheuk, L. W., Sommer, A. T., Hadzibabic, Z., Yefsah, T., Bakr, W. S., and Zwierlein, M.W. 2012. Spin-injection spectroscopy of a spin-orbit coupled Fermi gas. Phys. Rev. Lett., 109, 095302.Google Scholar
[21] Zhang, J.-Y., Ji, S.-C., Chen, Z., Zhang, L., Du, Z.-D., Yan, B., Pan, G.-S., Zhao, B., Deng, Y.-J., and Zhai, H. 2012. Collective dipole oscillations of a spin-orbit coupled Bose-Einstein condensate. Phys. Rev. Lett., 109, 115301.Google Scholar
[22] Wang, P., Yu, Z.-Q., Fu, Z., Miao, J., Huang, L., Chai, S., Zhai, H., and Zhang, J. 2012. Spin-orbit coupled degenerate Fermi gases. Phys. Rev. Lett., 109, 095301.Google Scholar
[23] Qu, C., Hamner, C., Gong, M., Zhang, C., and Engels, P. 2013. Observation of Zitterbewegung in a spin-orbit-coupled Bose-Einstein condensate. Phys. Rev. A, 88, 021604(R).Google Scholar
[24] Olson Abraham, J., Wang, Su-Ju, Niffenegger, Robert, J., Li, Chuan-Hsun, Greene, Chris, H., and Chen, Yong, P. 2014. Tunable Landau-Zener transitions in a spin-orbitcoupled Bose-Einstein condensate. Phys. Rev. A, 90, 013616.Google Scholar
[25] Lin, Y.-J., Compton, R., Perry, A., Phillips, W., Porto, J., and Spielman, I. 2009. Bose- Einstein condensate in a uniform light-induced vector potential. Phys. Rev. Lett., 102, 130401.Google Scholar
[26] Pitaevskii, L. P. 1961. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP, 13, 451–454 [J. Exptl. Theoret. Phys. (U.S.S.R.) 40, 646–651 (1961).].Google Scholar
[27] Gross Eugene, P. 1963. Hydrodynamics of a superfluid condensate. J. Math. Phys., 4, 195.Google Scholar
[28] Stringari, S. 1996. Collective excitations of a trapped bose-condensed gas. Phys. Rev. Lett., 77, 2360.Google Scholar
[29] Zambelli, F., and Stringari, S. 2001. Moment of inertia and quadrupole response function of a trapped superfluid. Phys. Rev. A, 63, 033602.Google Scholar
[30] Cozzini, M., and Stringari, S. 2003. Macroscopic dynamics of a Bose-Einstein condensate containing a vortex lattice. Phys. Rev. A, 67, 041602.Google Scholar
[31] LeBlanc, L. J., Jiménez-Garcıa, K., Williams, R. A., Beeler, M. C., Perry, A. R., Phillips, W. D., and Spielman, I. B. 2012. Observation of a superfluid Hall effect. Proc. Nat. Acad. Sci. (USA), 109, 10811–10814.Google Scholar
[32] Castin, Y., and Dum, R. 1996. Bose-Einstein condensates in time dependent traps. Phys. Rev. Lett., 77, 5315–5319.Google Scholar
[33] Ashcroft, N. W., and Mermin, N. D. 1976. Solid State Physics. New York: Holt, Rinehart and Winston.
[34] Fetter, A. L. 1973. Electrodynamics of a layered electron gas. I. Single layer. Annals of Physics, 81, 367–393.
[35] Deutsch, I. H., and Jessen, P. S. 1998. Quantum-state control in optical lattices. Phys. Rev. A, 57, 1972–1986.Google Scholar
[36] Dudarev, A., Diener, R., Carusotto, I., and Niu, Q. 2004. Spin-orbit coupling and Berry phase with ultracold atoms in 2D optical lattices. Phys. Rev. Lett., 92, 153005.Google Scholar
[37] Sebby-Strabley, J., Anderlini, M., Jessen, P. S., and Porto, J. V. 2006. Lattice of double wells for manipulating pairs of cold atoms. Phys. Rev. A, 73, 033605.Google Scholar
[38] Hamner, C., Qu, C., Zhang, Y., Chang, J., Gong, M., Zhang, C., and Engels, P. 2014. Dicke-type phase transition in a spin-orbit-coupled Bose-Einstein condensate. Nature Comm., 5, 4023.Google Scholar
[39] Ji, S.-C., Zhang, L., Xu, X.-T., Wu, Z., Deng, Y., Chen, S., and Pan, J.-W. 2015. Softening of roton and phonon modes in a Bose-Einstein condensate with spin-orbit coupling. Phys. Rev. Lett., 114, 105301.Google Scholar
[40] Cazalilla, M. A., Barberan, N., and Cooper, N. R. 2005. Edge excitations and topological order in a rotating Bose gas. Phys. Rev. B, 71, 121303.Google Scholar
[41] Goldman, N., Dalibard, J., Dauphin, A., Gerbier, F., Lewenstein, M., Zoller, P., and Spielman, I. B. 2013. Direct imaging of topological edge states in cold-atom systems. Proc. Nat. Acad. Sci. (USA), 110, 6736–6741.Google Scholar
[42] Spielman, I. B. 2013. Detection of topological matter with quantum gases. Ann. Phys. (Berlin), 525, 797–807.Google Scholar
[43] van der Bijl, E., and Duine, R. A. 2011. Anomalous Hall conductivity from the dipole mode of spin-orbit-coupled cold-atom systems. Phys. Rev. Lett., 107, 195302.Google Scholar
[44] Beeler, M. C., Williams, R. A., Jiménez-Garcıa, Karina, LeBlanc, L. J., Perry, A. R., and Spielman, I. B. 2013. The spin Hall effect in a quantum gas. Nature, 498, 201–204.Google Scholar
[45] Stanescu, T., Galitski, V., Vaishnav, J., Clark, C., and Das Sarma, S. 2009. Topological insulators and metals in atomic optical lattices. Phys. Rev. A, 79, 053639.Google Scholar
[46] Jaksch, D., and Zoller, P. 2003. Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms. New J. Phys., 5, 56.CrossRefGoogle Scholar
[47] Aidelsburger, M., Atala, M., Nascimbéne, S., Trotzky, S., Chen, Y.-A., and Bloch, I. 2011. Experimental realization of strong effective magnetic fields in an optical lattice. Phys. Rev. Lett., 107, 255301.Google Scholar
[48] Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C., and Ketterle, W. 2013. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett., 111, 185302.Google Scholar
[49] Jotzu, G., Messer, M., Desbuquois, R., Lebrat, M., Uehlinger, T., Greif, D., and Esslinger, T. 2014. Experimental realization of the topological Haldane model with ultracold fermions. Nature, 515, 237–240.Google Scholar
[50] Aidelsburger, M., Lohse, M., Schweizer, C., Atala, M., Barreiro, J. T., Nascimbéne, S., Cooper, N. R., Bloch, I., and Goldman, N. 2014. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys., 11, 162–166.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×