Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T14:47:02.704Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 November 2014

Rob Nederpelt
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
Herman Geuvers
Affiliation:
Radboud Universiteit Nijmegen
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Type Theory and Formal Proof
An Introduction
, pp. 411 - 418
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AMS, 2008: Notices of the American Mathematical Society, 55 (11).
Arthan, R.D., 2013: ProofPower, www.lemma-one.com/ProofPower/index/index.html.
Asperti, A., Ricciotti, W., Sacerdoti Coen, C. and Tassi, E., 2011: The Matita Interactive Theorem Prover. In Bjørner, N. and Sofronie-Stokkermans, V., eds, Automated Deduction: CADE 23, 23rd International Conference on Automated Deduction, Wroclaw, Poland, 31 July – 5 August 2011, pp. 64-69, Springer. See also matita.cs.unibo.it/.Google Scholar
Automath Archive, 2004: Home Page, www.win.tue.nl/automath/.
Barendregt, H.P., 1981: The Lambda Calculus: Its Syntax and Semantics, North-Holland Publishing Company.Google Scholar
Barendregt, H.P., 1992: Lambda calculi with types. In Abramski, S., Gabbay, D. and Maibaum, T., eds, Handbook of Logic in Computer Science, pp. 117–309, Oxford University Press.Google Scholar
Barendregt, H. and Geuvers, H., 2001: Proof assistants using dependent type systems. In Robinson, A. and Voronkov, A., eds, Handbook of Automated Reasoning, Vol. 2, pp. 1149–1238, Elsevier.Google Scholar
Barendregt, H.P., Dekkers, W. and Statman, R., eds, 2013: Lambda Calculus with Types, Cambridge University Press.CrossRef
van Benthem Jutting, L.S., 1977: Checking Landau's ‘Grundlagen’ in the AUTOMATH system, PhD thesis, Eindhoven University of Technology. See also Nederpelt et al., 1994, pp. 763–780.Google Scholar
van Benthem Jutting, L.S., 1993: Typing in Pure Type Systems, Information and Computation, 105 (1), pp. 30–41.Google Scholar
van Benthem Jutting, L.S., McKinna, J. and Pollack, R., 1994: Checking algorithms for Pure Type Systems. In Barendregt, H.P. and Nipkow, T., eds, Types for Proofs and Programs, International Workshop TYPES'93, Nijmegen, The Netherlands, pp. 19–61, Springer.Google Scholar
Bertot, Y. and Castéran, P., 2004: Interactive Theorem Proving and Program Development: Coq'Art: the Calculus of Inductive Constructions, Springer.CrossRefGoogle Scholar
Böhm, C. and Berarducci, A., 1985: Automatic synthesis of typed ∧-programs on term algebras, Theoretical Computer Science, 39, pp. 135–154.CrossRefGoogle Scholar
Bove, A., Dybjer, P. and Norell, U., 2009: A brief overview of Agda: a functional language with dependent types. In Ierghofer, S., Nipkow, T., Irban, C. and Wenzel, M., eds, Proceedings of the 22nd International Conference on Theorem Proving in Higher Order Logics, TPHOLs 2009, Munich, Germany, 17-20 August 2009, pp. 73–78, Springer. See also wiki.portal.chalmers.se/agda/.Google Scholar
de Bruijn, N.G., 1968: Example of a text written in Automath. In Nederpelt et. al, 1994, pp. 687–700.Google Scholar
de Bruijn, N.G., 1970: The mathematical language AUTOMATH, its usage and some of its extensions. In Laudet, M., Lacombe, D., Nolin, L. and Schiitzenberger, M., eds, Symposium on Automatic Demonstration, Versailles pp. 29–61, Springer. Reprinted in Nederpelt et al., 1994, pp. 73–100.Google Scholar
de Bruijn, N.G., 1972: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser Theorem, Indagationes Mathematicae, 34 (5), pp. 381–392, Elsevier.Google Scholar
de Bruijn, N.G., 1980: A survey of the project AUTOMATH. In Seldin & Hindley, 1980, pp. 579–606.Google Scholar
Cantor, G., 1874: Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen, Journal für die Reine und Angewandte Mathematik, 77, pp. 258–262, Georg Reimer Verlag. English translation in Ewald, W., ed., From Kant to Hilbert: A Source Book in the Foundations of Mathematics, 1996, pp. 840–843, Clarendon Press.Google Scholar
Cardone, F. and Hindley, J.R., 2009: Lambda-calculus and combinators in the 20th century. In Gabbay, D.M. and Woods, J., eds, Handbook of the History of Logic, Vol. 5, pp. 723–817, Elsevier.Google Scholar
Church, A., 1933: A set of postulates for the foundation of logic, Annals of Mathematics, 33, pp. 346–366, and 34, pp. 839–864.CrossRefGoogle Scholar
Church, A., 1935: An unsolvable problem of elementary number theory, preliminary report (abstract), Bulletin of the American Mathematical Society, 41, pp. 332–333.Google Scholar
Church, A., 1936a: A note on the Entscheidungsproblem, Journal of Symbolic Logic, 1, pp. 40–41.Google Scholar
Church, A., 1936b: An unsolvable problem of elementary number theory, American Journal of Mathematics, 58, pp. 345–363.CrossRefGoogle Scholar
Church, A., 1940: A formulation of the simple theory of types, Journal of Symbolic Logic, 5, pp. 56–68.CrossRefGoogle Scholar
Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T. and Smith, S.F., 1986: Implementing Mathematics with the Nuprl Development System, Prentice-Hall.Google Scholar
Coq Development Team, 2012: The Coq Proof Assistant, Reference Manual,Version 8.4. See coq.inria.fr/refman/.
Coquand, Th., 1985: Une théorie des constructions, PhD thesis, University of Paris VII.Google Scholar
Coquand, Th. and Huet, G., 1988: The Calculus of Constructions, Information and Computation, 76, pp. 95–120.CrossRefGoogle Scholar
Curry, H.B., 1930: Grundlagen der Kombinatorischen Logik, American Journal of Mathematics, 52 (3), pp. 509–536, and (4), pp. 789–834.CrossRefGoogle Scholar
Curry, H.B., 1969: Modified basic functionality in combinatory logic, Dialectica, 23, pp. 83–92.CrossRefGoogle Scholar
Curry, H.B. and Feys, R., 1958: Combinatory Logic, Vol. 1, North-Holland Publishing Company.Google Scholar
van Daalen, D.T., 1973: A description of AUTOMATH and some aspects of its language theory. In Braffort, P., ed., Proceedings of the Symposium APLASM, Orsay, France. Reprinted in Nederpelt et al., 1994, pp. 101–126.Google Scholar
van Dalen, D., 1994: Logic and Structure, 3rd augmented edition, Springer.CrossRefGoogle Scholar
van Dalen, D., Doets, H.C. and de Swart, H., 1978: Sets: Naive, Axiomatic and Applied, Pergamon Press.Google Scholar
Damas, L. and Milner, R., 1982: Principal type-schemes for functional programs. In DeMillo, R.A., ed., POPL '82: Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 207–212, ACM.Google Scholar
Davis, M., ed., 1965: The Undecidable, Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions, Raven Press.
Dechesne, F. and Nederpelt, R.P., 2012: N.G. de Bruijn (1918–2012) and his road to Automath, the earliest proof checker, The Mathematical Intelligencer, 34(4), pp. 4–11.CrossRefGoogle Scholar
Fitch, F., 1952: Symbolic Logic, An Introduction, The Ronald Press Company.Google Scholar
Frege, F.L.G., 1893: Grundgesetze der Arithmetik, Verlag Hermann Pohle. Facsimile reprints in 1962 and 1998, Georg Olms Verlag.Google Scholar
Gandy, R.O., 1980: An early proof of normalization by A.M. Turing.In Seldin & Hindley, 1980, pp. 453–455, Academic Press.Google Scholar
Gentzen, G., 1934/5: Untersuchungen über das logische Schliessen, I, Mathematische Zeitschrift, 39(2).Google Scholar
Geuvers, J.H., 1995: A short and flexible proof of Strong Normalization for the Calculus of Constructions. In Dybjer, P., Nordstriöm, B. and Smith, J., eds, Types for Proofs and Programs, International Workshop TYPES '94, Bastad, Sweden, pp. 14–38, Springer.Google Scholar
Geuvers, J.H., 2001: Induction is not derivable in second order dependent type theory. In Abramsky, S., ed., Proceedings of Typed Lambda Calculus and Applications, TLCA 2001, Krakow, Poland, May 2001, pp. 166–181, Springer.Google Scholar
Geuvers, J.H., 2009: Proof assistants: history, ideas and future, Sadahana Journal, Academy Proceedings in Engineering Sciences, Indian Academy of Sciences, 34(1), Special Issue on Interactive Theorem Proving and Proof Checking, pp. 3–25.Google Scholar
Geuvers, J.H., 2013: Inconsistency of ‘Automath powersets’ in impredicative type theory, Short note www.cs.ru.nl/∼herman/PUBS/InconsAutSetTh.pdf.
Geuvers, J.H., 2014a: Properties of a lambda calculus with definitions, Short note, www.cs.ru.nl/∼herman/PUBS/PropLamCDef.pdf.
Geuvers, J.H., 2014b: A formalization of the integers, Short note, www.cs.ru.nl/∼herman/PUBS/FormInt.pdf.
Geuvers, J.H. and Nederpelt, R.P., 1994: Typed λ-calculus. In de Swart, H.C.M., Logic: Mathematics, Language, Computer Science and Philosophy, Vol. 2, Section 33, pp. 168–199, Peter Lang GmbH.Google Scholar
Geuvers, J.H. and Nederpelt, R.P., 2004: Rewriting for Fitch style natural deductions. In van Oostrom, V., ed., Proceedings of RTA 2004, 15th International Conference on Rewriting Techniques and Applications, Aachen, Germany, pp. 134–154, Springer.Google Scholar
Geuvers, J.H. and Nederpelt, R.P., 2013: N.G. de Bruijn's contribution to the formalization of mathematics, Indagationes Mathematicae, 24, pp. 1034–1049.CrossRefGoogle Scholar
Girard, J.-Y., 1971: Une extension de l'interpretation de Gödel à l'analyse et son application à l'élimination des coupures dans l'analyse et la théorie des types. In Fenstad, J.E., ed., Proceedings of the Second Scandinavian Logic Symposium, pp. 63–92, North-Holland Publishing Company.Google Scholar
Girard, J.-Y., 1972: Interprétation fonctionelle et élimination des coupures dans l'arithmétique d'ordre supérieur, PhD thesis, UniversiteParis VII.Google Scholar
Girard, J.-Y., 1986: The system F of variable types, fifteen years later, Theoretical Computer Science, 45, pp. 159–192.CrossRefGoogle Scholar
Girard, J.-Y., Lafont, Y. and Taylor, P., 1989: Proofs and Types, Cambridge University Press.Google Scholar
Göidel, K., 1932: Ui ber formal unentscheidbare Saitze der Principia Mathematica und verwandter Systeme, I, Monatshefte für Mathematik und Physik, 38, pp. 173–198. Also in van Heijenoort, 1967.Google Scholar
Gonthier, G., 2005: A Computer-checked Proofof the Four Colour Theorem, research.microsoft.com/en-us/people/gonthier/4colproof.pdf.
Gonthier, G., 2008: Formal proof: the Four Color Theorem, Notices of the American Mathematical Society, 55 (11), pp. 1370–1381.Google Scholar
Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux, S., Mahboubi, A., O'Connor, R., Ould Biha, S., Pasca, I., Rideau, L., Solovyev, A., Tassi, E. and Théry, L., 2013: A machine-checked proof of the odd order theorem. In Blazy, S., Paulin-Mohring, C. and Pichardie, D., eds, Interactive Theorem Proving: 4th International Conference, ITP 2013, 22-26 July 2013, Rennes, France pp. 163–179, Springer.Google Scholar
Gordon, M.J.C., 2000: From LCF to HOL: a short history. In Plotkin, G., Stirling, C.P. and Tofte, M., eds, Proof, Language, and Interaction, Essays in Honour of Robin Milner (Foundations of Computing), pp. 169–185, MIT Press.Google Scholar
Gordon, M.J.C. and Melham, T.F., eds, 1993: Introduction to HOL: A Theorem-Proving Environment for Higher-Order Logic, Cambridge University Press.
Gupta, A., 2014: Definitions. In Zalta, E.N., ed., The Stanford Encyclopedia of Philosophy, plato.stanford.edu/archives/spr2014/entries/definitions/.
Hales, T.C., 2006: Introduction to the Flyspeck Project, Dagstuhl Seminar Proceedings 05021, Mathematics, Algorithms, Proofs, pdf.aminer.org/000/137/477/introduction_to_the_flyspeck_project.pdf.
Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S. and Zumkeller, R., 2010: A revision of the proof of the Kepler conjecture, Discrete & Computational Geometry, 44 (1), pp. 1–34.CrossRefGoogle Scholar
Harper, R., Honsell, F. and Plotkin, G., 1987: A framework for defining logics. In Proceedings of the Second Annual Symposium on Logic in Computer Science, Ithaca, NY, pp. 194–204, IEEE.Google Scholar
van Heijenoort, J., 1967: From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, Harvard University Press.Google Scholar
Hilbert, D., 1927: The Foundations of Mathematics. Reproduced in van Heijenoort, 1967.
Hilbert, D. and Bernays, P., 1939: Grundlagen der Mathematik, Vol. 2, Springer.Google Scholar
Hindley, J.R., 1969: The principal type-scheme of an object in combinatory logic, Transactions of the American Mathematical Society, 146, pp. 29–60.Google Scholar
Hindley, J.R., 1997: Basic Simple Type Theory, Cambridge University Press.CrossRefGoogle Scholar
Hindley, J.R. and Seldin, J.P., 2008: Lambda-Calculus and Combinators, an Introduction, Cambridge University Press.CrossRefGoogle Scholar
HOL system, 1988: www.cl.cam.ac.uk/research/hvg/HOL/.
Howard, W., 1980: The formulas-as-types notion of construction. In Seldin & Hindley, 1980, pp. 479–490.Google Scholar
JAR, 2013: Journal of Automated Reasoning, 50 (2), Special Issue: Formal Mathematics for Mathematicians.
Jaśkowski, S., 1934: On the rules of suppositions in formal logic, Studia Logica, 1, pp. 5–32. Reprinted in McCall, S., ed., Polish Logic 1920–1939;, Oxford University Press, 1967, pp. 232–258.Google Scholar
Jech, Th., 2003: Set Theory: The Third Millennium Edition, revised and expanded edition, Springer.Google Scholar
Jones, R.B., 2013: 42 Famous Theorems in ProofPower, www.rbjones.com/rbjpub/pp/rda001.html.
Kamareddine, F.D., Laan, T.D.L. and Nederpelt, R.P., 2002: Types in logic and mathematics before 1940, The Bulletin of Symbolic Logic, 8 (2), pp. 185–245. Reprinted as ‘A history of types’ in Gabbay, D.M., Pelletier, F.J. and Woods, J., eds, Handbook of the History of Logic, Vol. 11, pp. 451–511, Elsevier, 2012.Google Scholar
Kamareddine, F.D., Laan, T.D.L. and Nederpelt, R.P., 2003: De Bruijn's Automath and Pure Type Systems. In Kamareddine, F.D., ed., Thirty Five Years of Automating Mathematics, pp. 71–123, Kluwer.CrossRefGoogle Scholar
Kamareddine, F.D., Laan, T.D.L. and Nederpelt, R.P., 2004: A Modern Perspective on Type Theory, From its Origins until Today, Kluwer.Google Scholar
Klein, G., 2013: Isabelle Top 100, www.cse.unsw.edu.au/∼kleing/top100/.
Kneale, W. and Kneale, M., 1962: The Development of Logic, Clarendon Press.Google Scholar
Kwiatek, R., 1990: Factorial and Newton coefficients, Journal of Formalized Mathematics, 1 (5), pp. 887–890.Google Scholar
Lamport, L., 1985: LATEX: A Document Preparation System, Addison-Wesley Publishing Company.Google Scholar
Landau, E., 1930: Grundlagen der Analysis, Akademische Verlagsgesellschaft; 3rd edition, 1960, Chelsea Publishing Company.Google Scholar
Lewis, H. and Papadimitriou, C.H., 1981: Elements of the Theory of Computation, Prentice-Hall.Google Scholar
Luo, Z., 1990: An Extended Calculus of Constructions, PhD thesis, University of Edinburgh.Google Scholar
Luo, Z., 1994: Computation and Reasoning: A Type Theory for Computer Science, Oxford University Press.Google Scholar
Madiot, J.-M., 2013: Formalizing 100 theorems in Coq, perso.ens-lyon.fr/jeanmarie.madiot/coq100/.
Magnusson, L. and Nordström, B., 1994: The ALF proof editor and its proof engine. In Barendregt, H. and Nipkow, T., eds, Types for Proofs and Programs, International Workshop TYPES'93, Nijmegen, The Netherlands, pp. 213–237, Springer.Google Scholar
Margaris, A., 1961: Axioms for the integers, American Mathematical Monthly, 68 (5), pp. 441–444.CrossRefGoogle Scholar
Martin-Löf, P., 1980: Intuitionistic Type Theory, Bibliopolis.Google Scholar
McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P. and Levin, M.I., 1985: LISP 1.5 Programmer's Manual, MIT Press.Google Scholar
Mendelson, E., 2009: Introduction to Mathematical Logic, 5th edition, Chapman and Hall/CRC.Google Scholar
Milner, R., 1972: Logic for Computable Functions: Description of a Machine Implementation, Technical Report, Stanford University.CrossRefGoogle Scholar
Milner, R., 1978: A theory of type polymorphism in programming, Journal of Computer and System Sciences, 17, pp. 348–375.CrossRefGoogle Scholar
Mizar, 1989: Home Page, www.mizar.org.
Nederpelt, R.P., 1987: De Taal van de Wiskunde(The Language of Mathematics), Versluys.Google Scholar
Nederpelt, R.P., Geuvers, J.H. and de Vrijer, R.C., eds, 1994: Selected Papers on Automath, North-HollandElsevier.
Nederpelt, R.P. and Kamareddine, F.D., 2011: Logical Reasoning: A First Course, 2nd revised edition, College Publications.Google Scholar
Nipkow, T., Paulson, L.C. and Wenzel, M., 2002: Isabelle/HOL – A Proof Assistant for Higher-Order Logic, Springer.Google Scholar
Nordstrom, B., Petersson, K. and Smith, J., 1990: Programming in Martin-Löf's Type Theory, An Introduction, Oxford University Press.Google Scholar
Paulson, L.C., 1993: The Isabelle Reference Manual, Computer Laboratory, University of Cambridge.Google Scholar
Peano, G., 1889: The Principles of Arithmetic, Presented by a New Method. Reproduced in van Heijenoort, 1967, pp. 83–97.Google Scholar
Pelletier, F.J., 1999: A brief history of natural deduction, History and Philosophy of Logic, 20, pp. 1–31.CrossRefGoogle Scholar
Peyton Jones, S. et al., eds, 1998: Revised Report on Haskell 98, haskell.org/onlinereport/.
Pfenning, F., 2002: Logical frameworks: a brief introduction. In Schwichtenberg, H. and Steinbrüggen, R., eds, Proof and System-Reliability, Kluwer.Google Scholar
Pierce, B.C., 2002: Types and Programming Languages, MIT Press.Google Scholar
Pierce, B.C., 2004: Advanced Topics in Types and Programming Languages,MITPress.Google Scholar
Plotkin, G., 1977: LCF considered as a programming language, Theoretical Computer Science, 5, pp. 223–255.CrossRefGoogle Scholar
Pollack, R., 1994: The Theory of LEGO: A Proof Checker for the Extended Calculus of Constructions, PhD thesis, University of Edinburgh.Google Scholar
Pollack, R. et al., 2001: The LEGO Proof Assistant, www.dcs.ed.ac.uk/home/lego/.
Prawitz, D., 1965: Natural Deduction, A Proof-Theoretic Study, Almqvist & Wiksell.Google Scholar
PVS, 1992: pvs-wiki.csl.sri.com/index.php/Main_Page.
Ramsey, F.P., 1926: The foundations of mathematics, Proceedings of the London Mathematical Society, 2nd series, 25, pp. 338–384.Google Scholar
Reynolds, J.C., 1974: Towards a theory of type structure. In Robinet, B., ed., Programming Symposium, Proceedings Colloque sur la Programmation,Paris, France, 9–11 April 1974, pp. 408–423, Springer.Google Scholar
Reynolds, J.C., 1984: Polymorphism is not set-theoretic. In Kahn, G., MacQueen, D.B. and Plotkin, G., eds, Semantics of Data Types, International Symposium, Sophia-Antipolis, France, 27–29 June 1984, pp. 145–156, Springer.Google Scholar
Robinson, J.A., 1965: A machine-oriented logic based on the resolution principle, Journal of the ACM, 12 (1), pp. 23–41.CrossRefGoogle Scholar
Russell, B., 1903: The Principles of Mathematics, Cambridge University Press.Google Scholar
Russell, B., 1905: On Denoting, Mind, 14, pp. 479–493.Google Scholar
Russell, B., 1908: Mathematical logic as based on the theory of types, American Journal of Mathematics, 30, pp. 222–262.CrossRefGoogle Scholar
Sanchis, L.E., 1967: Functionals defined by recursion, Notre Dame Journal of Formal Logic, 8, pp. 161–174.CrossRefGoogle Scholar
Schönfinkel, M., 1924: Über die Bausteine der mathematischen Logik. Translated as ‘On the building blocks of mathematical logic’ in van Heijenoort, 1967.Google Scholar
Schwichtenberg, H., 1976: Definierbare Funktionen im λ-Kalkül mit Typen, Archiv für Mathematische Logik und Grundlagenforschung, 17, pp. 113–114.Google Scholar
Seldin, J.P., 1979: Progress report on generalized functionality, Annals of Mathematical Logic, 17, pp. 29–59.CrossRefGoogle Scholar
Seldin, J.P. and Hindley, J.R., eds, 1980: To H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, Academic Press.
Severi, P.G. and Poll, E., 1994: Pure Type Systems with definitions. In Nerode, A. and Matiyasevich, Yu. V., eds, Proceedings of the Symposium on Logical Foundations of Computer Science, LFCS '94, pp. 316–328, Springer.Google Scholar
Simmons, H., 2000: Derivation and Computation: Taking the Curry–Howard Correspondence Seriously, Cambridge University Press.Google Scholar
Sørensen, M.H. and Urzyczyn, P., 2006: Lectures on the Curry-Howard Isomorphism, Elsevier.Google Scholar
Sudkamp, Th., 2006: Languages and Machines: An Introduction to the Theory of Computer Science, 3rd edition, Addison-Wesley Publishing Company.Google Scholar
Tait, W.W., 1967: Intensional interpretation of functionals of finite type, Journal of Symbolic Logic, 32 (2), pp. 187–199.CrossRefGoogle Scholar
Takahashi, M., 1995: Parallel reductions in lambda calculus, Information and Computation, 118 (1), pp. 120–127.CrossRefGoogle Scholar
Terese (Bezem, M.A., Klop, J.W. and de Vrijer, R.C., eds), 2003: Term Rewriting Systems, Cambridge University Press.
Troelstra, A.S. and van Dalen, D., 1988: Constructivism in Mathematics: An Introduction, 2 vols Elsevier.Google Scholar
Turing, A.M., 1936: On computable numbers, with an application to the Entscheidungsproblem, Proceedings of the London Mathematical Society, 42(2), pp. 230–265; a correction, 43 (1937), pp. 544–546.Google Scholar
Twelf Project, 1999: twelf.plparty.org/wiki/Main_Page.
Univalent Foundations Program, 2013: Homotopy Type Theory, Univalent Foundations of Mathematics, Institute for Advanced Study, homotopytypetheory.org/book/.
Visser, A. and Iemhoff, R., 2009: personal communication.
Voevodsky, V.A., 2014: Univalent Foundations: New Foundations of Mathematics, video lecture, Institute for Advanced Study, Princeton, video.ias.edu/node/6395.Google Scholar
Wand, M., 1987: A simple algorithm and proof for type inference, Fundamenta Informaticae, X, pp. 115–122.Google Scholar
Wells, J.B., 1994: Typability and type-checking in the second-order λ-calculus are equivalent and undecidable, Proceedings of the 9th Annual Symposium on Logic in Computer Science, Paris, France pp. 176–185, IEEE Computer Society Press.Google Scholar
Whitehead, A.N. and Russell, B., 1910: Principia Mathematica, 3 vols, Cambridge University Press, 1910, 1912 and 1913. 2nd edition, 1925 (Vol. 1), 1927 (Vols 2, 3).Google Scholar
Wiedijk, F., 1999: Automath, Home Page: www.cs.ru.nl/∼freek/aut/.
Wiedijk, F., ed., 2006: The Seventeen Provers of the World, Springer.CrossRef
Wiedijk, F., 2013: Formalizing 100 Theorems, www.cs.ru.nl/∼freek/100/index.html.
Zermelo, E., 1908: Untersuchungen über die Grundlagen der Mengenlehre, I, Mathematische Annalen, 65, pp. 261–281.CrossRefGoogle Scholar
Zucker, J., 1977: Formalization of classical mathematics in Automath. InColloque International de Logique, Colloques Internationaux du Centre National de la Recherche Scientifique, 249. Reprinted in Nederpelt et al., 1994, pp. 127–139.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Rob Nederpelt, Technische Universiteit Eindhoven, The Netherlands, Herman Geuvers, Radboud Universiteit Nijmegen
  • Book: Type Theory and Formal Proof
  • Online publication: 05 November 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139567725.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Rob Nederpelt, Technische Universiteit Eindhoven, The Netherlands, Herman Geuvers, Radboud Universiteit Nijmegen
  • Book: Type Theory and Formal Proof
  • Online publication: 05 November 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139567725.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Rob Nederpelt, Technische Universiteit Eindhoven, The Netherlands, Herman Geuvers, Radboud Universiteit Nijmegen
  • Book: Type Theory and Formal Proof
  • Online publication: 05 November 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139567725.024
Available formats
×