Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-13T05:11:47.669Z Has data issue: false hasContentIssue false

4 - Tunable Reflective Optics

from Part II - Devices and materials

Published online by Cambridge University Press:  05 December 2015

David Dickensheets
Affiliation:
Montana State University, Bozeman, MT, USA
Hans Zappe
Affiliation:
Albert-Ludwigs-Universität Freiburg, Germany
Claudia Duppé
Affiliation:
Albert-Ludwigs-Universität Freiburg, Germany
Get access

Summary

Introduction

Reflective optics (plane and curved mirrors, gratings, etc.) modify the wavefront of a reflected light beam. Tunable reflective optics bring that wavefront modification under system control. For example, a spherical mirror for which the radius of curvature can be adjusted will have a tunable focal length. A mirror with flexible control of higher-order surface corrugation might compensate aberration to clear up a blurry image. Already, we find tunable reflective optics playing a critical role in barcode and three-dimensional (3D) scanners, compact laser displays, full screen theater projectors, tiny optical fiber modulators, and tunable laser sources, to mention but a few applications. As performance and sophistication continue to increase and costs decrease, we will likely see entirely new capabilities enabled by these remarkable active optical elements.

For some uses, reflective optics might be used interchangeably with transmissive optics. But often there are reasons one may prefer a reflective optic over a transmissive one, or vice versa. For example, for very large apertures such as the primary lens on an astronomical telescope, mirrors are preferred when the sheer weight of a large glass lens becomes unmanageable. Reflective optics also exhibit very low chromatic aberration, helping them to perform well over a broad spectral range. On the other hand, reflective systems offer unique challenges related to obscuration of the optical path, sometimes necessitating the use of beam splitters or divided pupils to get the beam in and out of the system.

There are further characteristics that are important when considering reflection or transmission for tunable optics. One is the possibility of using a large number of actuators, which in the case of a reflective optic can be hidden behind the mirror where they won't interfere with the optical beam. Such mirrors offer precise control over the shape of the optical surface and can form the basis of an aberration compensation mirror, a precise aspheric lens, or a tunable grating. Another feature of reflective optics is the extremely light weight of the movable element, which is often a thin membrane. This optical surface can consequently be moved quickly, leading to very short response times compared to tunable transmissive optics based on redistributing volumes of liquid that are heavier and can cause viscous drag. A third difference is the magnitude of surface motion required to create a particular wavefront sag.

Type
Chapter
Information
Tunable Micro-optics , pp. 92 - 122
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksyuk, V. A., Pardo, F., Bolle, C. A., Arney, S., Giles, C. R. & Bishop, D. J. (2000), ‘Lucent microstar micromirror array technology for large optical crossconnects’, Proceedings of SPIE 4178, 320–324.Google Scholar
Aoki, S., Yamada, M. & Yamagami, T. (2009), ‘A novel deformable mirror for spherical aberration compensation’, Japanese Journal of Applied Physics 48(3s1), 03A003.CrossRefGoogle Scholar
Asada, N., Matsuki, H., Minami, K. & Esashi, M. (1994), ‘Silicon micromachined two-dimensional galvano optical scanner’, IEEE Transactions on Magnetics 30(6), 4647–4649.CrossRefGoogle Scholar
Babcock, H. W. (1990), ‘Adaptive optics revisited’, Science 249(4966), pp. 253–257.CrossRefGoogle ScholarPubMed
Baran, U., Brown, D., Holmstrom, S., Balma, D., Davis, W., Muralt, P. & Urey, H. (2012), ‘Resonant pzt mems scanner for high-resolution displays’, Journal of Microelectromechanical Systems 21(6), 1303–1310.CrossRefGoogle Scholar
Bifano, T. (2011), ‘Adaptive imaging: Mems deformable mirrors’, Nat Photon 5(1), 21–23.CrossRefGoogle Scholar
Bloom, D. M. (1997), ‘Grating light valve: revolutionizing display technology’, Proc. SPIE 3013, 165–171.Google Scholar
Bloom, D., Sandejas, F. & Solgaard, O. (1994), ‘Method and apparatus for modulating a light beam’. US Patent 5,311,360.
Bonora, S. & Poletto, L. (2006), ‘Push-pull membrane mirrors for adaptive optics’, Optics Express 14(25), 11935–11944.CrossRefGoogle ScholarPubMed
Booth, M. J., Neil, M. A. A., Juškaitis, R. & Wilson, T. (2002), ‘Adaptive aberration correction in a confocal microscope’, Proceedings of the National Academy of Sciences 99(9), 5788–5792.CrossRefGoogle Scholar
Burns, D. & Bright, V. (1998), Micro-electro-mechanical focusing mirrors, in ‘International Workshop on Micro Electro Mechanical Systems’, pp. 460–465.Google Scholar
Chang-Hasnain, C. J. (2000), ‘Tunable vcsel’, IEEE Journal ofSelected Topics in Quantum Electronics 6(6), 978–987.Google Scholar
Conant, R. A., Nee, J. T., Lau, K. Y. & Muller, R. S. (2000), A flat high-frequency scanning micromirror, in ‘Hilton Head Solid-State Sensor and Actuator Workshop 2000’, pp. 6–9.Google Scholar
Conedera, V., Salvagnac, L., Fabre, N., Zamkotsian, F. & Camon, H. (2007), ‘Surface micromachining technology with two su-8 structural layers and sol–gel, su-8 or sio2/sol–gel sacrificial layers’, Journal of Micromechanics and Microengineering 17(8), N52.CrossRefGoogle Scholar
Cornelissen, S. A., Bifano, T. G., Lam, C. V. & Bierden, P. A. (2009), ‘4096-element continuous face-sheet mems deformable mirror for high-contrast imaging’, Journal of Micro/Nanolithography, MEMS, and MOEMS 8(3), 031308–031308.CrossRefGoogle Scholar
Cowan, W., Lee, M., Welsh, B., Bright, V. & Roggemann, M. (1999), ‘Surface micromachined segmented mirrors for adaptive optics’, IEEE Journal of Selected Topics in Quantum Electronics 5(1), 90–101.CrossRefGoogle Scholar
Cugat, O., Basrour, S., Divoux, C., Mounaix, P. & Reyne, G. (2001), ‘Deformable magnetic mirror for adaptive optics: technological aspects’, Sensors and Actuators A: Physical 89(1–2), 1–9.CrossRefGoogle Scholar
Dainty, J. C. (2011), ‘A review of adaptive optics in vision science’, Proceedings of SPIE 8011, 80119K–80119K–5.CrossRefGoogle Scholar
Dalimier, E. & Dainty, C. (2005), ‘Comparative analysis of deformable mirrors for ocular adaptive optics’, Optics Express 13(11), 4275–4285.CrossRefGoogle ScholarPubMed
Davis, W., Sprague, R. & Miller, J. (2008), ‘Mems-based pico projector display’, in IEEE/LEOS Internationall Conference on Optical MEMs and Nanophotonics, pp. 31–32.Google Scholar
Dickensheets, D. L. & Kino, G. S. (1996), ‘Micromachined scanning confocal optical microscope’, Optics Letters 21(10), 764–766.
Divoux, C., Cugat, O., Reyne, G., Boussey-Said, J. & Basrour, S. (1998), ‘Deformable mirror using magnetic membranes: application to adaptive optics in astrophysics’, IEEE Transactions on Magnetics 34(5), 3564–3567.CrossRefGoogle Scholar
Dreyhaupt, A. (2011), ‘Optical beamscanner reduces laser wobble’, Laser Focus World 7. Accessed from: www.laserfocusworld.com/articles/print/volume-47/issue-7/newsbreaks/. optical-beamscanner-reduces-laser-wobble.html.
Dubra, A., Sulai, Y., Norris, J. L., Cooper, R. F., Dubis, A. M., Williams, D. R. & Carroll, J. (2011), ‘Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope’, Biomedical Optics Express 2(7), 1864–1876.CrossRefGoogle ScholarPubMed
Fan, L. & Wu, M. (1998), ‘Two-dimensional optical scanner with large angular rotation realized by self-assembled micro-elevator’, in Broadband Optical Networks and Technologies: An Emerging Reality/Optical MEMS/Smart Pixels/Organic Optics and Optoelectronics. 1998 IEEE/LEOS Summer Topical Meetings 2003, pp. II/107–II/108.
Fernández, E. J., Iglesias, I. & Artal, P. (2001), ‘Closed-loop adaptive optics in the human eye’, Optics Letters 26(10), 746–748.CrossRefGoogle ScholarPubMed
Fischer, M., Graef, H. & von Münch, W. (1994), ‘Electrostatically deflectable polysilicon torsional mirrors’, Sensors and Actuators A: Physical 44(1), 83–89.CrossRefGoogle Scholar
Friese, C., Wissmann, M. & Zappe, H. (2003), ‘Polymer-based membrane mirrors for micro-optical sensors’, in 2003. Proceedings of IEEE Sensors, Vol. 1, pp. 667–672 Vol.1.Google Scholar
Friese, C. & Zappe, H. (2005), ‘Micro-mirror arrays for adaptive optics fabricated in polymer technology’, in International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS ’05, Vol. 2, pp. 1342–1345.Google Scholar
Friese, C. & Zappe, H. (2008), ‘Deformable polymer adaptive optical mirrors’, Journal of Microelectromechanical Systems 17(1), 11–19.CrossRefGoogle Scholar
Fujita, H., Harada, M. & Sato, K. (1988), ‘An integrated micro servosystem’, in IEEE International Workshop on Intelligent Robots, 1988., pp. 15–20.Google Scholar
Grosso, R. P. & Yellin, M. (1977), ‘The membrane mirror as an adaptive optical element’, Journal of the Optical Society of America 67(3), 399–406.CrossRefGoogle Scholar
Hardy, J. (1978), ‘Active optics: A new technology for the control of light’, Proceedings of the IEEE 66(6), 651–697.Google Scholar
Hashizume, J., Ide, T., Kanamaru, M., Mukoh, M., Watanabe, K. & Yamauchi, Y. (2011), ‘Non-contact deformable mirror actuator for spherical aberration compensation’, Japanese Journal of Applied Physics 50(9), 09MA02-1 to 09MA02-4.CrossRefGoogle Scholar
Helmbrecht, M. A., Juneau, T., Hart, M. & Doble, N. (2006), ‘Performance of a high-stroke segmented mems deformable-mirror technology’, in MOEMS-MEMS 2006 Micro and Nanofabrication, International Society for Optics and Photonics, pp. 61130L–61130L.
Himmer, P. A. & Dickensheets, D. L. (2003), ‘Off-axis variable focus and aberration control mirrors’, Proceedings of SPIE 4985, 296–303.Google Scholar
Himmer, P. A., Dickensheets, D. L. & Friholm, R. A. (2001), ‘Micromachined silicon nitride deformable mirrors for focus control’, Optics Letters 26(16), 1280–1282.CrossRefGoogle ScholarPubMed
Hisanaga, M., Koumura, T. & Hattori, T. (1993), ‘Fabrication of 3-dimensionally shaped si diaphragm dynamic focusing mirror’, in Proceedings IEEE Micro Electro Mechanical Systems, MEMS93, pp. 30–35.Google Scholar
Hocker, G., Youngner, D., Butler, M. A., Sinclair, M. B., Plowman, T. E., Deutsch, E., Volpicelli, A., Senturia, S. & Ricco, A. (2000), ‘The polychromator: A programmable mems diffraction grating for synthetic spectra’, in Proceedings of the Solid-State Sensor and ActuatorWorkshop (Hilton Head Island, USA, 2000), pp. 89–91.Google Scholar
Hofmann, U., Aikio, M., Janes, J., Senger, F., Stenchly, V., Hagge, J., Quenzer, H.-J., Weiss, M., von Wantoch, T., Mallas, C., Wagner, B. & Benecke, W. (2013), ‘Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning’, Journal of Micro/Nanolithography, MEMS, and MOEMS 13(1), 011103–011103.CrossRefGoogle Scholar
Hokari, R. & Hane, K. (2009), ‘A varifocal convex micromirror driven by a bending moment’, IEEE Journal of Selected Topics in Quantum Electronics 15(5), 1310–1316.CrossRefGoogle Scholar
Hölmstrom, S., Baran, U. & Urey, H. (2014), ‘Mems laser scanners: a review’, Journal of Microelectromechanical Systems 23(2), 259–275.CrossRefGoogle Scholar
Hornbeck, L. (1993), ‘Current status of the digital micromirror device (dmd) for projection television applications’, in International Electron Devices Meeting, 1993, IEDM ’93, Technical Digest, pp. 381–384.CrossRef
Hsieh, H.-T., Wei, H.-C., Lin, M.-H., Hsu, W.-Y., Cheng, Y.-C. & Su, G.-D. J. (2010), ‘Thin autofocus camera module by a large-stroke micromachined deformable mirror’, Optics Express 18(11), 11097–11104.CrossRefGoogle ScholarPubMed
Kaneko, T., Yamagata, Y., Idogaki, T., Hattori, T. & Higuchi, T. (1995), ‘3-dimensional specific thickness glass diaphragm lens for dynamic focusing’, IEICE Transactions on Electronics E78-C(2), 123–127.Google Scholar
Kaylor, B. M., Wilson, C. R., Greenfield, N. J., Roos, P. A., Seger, E. M., Moghimi, M. J. & Dickensheets, D. L. (2012), ‘Miniature non-mechanical zoom camera using deformable moems mirrors’, Proceedings of SPIE 8252, 82520N.CrossRefGoogle Scholar
Kiang, M., Solgaard, O., Muller, R. & Lau, K. Y. (1996), ‘Micromachined polysilicon microscanners for barcode readers’, IEEE Photonics Technology Letters 8(12), 1707–1709.Google Scholar
Kilcher, L. & Abelé, N. (2012), ‘MEMS-based microprojection system with a 1.5cc optical engine’, Proceedings of SPIE 8252, 825204–825204–6.CrossRefGoogle Scholar
Kim, S., Barbastathis, G. & Tuller, H. (2004), ‘MEMS for optical functionality’, Journal of Electroceramics 12(1-2), 133–144.CrossRefGoogle Scholar
Krishnamoorthy, R. & Bifano, T. G. (1995), ‘MEMS arrays for deformable mirrors’, Proceedings of SPIE 2641, 96–104.Google Scholar
Kurczynski, P. L., Dyson, H. M., Sadoulet, B., Bower, J. E., Lai, W. Y., Mansfield, W. M. & Taylor, J. A. (2005), ‘A membrane mirror with transparent electrode for adaptive optics’, Proceedings of SPIE 5719, 155–166.Google Scholar
Li, L., Li, R., Lubeigt, W. & Uttamchandani, D. (2013), ‘Design, simulation, and characterization of a bimorph varifocal micromirror and its application in an optical imaging system’, Journal of Microelectromechanical Systems 22(2), 285–294.CrossRefGoogle Scholar
Lin, Y.-H., Liu, Y.-L. & Su, G.-D. J. (2012), ‘Optical zoom module based on two deformable mirrors for mobile device applications’, Applied Optics 51(11), 1804–1810.CrossRefGoogle ScholarPubMed
Liu, W. & Talghader, J. J. (2003), ‘Current-controlled curvature of coated micromirrors’, Optics Letters 28(11), 932–934.CrossRefGoogle ScholarPubMed
Lu, Y., Hoffman, S. M., Stockbridge, C. R., LeGendre, A. P., Stewart, J. B. & Bifano, T. G. (2011), ‘Polymorphic optical zoom with mems dms’, Proceedings of SPIE 7931, 79310D–79310D–7.Google Scholar
Lukes, S. J. & Dickensheets, D. L. (2012), ‘Mems focus control and spherical aberration correction for multilayer optical discs’, Proceedings of SPIE 8252, 82520L–82520L–9.CrossRefGoogle Scholar
Mescheder, U. M., Estañ, C., Somogyi, G. & Freudenreich, M. (2006), ‘Distortion optimized focusing mirror device with large aperture’, Sensors and Actuators A: Physical130–131(0), 20–27.Google Scholar
Mescher, M., Vladimer, M. & Bernstein, J. (2002), ‘A novel high-speed piezoelectric deformable varifocal mirror for optical applications’, in 2002. The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, pp. 511–515.CrossRef
Mi, B., Smith, D., Kahn, H., Merat, F., Heuer, A. & Phillips, S. (2005), ‘Static and electrically actuated shaped mems mirrors’, Journal of Microelectromechanical Systems 14(1), 29–36.Google Scholar
Miles, M. W. (1999), ‘Mems-based interferometric modulator for display applications’, Proceedings of SPIE 3876, 20–28.Google Scholar
Miller, L. M., Agronin, M. L., Bartman, R. K., Kaiser, W. J., Kenny, T. W., Norton, R. L. & Vote, E. C. (1993), ‘Fabrication and characterization of a micromachined deformable mirror for adaptive optics applications’, Proceedings of SPIE 1945, 421–430.Google Scholar
Miller, R. A., Burr, G.W., Tai, Y.-C. & Psaltis, D. (1996), ‘Magnetically actuated mems scanning mirror’, Proceedings of SPIE 2687, 47–52.Google Scholar
Miyajima, H., Asaoka, N., Isokawa, T., Ogata, M., Aoki, Y., Imai, M., Fujimori, O., Katashiro, M. & Matsumoto, K. (2002), ‘Product development of a mems optical scanner for a laser scanning microscope’, in IEEE International Conference on Micro Electro Mechanical Systems, pp. 552–555.CrossRef
Moghimi, M. J., Chattergoon, K. N. & Dickensheets, D. L. (2014), ‘High speed focus control capability of electrostatic-pneumatic mems deformable mirrors’, Proceedings of SPIE 8977, 897709–897709–9.Google Scholar
Moghimi, M. J., Chattergoon, K. N., Wilson, C. R. & Dickensheets, D. L. (2013), ‘High speed focus control mems mirror with controlled air damping for vital microscopy’, Journal of Microelectromechanical Systems 22(4), 938–948.CrossRefGoogle Scholar
Moghimi, M. J., Wilson, C. & Dickensheets, D. L. (2012), ‘Electrostatic-pneumatic mems deformable mirror for focus control’, in International Conference on Optical MEMS and Nanophotonics (OMN), IEEE, pp. 132–133.CrossRef
Muirhead, J. C. (1961), ‘Variable focal length mirrors’, Review of Scientific Instruments 32(2), 210–211.CrossRefGoogle Scholar
Olivier, S. S., Bierden, P. A., Bifano, T. G., Bishop, D. J., Carr, E., Cowan, W. D., Hart, M. R.,
Helmbrecht, M. A., Krulevitch, P. A., Muller, R. S., Sadoulet, B., Solgaard, O. & Yu, J. (2000), ‘Micro-electro-mechanical systems spatial light modulator development’, Proceedings of SPIE 4124, 26–31.Google Scholar
Pan, F., Kubby, J. A., Peeters, E., Chen, J., Vitomirov, O., Taylor, D. & Mukherjee, S. (1997), ‘Design, modeling and verification of mems silicon torsion mirror’, in Micromachining and Microfabrication, International Society for Optics and Photonics, pp. 114–124.
Patterson, P. R., Hah, D., Fujino, M., Piyawattanametha, W. & Wu, M. C. (2004), ‘Scanning micromirrors: an overview’, Proceedings of SPIE 5604, 195–207.Google Scholar
Petersen, K. (1982), ‘Optical ray deflection apparatus’. US Patent 4, 317, 611.
Qi, B., Himmer, A. P., Gordon, L. M., Yang, X. V., Dickensheets, L. D. & Vitkin, I. A. (2004), ‘Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror’, Optics Communications 232(1–6), 123–128.CrossRefGoogle Scholar
Rawson, E. G. (1969), ‘Vibrating varifocal mirrors for 3-d imaging’, IEEE Spectrum 6(9), 37–43.CrossRefGoogle Scholar
Rueckel, M., Mack-Bucher, J. A. & Denk, W. (2006), ‘Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing’, Proceedings of the National Academy of Sciences 103(46), 17137–17142.CrossRefGoogle ScholarPubMed
Sasaki, T. & Hane, K. (2012), ‘Varifocal micromirror integrated with comb-drive scanner on silicon-on-insulator wafer’, Journal of Microelectromechanical Systems 21(4), 971–980.CrossRefGoogle Scholar
Scharf, T., Briand, D., Bühler, S., Manzardo, O., Herzig, H. & de Rooij, N. (2010), ‘Miniaturized fourier transform spectrometer for gas detection in the MIR region region’, Sensors and Actuators B: Chemical 147(1), 116–121.CrossRefGoogle Scholar
Schenk, H., Sandner, T., Drabe, C., Klose, T. & Conrad, H. (2009), ‘Single crystal silicon micro mirrors’, Physica Status Solidi (c) 6(3), 728–735.CrossRefGoogle Scholar
Seidl, K., Knobbe, J. & Grüger, H. (2009), ‘Design of an all-reflective unobscured optical-power zoom objective’, Applied Optics 48(21), 4097–4107.CrossRefGoogle ScholarPubMed
Shao, Y., Dickensheets, D. & Himmer, P. (2004), ‘3-d moems mirror for laser beam pointing and focus control’, IEEE Journal of Selected Topics in Quantum Electronics 10(3), 528–535.CrossRefGoogle Scholar
Shao, Y. & Dickensheets, D. L. (2005), ‘Moems 3-d scan mirror for single-point control of beam deflection and focus’, Journal of Micro/Nanolithography, MEMS, and MOEMS 4(4), 041502–041502–7.CrossRefGoogle Scholar
Solgaard, O., Daneman, M., Tien, N., Friedberger, A., Muller, R. & Lau, K. (1995), ‘Optoelectronic packaging using silicon surface-micromachined alignment mirrors’, IEEE Photonics Technology Letters 7(1), 41–43.CrossRefGoogle Scholar
Solgaard, O., Godil, A., Howe, R., Lee, L., Peter, Y. & Zappe, H. (2014), ‘Optical mems: From micromirrors to complex systems’, Journal of Microelectromechanical Systems 23(3), 517–538.CrossRefGoogle Scholar
Srinivasan, U., Helmbrecht, M., Rembe, C., Muller, R. & Howe, R. (2000), ‘Fluidic self-assembly of micromirrors onto surface micromachined actuators’, in 2000 IEEE/LEOS International Conference on Optical MEMS, pp. 59–60.CrossRef
Strathman, M., Liu, Y., Li, X. & Lin, L. Y. (2013), ‘Dynamic focus-tracking mems scanning micromirror with low actuation voltages for endoscopic imaging’, Optics Express 21(20), 23934–23941.CrossRefGoogle ScholarPubMed
Stürmer, M., Wapler, M., Brunne, J. & Wallrabe, U. (2013), ‘Focusing mirror with tunable eccentricity’, in 2013 International Conference on Optical MEMS and Nanophotonics (OMN), pp. 159–160.CrossRef
Tauscher, J., Davis, W. O., Brown, D., Ellis, M., Ma, Y., Sherwood, M. E., Bowman, D., Helsel, M. P., Lee, S. & Coy, J. W. (2010), ‘Evolution of mems scanning mirrors for laser projection in compact consumer electronics’, Proceedings of SPIE 7594, 75940A–75940A–12.CrossRefGoogle Scholar
Thomas, R., Guldberg, J., Nathanson, H. & Malmberg, P. (1975), ‘The mirror-matrix tube: A novel light valve for projection displays’, IEEE Transactions on Electron Devices 22(9), 765–775.CrossRefGoogle Scholar
Tien, N., Solgaard, O., Kiang, M.-H., Daneman, M., Lau, K. & Muller, R. (1996), ‘Surface-micromachined mirrors for laser-beam positioning’, Sensors and Actuators A: Physical 52(1–3), 76–80.CrossRefGoogle Scholar
Trisnadi, J. I., Carlisle, C. B. & Monteverde, R. (2004), ‘Overview and applications of grating-light-valve-based optical write engines for high-speed digital imaging’, Proceedings of SPIE 5348, 52–64.Google Scholar
Tsai, S.-A., Wei, H.-C. & Su, G.-D. J. (2012), ‘Polydimethylsiloxane coating on an ionic polymer metallic composite for a tunable focusing mirror’, Applied Optics 51(35), 8315–8323.CrossRefGoogle ScholarPubMed
Urey, H. & Dickensheets, D. L. (2005), ‘Display and imaging systems’, in Ed. Motamedi, M.E., MOEMS Micro-opto-electro-mechanical Systems, SPIE press, Bellingham, WA, pp. 369–375.Google Scholar
Vdovin, G., Middelhoek, S. & Sarro, P. M. (1997), ‘Technology and applications of micromachined silicon adaptive mirrors’, Optical Engineering 36(5), 1382–1390.CrossRefGoogle Scholar
Vdovin, G. & Sarro, P. M. (1995), ‘Flexible mirror micromachined in silicon’, Applied Optics 34(16), 2968–2972.CrossRefGoogle ScholarPubMed
Wang, J.-L., Chen, T.-Y., Chien, Y.-H. & Su, G.-D. J. (2009), ‘Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror’, Optics Express 17(8), 6268–6274.Google ScholarPubMed
Weber, N., Hertkorn, D., Zappe, H. & Seifert, A. (2012), ‘Polymer/silicon hard magnetic micromirrors’, Journal of Microelectromechanical Systems 21(5), 1098–1106.CrossRefGoogle Scholar
Werber, A. & Zappe, H. (2008), ‘Tunable pneumatic microoptics’, Journal of Microelectromechanical Systems 17(5), 1218–1227.CrossRefGoogle Scholar
Wick, D. V., Martinez, T., Payne, D. M., Sweatt, W. C. & Restaino, S. R. (2005), ‘Active optical zoom system’, Proceedings of SPIE 5798, 151–157.Google Scholar
Yalcinkaya, A., Urey, H., Brown, D., Montague, T. & Sprague, R. (2006), ‘Two-axis electromagnetic microscanner for high resolution displays’, Journal of Microelectromechanical Systems 15(4), 786–794.CrossRefGoogle Scholar
Yeh, Y.-W., Chiu, C.-W. E. & Su, G.-D. J. (2006), ‘Organic amorphous fluoropolymer membrane for variable optical attenuator applications’, Journal of Optics A: Pure and Applied Optics 8(7), S377.CrossRefGoogle Scholar
Zamkotsian, F., Timotijevic, B., Lockhart, R., Stanley, R. P., Lanzoni, P., Luetzelschwab, M., Canonica, M., Noell, W. & Tormen, M. (2012), ‘Optical characterization of fully programmable mems diffraction gratings’, Optics Express 20(23), 25267–25274.CrossRefGoogle ScholarPubMed
Zhang, W., Zappe, H. & Seifert, A. (2014), ‘Wafer-scale fabricated thermo-pneumatically tunable microlenses’, Light: Science and Applications 3, e145–.
Zhang, Y., Poonja, S. & Roorda, A. (2006), ‘Mems-based adaptive optics scanning laser ophthalmoscopy’, Optics Letters 31(9), 1268–1270.CrossRefGoogle ScholarPubMed
Zhu, L., Sun, P.-C. & Fainman, Y. (1999), ‘Aberration-free dynamic focusing with a multichannel micromachined membrane deformable mirror’, Applied Optics 38(25), 5350–5354.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Tunable Reflective Optics
  • Edited by Hans Zappe, Albert-Ludwigs-Universität Freiburg, Germany, Claudia Duppé, Albert-Ludwigs-Universität Freiburg, Germany
  • Book: Tunable Micro-optics
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139506052.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Tunable Reflective Optics
  • Edited by Hans Zappe, Albert-Ludwigs-Universität Freiburg, Germany, Claudia Duppé, Albert-Ludwigs-Universität Freiburg, Germany
  • Book: Tunable Micro-optics
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139506052.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Tunable Reflective Optics
  • Edited by Hans Zappe, Albert-Ludwigs-Universität Freiburg, Germany, Claudia Duppé, Albert-Ludwigs-Universität Freiburg, Germany
  • Book: Tunable Micro-optics
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139506052.004
Available formats
×