Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T14:14:51.644Z Has data issue: false hasContentIssue false

6 - Single-molecule bioelectronics

from Part I - Electronic components

Published online by Cambridge University Press:  05 September 2015

Yongki Choi
Affiliation:
University of California, Irvine
Gregory A. Weiss
Affiliation:
University of California, Irvine
Philip G. Collins
Affiliation:
University of California, Irvine
Sandro Carrara
Affiliation:
École Polytechnique Fédérale de Lausanne
Krzysztof Iniewski
Affiliation:
Redlen Technologies Inc., Canada
Get access

Summary

Conceptually, extending the premise of bioelectronic interfaces down to the scale of single molecules is a straightforward goal. In practice, the challenges are purely technological. Single-molecule bioelectronic devices would have to involve features much smaller than state-of-the-art semiconductor electronics, and successful design would have unique requirements for sensitivity and stability.

These imposing specifications are balanced by the potential of enormous rewards, because single-molecule bioelectronics would be a breakthrough technology for biochemical research and applications. By peering past the ensemble behaviors of traditional characterization, single-molecule techniques aim to directly observe the stochastic fluctuations, instantaneous dynamics, and non-equilibrium behaviors that make up a molecule’s full functionality. Moreover, single-molecule measurements can uncover the unusual reaction trajectories of a genetically mutated protein or a receptor interacting with pharmacological inhibitors. Building a better understanding of the precise roles of proteins in complex biological processes is a grand challenge for biology, biochemistry, and biophysics in the twenty-first century.

These potential benefits have spurred the development of a variety of single-molecule techniques. Single-molecule fluorescence, specifically Förster resonance energy transfer (FRET), has become a standard tool for single-molecule biochemistry [1]. Meanwhile, single-molecule bioelectronics has remained elusive, despite the wide-ranging capabilities of modern solid state electronics.

Type
Chapter
Information
Handbook of Bioelectronics
Directly Interfacing Electronics and Biological Systems
, pp. 66 - 85
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Roy, R., Hohng, S., Ha, T., Nat. Methods 5, 507 (2008).CrossRef
Choi, Y., Moody, I. S., Sims, P. C. et al. Science 335, 319 (2012).CrossRef
Choi, Y., Moody, I. S., Sims, P. C. et al. J. Am. Chem. Soc. 134, 2032 (2012).CrossRef
Choi, Y., Olsen, T. J., Sims, P. C. et al. Nano Lett. 13, 625 (2013).CrossRef
Sims, P. C., Moody, I. S., Choi, Y. et al. J. Am. Chem. Soc., in press (2013).
Olsen, T. J., Choi, Y., Sims, P. C. et al. J. Am. Chem. Soc., in press (2013).
Gruner, G., Analyt. Bioanalyt. Chem. 384, 322 (2006).CrossRef
Star, A., Gabriel, J. C. P., Bradley, K., Gruner, G., Nano Lett. 3, 459 (2003).CrossRef
Star, A., Joshi, V., Han, T. R. et al. Org. Lett. 6, 2089 (2004).CrossRef
Besteman, K., Lee, J. O., Wiertz, F. G. M., Heering, H. A., Dekker, C., Nano Lett. 3, 727 (2003).CrossRef
So, H.-M., Won, K., Kim, Y. H. et al. J. Am. Chem. Soc. 127, 11906 (2005).CrossRef
Purewal, M. S., Hong, B. H., Ravi, A. et al. Phys. Rev. Lett. 98, 186808 (2007).CrossRef
Collins, P. G., in Oxford Handbook of Nanoscience and TechnologyNarlikar, A. V., Fu, Y. Y., eds. (Oxford: Oxford Univ. Press, 2010).Google Scholar
Joselevich, E., Dai, H., Liu, J., Hata, K., Windle, A. H., in Carbon Nanotubes, Jorio, A., Dresselhaus, G., Dresselhaus, M. S., eds. (Berlin: Springer-Verlag, 2008), vol. 111, pp. 101–164.CrossRefGoogle Scholar
An, L., Owens, J. M., McNeil, L. E., Liu, J., J. Am. Chem. Soc. 124, 13688 (2002).CrossRef
Biercuk, M. J., Ilani, S., Marcus, C. M., McEuen, P. L., in Carbon Nanotubes, Jorio, A., Dresselhaus, G., Dresselhaus, M. S., eds. (Berlin: Springer-Verlag, 2008), vol. 111, pp. 455–493.CrossRefGoogle Scholar
Goldsmith, B. R., Coroneus, J. G., Khalap, V. R. et al. Science 315, 77 (2007).CrossRef
Coroneus, J. G., Goldsmith, B. R., Lamboy, J. A. et al. ChemPhysChem 9, 1053 (2008).CrossRef
Goldsmith, B. R., Coroneus, J. G., Kane, A. A., Weiss, G. A., Collins, P. G., Nano Lett. 8, 189 (2008).CrossRef
Goldsmith, B. R., Coroneus, J. G., Lamboy, J., Weiss, G. A., Collins, P. G., J. Mater. Res. 23, 1197 (2008).CrossRef
Sorgenfrei, S., Chiu, C.-Y., Gonzalez, R. L. et al. Nat. Nanotechnol. 6, 126 (2011).CrossRef
Sorgenfrei, S., Chiu, C.-Y., Johnston, M., Nuckolls, C., Shepard, K. L., Nano Lett. 11, 3739 (2011).CrossRef
Prisbrey, L., Schneider, G., Minot, E., J. Phys. Chem. B 114, 3330 (2010).CrossRef
Hermanson, G. T., Bioconjugate Techniques, 2nd ed. (Chicago: Academic Press, Inc., 2008).Google Scholar
Chen, R. J., Zhan, Y. G., Wang, D. W., Dai, H. J., J. Am. Chem. Soc. 123, 3838 (2001).CrossRef
Li, C., Curreli, M., Lin, H. et al. J. Am. Chem. Soc. 127, 12484 (2005).CrossRef
Johnson, S., Cain, S., Appl. Optics 47, 5147 (2008).CrossRef
Bard, A. J., Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd ed. (New York: Wiley, 2001), pp. 833.Google Scholar
Kuroki, R., Weaver, L. H., Matthews, B. W., Nat. Struct. Biol. 2, 1007 (1995).CrossRef
Kuroki, R., Weaver, L. H., Matthews, B. W., Science 262, 2030 (1993).CrossRef
Chen, Y., Hu, D. H., Vorpagel, E. R., Lu, H. P., J. Phys. Chem. B 107, 7947 (2003).CrossRef
Hu, D., Lu, H. P., Biophys. J. 87, 656 (2004).CrossRef
Lu, H. P., Curr. Pharm. Biotechnol. 5, 261 (2004).CrossRef
Wang, Y., Lu, H. P., J. Phys. Chem. B 114, 6669 (2010).CrossRef
Xie, S. N., Single Molecules 2, 229 (2001).3.0.CO;2-9>CrossRef
Svoboda, K., Mitra, P. P., Block, S. M., Proc. Natl. Acad. Sci. USA 91, 11782 (1994).CrossRef
Schnitzer, M. J., Block, S. M., Cold Spring Harbor Symp. Quant. Biol. 60, 793 (1995).CrossRef
Xu, W. L., Kong, J. S., Chen, P., J. Phys. Chem. C 113, 2393 (2009).CrossRef
Steitz, T. A., J. Biol. Chem. 274, 17395 (1999).CrossRef
Delagoutte, E., Frontiers Biosci. Landmark 17, 509 (2012).CrossRef
Joyce, C. M., Biochim. Biophys. Acta Proteins Proteom. 1804, 1032 (2010).CrossRef
Santoso, Y., Joyce, C. M., Potapova, O. et al. Proc. Natl. Acad. Sci. USA 107, 715 (2010).CrossRef
Berezhna, S. Y., Gill, J. P., Lamichhane, R., Millar, D. P., J. Am. Chem. Soc. 134, 11261 (2012).CrossRef
Bryant, F. R., Johnson, K. A., Benkovic, S. J., Biochemistry 22, 3537 (1983).CrossRef
Kaushik, N., Pandey, V. N., Modak, M. J., Biochemistry 35, 7256 (1996).CrossRef
Joyce, C. M., Potapova, O., DeLucia, A. M. et al. Biochemistry 47, 6103 (2008).CrossRef
Adams, J. A., Chem. Rev. 101, 2271 (2001).CrossRef
Manning, G., Whyte, D. B., Martinez, R., Hunter, T., Sudarsanam, S., Science 298, 1912 (2002).CrossRef
Taylor, S. S., Yang, J., Wu, J. et al. Biochim. Biophys. Acta Proteins Proteom. 1697, 259 (2004).CrossRef
Kemp, B. E., Graves, D. J., Benjamini, E., Krebs, E. G., J. Biol. Chem. 252, 4888 (1977).
Adams, J. A., Taylor, S. S., Biochemistry 31, 8516 (1992).CrossRef
Madhusudan, , Trafny, E. A., Xuong, N. H. et al. Protein Sci. 3, 176 (1994).CrossRef
Narayana, N., Cox, S., Nguyen-huu, X., Ten Eyck, L. F., Taylor, S. S., Structure 5, 921 (1997).CrossRef
Masterson, L. R., Mascioni, A., Traaseth, N. J., Taylor, S. S., Veglia, G., Proc. Natl. Acad. Sci. USA 105, 506 (2008).CrossRef
Ni, D. Q., Shaffer, J., Adams, J. A., Protein Sci. 9, 1818 (2000).CrossRef
Grant, B. D., Adams, J. A., Biochemistry 35, 2022 (1996).CrossRef
Hunt, S. R., Wan, D., Khalap, V. R., Corso, B. L., Collins, P. G., Nano Lett. 11, 1055 (2011).CrossRef
Leonard, F., Tersoff, J., Phys. Rev. Lett. 83, 5174 (1999).CrossRef
Leonard, F., Talin, A. A., Nat. Nanotechnol. 6, 773 (2011).CrossRef
Lin, Y. M., Tsang, J. C., Freitag, M., Avouris, P., Nanotechnology 18, 295202 (2007).CrossRef
Goldsmith, B. R., Mitala, J. J., Josue, J. et al. ACS Nano 5, 5408 (2011).CrossRef
Israelachvili, J. N., Intermolecular and Surface Forces (London: Academic Press, 1991).Google Scholar
Kuroki, R., Weaver, L. H., Matthews, B. W., Proc. Natl. Acad. Sci. USA 96, 8949 (1999).CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×