Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T13:14:18.205Z Has data issue: false hasContentIssue false

21 - Regression

from PART V - REAL-WORLD APPLICATIONS

Published online by Cambridge University Press:  05 July 2014

Wolfgang von der Linden
Affiliation:
Technische Universität Graz, Austria
Volker Dose
Affiliation:
Max-Planck-Institut für Plasmaphysik, Garching, Germany
Udo von Toussaint
Affiliation:
Max-Planck-Institut für Plasmaphysik, Garching, Germany
Get access

Summary

Regression is a technique for describing how a response variable y varies with the values of so-called input variables x. There is a distinction between ‘simple regression’, where we have only one input variable x, and ‘multiple regression’, with many input variables x. Predictions are based on a model function y = f(x∣a) that depends on the model parameters a. At the heart of the regression analysis lies the determination of the parameters a, either because they bear a direct (physical) meaning or because they are used along with the model function to make predictions. The reader not familiar with the general ideas of parameter estimation may want to read Part III [p. 227] first. In the literature on frequentist statistics, regression analysis is generally based on the assumption that the measured values of the response variables are independently and normally distributed with equal noise levels. Regression analysis in frequentist statistics boils down to fitting the model parameters such that the sum of the squared deviations between model and data is minimized. A widespread application is the linear regression model, where the function f is linear in the variables x and the parameters a.

In the Bayesian framework, there is no need for any restrictions. Here we will deal with the general problem of inferring the parameters a of an arbitrary model function f(x∣a). In order to cover the bulk of applications we will restrict the following studies to Gaussian errors.

Type
Chapter
Information
Bayesian Probability Theory
Applications in the Physical Sciences
, pp. 333 - 363
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Regression
  • Wolfgang von der Linden, Technische Universität Graz, Austria, Volker Dose, Max-Planck-Institut für Plasmaphysik, Garching, Germany, Udo von Toussaint, Max-Planck-Institut für Plasmaphysik, Garching, Germany
  • Book: Bayesian Probability Theory
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139565608.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Regression
  • Wolfgang von der Linden, Technische Universität Graz, Austria, Volker Dose, Max-Planck-Institut für Plasmaphysik, Garching, Germany, Udo von Toussaint, Max-Planck-Institut für Plasmaphysik, Garching, Germany
  • Book: Bayesian Probability Theory
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139565608.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Regression
  • Wolfgang von der Linden, Technische Universität Graz, Austria, Volker Dose, Max-Planck-Institut für Plasmaphysik, Garching, Germany, Udo von Toussaint, Max-Planck-Institut für Plasmaphysik, Garching, Germany
  • Book: Bayesian Probability Theory
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139565608.023
Available formats
×