Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-26T21:13:10.025Z Has data issue: false hasContentIssue false

22 - Symbolic integration

from V - Hilbert

Published online by Cambridge University Press:  05 May 2013

Joachim von zur Gathen
Affiliation:
Bonn-Aachen International Center for Information Technology
Jürgen Gerhard
Affiliation:
Maplesoft, Canada
Get access

Summary

The basic task in this chapter is, given an “expression” f, say f ∈ F(x), where F is a field, to compute the indefinite integral ∫ f = ∫ f(x)dx, that is, another “expression” (possibly in a larger domain) g with g′ = f, where ′ denotes differentiation with respect to the variable x. “Expressions” are usually built from rational functions and “elementary functions” such as sin, cos, exp, log, etc. (Since it is more common, we denote the natural (base e) logarithm by “log” instead of “ln” in this chapter.) Such integrals need not exist: Liouville's (1835) theorem implies that exp(x2) has no integral involving only rational functions, sin, cos, exp, and log.

A practical approach to the symbolic integration problem is to use a plethora of formulas for special functions, tricks from basic calculus like substitutions and integration by parts, and table lookups. There are projects that load the whole contents of existing printed integral tables into computer algebra systems, using optical character recognition, and modern computer algebra systems can solve practically all integration exercises in calculus textbooks. In the following, we discuss a systematic algorithm in the case of rational and “hyperexponential” functions as integrands. This approach can be extended—with plenty of new ideas and techniques—to more general functions, but we do not pursue this topic further.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×