Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T06:29:00.572Z Has data issue: false hasContentIssue false

3 - Condensed matter: the challenges

Published online by Cambridge University Press:  05 November 2015

Jan Zaanen
Affiliation:
Universiteit Leiden
Yan Liu
Affiliation:
Universidad Autónoma de Madrid
Ya-Wen Sun
Affiliation:
Universidad Autónoma de Madrid
Koenraad Schalm
Affiliation:
Universiteit Leiden
Get access

Summary

If this book ever makes it to a second edition, this is most likely to be the chapter that will have to be most thoroughly rewritten. Is there a need in condensed matter physics for a theory that goes beyond the paradigm which we sketched in rough outline in the previous chapter? If so, would the lessons of AdS/CMT which are found in the later chapters be of any relevance for this purpose?

At present the fog of war is still obscuring the battlefield. This war started some thirty years ago with the discovery of high-Tc superconductivity. Before this event, there was a sense that insofar as metals and superconductors are involved the fundamentals could be understood in terms of the “fifties paradigm” of the previous chapter. In the frenzy that followed the high-Tc discovery, experiments showed that strange things were happening. The reaction of the mainstream was to try to tamper with the established paradigm, to accommodate the anomalies. However, Philip W. Anderson, who was very influential back then, took the lead in insisting that new physics is at work in the copper oxide electron systems [86]. This in turn had a great impact on the research agenda. During the subsequent thirty years the field diversified to other materials, while the repertoire of experimental methods employed to study the electrons in solids greatly expanded. Literally millions of papers were written on the subject. But some of the most basic questions formulated in the late 1980s are still awaiting a definitive answer. It is just impossible to do justice to this large and confusing literature in the present context (see e.g. [87]). We will therefore present here a small selection of subjects, which is intended to form a minimal background for the holographist to communicate with the condensed matter community.

Back in the late 1980s the great puzzle was why the superconducting transition temperature could be as high as 150 K, given that the conventional phonon mechanism runs out of steam at 40 K or so. It was also realised early on that the electron systems in cuprates are characterised by unusually strong inter-electron repulsions. An aspect that is well understood in these systems is the microscopic physics.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×