Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T14:10:11.669Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2013

Robin Pemantle
Affiliation:
University of Pennsylvania
Mark C. Wilson
Affiliation:
University of Auckland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamczewski, B. and J. P., Bell (May 2012). “Diagonalization and rationalization of algebraic Laurent series.” ArXiv e-prints. arXiv:math.NT/1205.4090 [math.NT] (cit. on p. 314).Google Scholar
Aizenberg, I. A. and A. P., Yuzhakov (1983). Integral representations and residues in multidimensional complex analysis. Vol. 58. Translations of Mathematical Monographs. Translated from the Russian by H. H., McFaden, Translation edited by Lev J., Leifman. Providence, RI: American Mathematical Society (cit. on pp. 8, 251).CrossRefGoogle Scholar
Aldous, D. (2013). “Power laws and killed branching random walls.” Webpage http://www.stat.be - keley.edu/user/aldous/Research/OP/brw.html. Accessed 2013-01-24 (cit. on p. 61).
Ambainis, A. et al. (2001). “One-dimensional quantum walks.” In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing. New York: ACM Press, pp. 37–49 (cit. on p. 190).Google Scholar
Askey, R. and G., Gasper (1972). “Certain rational functions whose power series have positive coefficients.” Amer. Math. Monthly 79, pp. 327–341.CrossRefGoogle Scholar
Atiyah, M., R., Bott, and L., Gårding (1970). “Lacunas for hyperbolic differential operators with constant coefficients, I.” Acta Mathematica 124, pp. 109–189 (cit. on pp. 12, 253, 257, 261, 262, 267, 276).CrossRefGoogle Scholar
Banderier, C., P., Flajolet, et al. (2001). “Random maps, coalescing saddles, singularity analysis, and Airy phenomena.” Random Structures Algorithms 19. Analysis of algorithms (Krynica Morska, 2000), pp. 194–246 (cit. on p. 313).CrossRefGoogle Scholar
Banderier, C. and P., Hitczenko (2012). “Enumeration and asymptotics of restricted compositions having the same number of parts.” Discrete Appl. Math. 160, pp. 2542–2554 (cit. on p. 315).CrossRefGoogle Scholar
Baryshnikov, Y., W., Brady, et al. (2010). “Two-dimensional quantum random walk.” J. Stat. Phys. 142, pp. 78–107 (cit. on pp. 159, 164, 186, 190, 207, 297, 298).Google Scholar
Baryshnikov, Y. and R., Pemantle (2011). “Asymptotics of multivariate sequences, part III: quadratic points.” Adv. Math. 228, pp. 3127–3206 (cit. on pp. 8, 12, 149, 159, 207, 253, 260–263, 265, 267, 268, 275, 276).CrossRefGoogle Scholar
Baryshnikov, Y. and R., Pemantle (2013). “Morse theory of the complement of the complexification of a real hyperplane arrangement.” In preparation (cit. on p. 236).Google Scholar
Bena, I. et al. (May 2012). “Scaling BPS Solutions and pure-Higgs States.” ArXiv e-prints. arXiv:hep-th/1205.5023 [hep-th] (cit. on p. 207).Google Scholar
Bender, E. A. (1973). “Central and local limit theorems applied to asymptotic enumeration.” J. Combinatorial Theory Ser.A 15, pp. 91–111 (cit. on pp. 6, 287).
Bender, E. A. (1974). “Asymptotic methods in enumeration.” SIAM Rev. 16, pp. 485–515 (cit. on p. 6).CrossRefGoogle Scholar
Bender, E. A. and J. R., Goldman (1970/1971). “Enumerative uses of generating functions.” Indiana Univ. Math. J. 20, pp. 753–765 (cit. on p. 43).Google Scholar
Bender, E. A. and L. B., Richmond (1983). “Central and local limit theorems applied to asymptotic enumeration. II. Multivariate generating functions.” J. Combin. Theory Ser.A 34, pp. 255–265 (cit. on pp. xi, 6, 7, 163, 207, 286, 287).CrossRefGoogle Scholar
Bender, E. and L. B., Richmond (1996). “Admissible functions and asymptotics for labelled structures by number of components.” Elec. J. Combin. 3, Research Paper 34, 23 pp. (electronic).Google Scholar
Bender, E. A. and L. B., Richmond (1999). “Multivariate asymptotics for products of large powers with applications to Lagrange inversion.” Electron. J. Combin. 6, Research Paper 8, 21 pp. (electronic) (cit. on pp. 7, 287).Google Scholar
Bender, E. A., L. B., Richmond, and S. G., Williamson (1983). “Central and local limit theorems applied to asymptotic enumeration. III. Matrix recursions.” J. Combin. Theory Ser. A 35, pp. 263–278 (cit. on p. 7).CrossRefGoogle Scholar
Bender, E. and S. G., Williamson (1991). Foundations of Applied Combinatorics. Redwood City, CA: Addison Wesley.Google Scholar
Berenstein, C. A. and R., Gay (1991). Complex variables. Vol. 125. Graduate Texts in Mathematics. An introduction. New York: Springer-Verlag (cit. on p. 6).CrossRefGoogle Scholar
Bertozzi, A. and J., McKenna (1993). “Multidimensional residues, generating functions, and their application to queueing networks.” SIAM Rev. 35, pp. 239–268 (cit. on pp. 8, 221, 251).CrossRefGoogle Scholar
Bierstone, E. and P., Milman (1997). “Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant.” Inventiones Mathematicae 128, pp. 207–302 (cit. on p. 276).CrossRefGoogle Scholar
Björner, A. et al. (1999). Oriented matroids. Second ed. Vol. 46. Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press (cit. on p. 213).CrossRefGoogle Scholar
Bleistein, N. and R. A., Handelsman (1986). Asymptotic expansions of integrals. Second ed. New York: Dover Publications (cit. on pp. 11, 78, 87, 104).Google Scholar
Borcea, J., P., Branden, and T., Liggett (2009). “Negative dependence and the geometry of polynomials.” J. AMS 22, pp. 521–567 (cit. on p. 276).Google Scholar
Bostan, A. et al. (2007). “Differential equations for algebraic functions.” In: ISSAC 2007. New York: ACM, pp. 25–32 (cit. on p. 44).Google Scholar
Bousquet-Mélou, M. and M., Petkovšek (2000). “Linear recurrences with constant coefficients: the multivariate case.” Discrete Math. 225. Formal power series and algebraic combinatorics (Toronto, ON, 1998), pp. 51–75 (cit. on pp. 26, 28, 30, 32, 43).Google Scholar
Boyd, S. and L., Vandenberghe (2004). Convex optimization. Cambridge: Cambridge University Press (cit. on p. 204).CrossRefGoogle Scholar
Bressler, A. and R., Pemantle (2007). “Quantum random walks in one dimension via generating functions.” In: 2007 Conference on Analysis of Algorithms, AofA 07. Discrete Math. Theor. Comput. Sci. Proc., AH. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, pp. 403–412 (cit. on p. 284).Google Scholar
Briand, E. (2010). “Covariants vanishing on totally decomposable forms.” In: Liaison, Schottky problem and invariant theory. Vol. 280. Progr. Math. Basel: Birkhäuser Verlag, pp. 237–256 (cit. on p. 219).Google Scholar
Canfield, E. R. and B., McKay (2009). “The asymptotic volume of the Birkhoff polytope.” Online J. Anal. Comb. 4, p. 4 (cit. on p. 252).Google Scholar
Carteret, H. A., M. E. H., Ismail, and B., Richmond (2003). “Three routes to the exact asymptotics for the one-dimensional quantum walk.” J. Phys. A 36 (33), pp. 8775–8795 (cit. on p. 284).Google Scholar
Castro, F. (1984). “Théorème de division pour les opérateurs diffèrentiels et calcul des multiplicités.” PhD thesis. Thèse de 3ème cycle, Université de Paris 7 (cit. on p. 117).Google Scholar
Chabaud, C. (2002). “Séries génératrices algébriques: asymptotique et applications combinatoires.” PhD thesis. Université Paris VI (cit. on p. 292).Google Scholar
Chayes, J. T. and L., Chayes (1986). “Ornstein-Zernike behavior for self-avoiding walks at all non-critical temperatures.” Comm. Math. Phys. 105, pp. 221–238 (cit. on p. 200).CrossRefGoogle Scholar
Chen, W. Y. C., E., Deutsch, and S., Elizalde (2006). “Old and young leaves on plane trees.” Eur. J. Combin. 27, pp. 414–427 (cit. on p. 316).CrossRefGoogle Scholar
Chyzak, F., M., Mishna, and B., Salvy (2005). “Effective scalar products of D-finite symmetric functions.” J. Combin. Theory Ser. A 112, pp. 1–43 (cit. on p. 44).CrossRefGoogle Scholar
Chyzak, F. and B., Salvy (1998). “Non-commutative elimination in Ore algebras proves multivariate identities.” J. Symbolic Comput. 26, pp. 187–227 (cit. on pp. 39, 117, 118).CrossRefGoogle Scholar
Comtet, L. (1964). “Calcul pratique des coefficients de Taylor d'une fonction algébrique.” Enseignement Math. (2) 10, pp. 267–270 (cit. on p. 35).Google Scholar
Comtet, L. (1974). Advanced combinatorics. enlarged. The art of finite and infinite expansions. Dordrecht: D. Reidel Publishing (cit. on pp. 20, 194, 281).CrossRefGoogle Scholar
Conway, J. B. (1978). Functions of one complex variable. Second ed. Vol. 11. Graduate Texts in Mathematics. New York: Springer-Verlag (cit. on pp. 6, 49, 126, 258).CrossRefGoogle Scholar
Corteel, S., G., Louchard, and R., Pemantle (2004). “Common intervals of permutations.” In: Mathematics and computer science. III. Trends Math. Basel: Birkhäuser, pp. 3–14 (cit. on p. 20).Google Scholar
Coutinho, S. (1995). A primer of algebraic D-modules. Vol. 33. London Mathematical Society Student Texts. Cambridge: Cambridge University Press (cit. on p. 117).CrossRefGoogle Scholar
Cox, D. A., J., Little, and D., O'Shea (2005). Using algebraic geometry. Second ed. Vol. 185. Graduate Texts in Mathematics. New York: Springer (cit. on pp. 11, 107, 118).Google Scholar
Cox, D., J., Little, and D., O'Shea (2007). Ideals, varieties, and algorithms. Third ed. Undergraduate Texts in Mathematics. An introduction to computational algebraic geometry and commutative algebra. New York: Springer (cit. on pp. 108, 118).CrossRefGoogle Scholar
De Bruijn, N. G. (1981). Asymptotic methods in analysis. Third ed. New York: Dover Publications (cit. on p. 87).Google Scholar
Delabaere, E. and C. J., Howls (2002). “Global asymptotics for multiple integrals with boundaries.” Duke Math. J. 112, pp. 199–264 (cit. on p. 315).Google Scholar
De Loera, J. A. and B., Sturmfels (2003). “Algebraic unimodular counting.” Math. Program. 96. Algebraic and geometric methods in discrete optimization, pp. 183–203 (cit. on pp. 231, 251, 252).CrossRefGoogle Scholar
Denef, J. and L., Lipshitz (1987). “Algebraic power series and diagonals.” J. Number Theory 26, pp. 46–67 (cit. on p. 314).CrossRefGoogle Scholar
DeVore, R. A. and G. G., Lorentz (1993). Constructive approximation. Vol. 303. Grundlehren der Mathematischen Wissenschaften. Berlin: Springer-Verlag (cit. on pp. 242, 243).CrossRefGoogle Scholar
DeVries, T. (2011). “Algorithms for bivariate singularity analysis.” PhD thesis. University of Pennsylvania (cit. on pp. 143, 183, 280).Google Scholar
DeVries, T. (2010). “A case study in bivariate singularity analysis.” In: Algorithmic probability and combinatorics. Vol. 520. Contemp. Math. Providence, RI: Amer. Math. Soc., pp. 61–81 (cit. on pp. 8, 183, 184).Google Scholar
DeVries, T., J., van der Hoeven, and R., Pemantle (2012). “Effective asymptotics for smooth bivariate generating functions.” Online J. Anal. Comb. 7, to appear (cit. on pp. 8, 178–180, 183).Google Scholar
Dobrushkin, V. (2010). Methods in algorithmic analysis. Boca Raton, CRC Press.Google Scholar
Drmota, M., B., Gittenberger, and T., Klausner (2005). “Extended admissible functions and Gaussian limiting distributions.” Math. Comp. 74. no. 252 (electronic).CrossRefGoogle Scholar
Du, P. et al. (2011). “The Aztec Diamond edge-probability generating function.” Preprint (cit. on p. 273).Google Scholar
Durrett, R. (2004). Probability: theory and examples. Third ed. Belmont, CA: Duxbury Press, p. 497 (cit. on p. 288).Google Scholar
Eisenbud, D. (1995). Commutative algebra. Vol. 150. Graduate Texts in Mathematics. With a view toward algebraic geometry. New York: Springer-Verlag (cit. on p. 353).CrossRefGoogle Scholar
Fayolle, G., R., Iasnogorodski, and V., Malyshev (1999). Random walks in the quarter-plane. Vol. 40. Applications of Mathematics (New York). Algebraic methods, boundary value problems and applications. Berlin: Springer-Verlag (cit. on pp. xi, 43).CrossRefGoogle Scholar
Flajolet, P. and A., Odlyzko (1990). “Singularity analysis of generating functions.” SIAM J. Discrete Math. 3, pp. 216–240 (cit. on pp. 58, 63).CrossRefGoogle Scholar
Flajolet, P. and R., Sedgewick (2009). Analytic combinatorics. Cambridge University Press, p. 824 (cit. on pp. xi, 10, 15, 63, 292, 293, 295, 304, 306).CrossRefGoogle Scholar
Flatto, L. and S., Hahn (1984). “Two parallel queues created by arrivals with two demands. I.” SIAM J. Appl. Math. 44, pp. 1041–1053 (cit. on p. 43).CrossRefGoogle Scholar
Flatto, L. and H. P., McKean (1977). “Two queues in parallel.” Comm. Pure Appl. Math. 30, pp. 255–263 (cit. on p. 43).CrossRefGoogle Scholar
Flaxman, A., A. W., Harrow, and G. B., Sorkin (2004). “Strings with maximally many distinct subsequences and substrings.” Electron. J. Combin. 11, Research Paper 8, 10 pp. (electronic) (cit. on pp. 113, 290).Google Scholar
Foata, D. and M.-P., Schützenberger (1970). Théorie géométrique des polynômes eulériens. Lecture Notes in Mathematics, Vol. 138. Berlin: Springer-Verlag (cit. on p. 43).CrossRefGoogle Scholar
Forsberg, M., M., Passare, and A., Tsikh (2000). “Laurent determinants and arrangements of hyperplane amoebas.” Adv. Math. 151, pp. 45–70 (cit. on p. 127).CrossRefGoogle Scholar
Furstenberg, H. (1967). “Algebraic functions over finite fields.” J. Algebra 7, pp. 271–277 (cit. on pp. 38, 314).CrossRefGoogle Scholar
Galligo, A. (1985). “Some algorithmic questions on ideals of differential operators.” In: EUROCAL '85, Vol. 2 (Linz, 1985). Vol. 204. Lecture Notes in Comput. Sci. Berlin: Springer, pp. 413–421 (cit. on p. 117).Google Scholar
Gao, Z. and L. B., Richmond (1992). “Central and local limit theorems applied to asymptotic enumeration. IV. Multivariate generating functions.” J. Comput. Appl. Math. 41. Asymptotic methods in analysis and combinatorics, pp. 177–186 (cit. on pp. 7, 287).CrossRefGoogle Scholar
Gårding, L. (1950). “Linear hyperbolic partial differential equations with constant coefficients.” Acta Math. 85, pp. 1–62 (cit. on pp. 149, 261).Google Scholar
Gel'fand, I. M., M. M., Kapranov, and A. V., Zelevinsky (1994). Discriminants, resultants, and multidimensional determinants. Mathematics: Theory & Applications. Boston, MA: Birkhäuser Boston (cit. on pp. xii, 11, 118, 124, 127–129, 131).CrossRefGoogle Scholar
Gel'fand, I. and G., Shilov (1964). Generalized Functions, Volume I: Properties and Operations. Trans. by E., Saletan. New York: Academic Press (cit. on p. 268).Google Scholar
Gessel, I. M. (1981). “Two theorems of rational power series.” Utilitas Math. 19, pp. 247–254 (cit. on p. 44).Google Scholar
Gittenberger, B. and Mandlburger, (2006). “Haryman admissible functions in several variables.” Elec. J. Combin. 13, Research Paper 106, 9 pp. (electronic).Google Scholar
Goresky, M. and R., MacPherson (1988). Strati?ed Morse theory. Vol. 14. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Berlin: Springer-Verlag (cit. on pp. 11, 99, 142, 348, 351, 354–360).CrossRefGoogle Scholar
Goulden, I. P. and D. M., Jackson (2004). Combinatorial enumeration. With a foreword by Gian-Carlo Rota, Reprint of the 1983 original. Mineola, NY: Dover Publications (cit. on pp. 15, 22, 43, 281, 292).Google Scholar
Gourdon, X. and B., Salvy (1996). “Effective asymptotics of linear recurrences with rational coefficients.” In: Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993). Vol. 153, pp. 145–163 (cit. on pp. 47, 183).Google Scholar
Gülen, O. (1997). “Hyperbolic polynomials and interior point methods for convex programming.” Math. Oper. Res. 22, pp. 350–377 (cit. on p. 257).Google Scholar
Hardy, G. H. and S., Ramanujan (2000a). “Asymptotic formulæ for the distribution of integers of various types [Proc. London Math. Soc. (2) 16 (1917), 112–132].” In: Collected papers of Srinivasa Ramanujan. AMS Chelsea Publ., Providence, RI, pp. 245–261 (cit. on p. 62).Google Scholar
Hardy, G. H. and S., Ramanujan (2000b). “Une formule asymptotique pour le nombre des partitions de n [Comptes Rendus, 2 Jan. 1917].” In: Collected papers of Srinivasa Ramanujan. AMS Chelsea Publ., Providence, RI, pp. 239–241 (cit. on p. 62).Google Scholar
Hautus, M. L. J. and D. A., Klarner (1971). “The diagonal of a double power series.” Duke Math. J. 38, pp. 229–235 (cit. on pp. 38, 283).CrossRefGoogle Scholar
Hayman, W. K. (1956). “A generalisation of Stirling's formula.” J. Reine Angew. Math. 196, pp. 67–95 (cit. on pp. xi, 51, 63, 137).Google Scholar
Henrici, P. (1988). Applied and computational complex analysis. Vol. 1. Wiley Classics Library. Power series – integration – conformal mapping – location of zeros, Reprint of the 1974 original, A Wiley-Interscience Publication. New York: John Wiley & Sons (cit. on p. 6).Google Scholar
Henrici, P. (1991). Applied and computational complex analysis. Vol. 2. Wiley Classics Library. Special functions – integral transforms – asymptotics – continued fractions, Reprint of the 1977 original, A Wiley-Interscience Publication. New York: John Wiley & Sons (cit. on pp. 6, 56, 63, 87).Google Scholar
Hironaka, H. (1973). “Subanalytic sets.” In: Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki. Tokyo: Kinokuniya, pp. 453–493 (cit. on p. 351).Google Scholar
Hörmander, L. (1983). The analysis of linear partial differential operators. I. Vol. 256. Grundlehren der Mathematischen Wissenschaften. Distribution theory and Fourier analysis. Berlin: Springer-Verlag (cit. on p. 308).Google Scholar
Hörmander, L. (1990). An introduction to complex analysis in several variables. Third ed. Vol. 7. North-Holland Mathematical Library. Amsterdam: North-Holland Publishing (cit. on pp. 204, 326, 337, 339).Google Scholar
Hwang, H.-K. (1996). “Large deviations for combinatorial distributions. I. Central limit theorems.” Ann. Appl. Probab. 6, pp. 297–319 (cit. on p. 287).Google Scholar
Hwang, H.-K. (1998a). “Large deviations of combinatorial distributions. II. Local limit theorems.” Ann. Appl. Probab. 8, pp. 163–181 (cit. on p. 287).Google Scholar
Hwang, H.-K. (1998b). “On convergence rates in the central limit theorems for combinatorial structures.” Eur. J. Combin. 19, pp. 329–343 (cit. on p. 287).CrossRefGoogle Scholar
Isaacson, E. and H. B., Keller (1994). Analysis of numerical methods. Corrected reprint of the 1966 original [Wiley, New York; MR0201039 (34 #924)]. New York: Dover Publications (cit. on p. 30).Google Scholar
Jockusch, W., J., Propp, and P., Shor (Jan. 1998). “Random Domino Tilings and the Arctic Circle Theorem.” ArXiv Mathematics e-prints. arXiv:math/9801068 (cit. on p. 13).Google Scholar
Kaloshin, V. Y. (2005). “A geometric proof of the existence of Whitney stratifications.” Mosc. Math. J. 5, pp. 125–133 (cit. on p. 144).Google Scholar
Kandri-Rody, A. and V., Weispfenning (1990). “Noncommutative Gröbner bases in algebras of solvable type.” J. Symbolic Comput. 9, pp. 1–26 (cit. on p. 117).CrossRefGoogle Scholar
Kashiwara, M. (1978). “On the holonomic systems of linear differential equations. II.” Invent. Math. 49, pp. 121–135 (cit. on p. 118).CrossRefGoogle Scholar
Kauers, M. and P., Paule (2011). The Concrete Tetrahedron. Leipzig: Springer-Wien.CrossRefGoogle Scholar
Kauers, M. and D., Zeilberger (2011). “The computational challenge of enumerating high-dimensional rook walks.” Advances in Applied Mathematics 47, pp. 813–819 (cit. on p. 315).CrossRefGoogle Scholar
Kenyon, R. and A., Okounkov (2007). “Limit shapes and the complex Burgers equation.” Acta Math. 199, pp. 263–302 (cit. on p. 274).CrossRefGoogle Scholar
Kesten, H. (1978). “Branching Brownian motion with absorption.” Stochastic Processes Appl. 7, pp. 9–47 (cit. on p. 24).CrossRefGoogle Scholar
Knuth, D. (2006). The Art of Computer Programming. Vol. I–IV. Upper Saddle River, NJ: Addison-Wesley (cit. on p. xi).Google Scholar
Kogan, Y. (2002). “Asymptotic expansions for large closed and loss queueing networks.” Math. Probl. Eng. 8, pp. 323–348 (cit. on p. 221).CrossRefGoogle Scholar
Krantz, S. G. (2001). Function theory of several complex variables. Reprint of the 1992 edition. AMS Chelsea Publishing, Providence, RI (cit. on p. 131).Google Scholar
Kredel, H. (1993). Solvable Polynomial Rings. Aachen, Germany: Verlag Shaker (cit. on p. 117).Google Scholar
Larsen, M. and R., Lyons (1999). “Coalescing particles on an interval.” J. Theoret. Probab. 12, pp. 201–205 (cit. on pp. 13, 27).CrossRefGoogle Scholar
Lee, J. M. (2003). Introduction to smooth manifolds. Vol. 218. Graduate Texts in Mathematics. New York: Springer-Verlag (cit. on p. 339).CrossRefGoogle Scholar
Leray, J. (1959). “Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III).” Bull. Soc. Math. France 87, pp. 81–180 (cit. on p. 8).Google Scholar
Lichtin, B. (1991). “The asymptotics of a lattice point problem associated to a finite number of polynomials. I.” Duke Math. J. 63, pp. 139–192 (cit. on p. 8).CrossRefGoogle Scholar
Limic, V. and R., Pemantle (2004). “More rigorous results on the Kauffman-Levin model of evolution.” Ann. Probab. 32, pp. 2149–2178 (cit. on p. 45).Google Scholar
Lin, S. and R., Pemantle (2013). “Computation of second order asymptotics in Laplace-type integral for marginal distributions.” In preparation (cit. on p. 104).Google Scholar
Lipshitz, L. (1988). “The diagonal of a D-finite power series is D-finite.” J. Algebra 113, pp. 373–378 (cit. on p. 38).CrossRefGoogle Scholar
Lipshitz, L. (1989). “D-finite power series.” J. Algebra 122, pp. 353–373 (cit. on pp. 36, 37, 44).CrossRefGoogle Scholar
Lladser, M. (2003). “Asymptotic enumeration via singularity analysis.” PhD thesis. The Ohio State University (cit. on pp. 8, 313).Google Scholar
Lladser, M. (2006). “Uniform formulae for coefficients of meromorphic functions in two variables. I.” SIAM J. Discrete Math. 20, 811–828 (electronic) (cit. on pp. 8, 313).CrossRefGoogle Scholar
Mikhalkin, G. (2000). “Real algebraic curves, the moment map and amoebas.” Ann. of Math. (2) 151, pp. 309–326 (cit. on p. 131).CrossRefGoogle Scholar
Mikhalkin, G. (2004). “Amoebas of algebraic varieties and tropical geometry.” In: Different faces of geometry. Vol. 3. Int. Math. Ser. (N.Y.) Kluwer/Plenum, New York, pp. 257–300 (cit. on p. 131).CrossRefGoogle Scholar
Milnor, J. (1963). Morse theory. Based on lecture notes by M., Spivak and R., Wells. Annals of Mathematics Studies, No. 51. Princeton, NJ: Princeton University Press (cit. on pp. 11, 340, 341, 343, 344, 349, 360).Google Scholar
Milnor, J. (1968). Singular points of complex hypersurfaces. Annals of Mathematics Studies, No. 61. Princeton, NJ: Princeton University Press (cit. on p. 140).Google Scholar
Mostowski, T. and E., Rannou (1991). “Complexity of the computation of the canonical Whitney strati?cation of an algebraic set in Cn.” In: Applied algebra, algebraic algorithms and error-correcting codes (New Orleans, LA, 1991). Vol. 539. Lecture Notes in Comput. Sci. Berlin: Springer, pp. 281–291 (cit. on p. 352).Google Scholar
Munarini, E. and N. Z., Salvi (2002/2004). “Binary strings without zigzags.” Sém. Lothar. Combin. 49, Art. B49h, 15 pp. (electronic).Google Scholar
Munkres, J. R. (1984). Elements of algebraic topology. Menlo Park, CA: Addison-Wesley Publishing (cit. on pp. 328–330).Google Scholar
Noble, R. (2010). “Asymptotics of a family of binomial sums.” J. Number Theory 130, pp. 2561–2585 (cit. on p. 299).CrossRefGoogle Scholar
Odlyzko, A. M. (1995). “Asymptotic enumeration methods.” In: Handbook of combinatorics, Vol. 1, 2. Amsterdam: Elsevier, pp. 1063–1229 (cit. on pp. xi, 7, 278).Google Scholar
Orlik, P. and H., Terao (1992). Arrangements of hyperplanes. Vol. 300. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag (cit. on p. 228).CrossRefGoogle Scholar
Paris, R. B. (2011). Hadamard expansions and hyperasymptotic evaluation. Vol. 141. Encyclopedia of Mathematics and its Applications. An extension of the method of steepest descents. Cambridge: Cambridge University Press (cit. on p. 315).CrossRefGoogle Scholar
Paris, R. B. and D., Kaminski (2001). Asymptotics and Mellin-Barnes integrals. Vol. 85. Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press (cit. on p. 315).CrossRefGoogle Scholar
Passare, M., D., Pochekutov, and A., Tsikh (2011). “Amoebas of complex hypersurfaces in statistical thermodynamics.” ArXiv e-prints. arXiv:math-ph/1112.4332 [math-ph] (cit. on p. 131).Google Scholar
Pemantle, R. (2000). “Generating functions with high-order poles are nearly polynomial.” In: Mathematics and computer science (Versailles, 2000). Trends Math. Basel: Birkhäuser, pp. 305–321 (cit. on p. 252).Google Scholar
Pemantle, R. (2010). “Analytic combinatorics in d variables: an overview.” In: Algorithmic probability and combinatorics. Vol. 520. Contemp. Math. Providence, RI: Amer. Math. Soc., pp. 195–220 (cit. on pp. 138, 143, 144, 159, 355).Google Scholar
Pemantle, R. and M. C., Wilson (2002). “Asymptotics of multivariate sequences. I. Smooth points of the singular variety.” J. Combin. Theory Ser. A 97, pp. 129–161 (cit. on pp. 8, 12, 13, 148, 159, 163, 164, 169, 192, 207, 251, 290).CrossRefGoogle Scholar
Pemantle, R. and M. C., Wilson (2004). “Asymptotics of multivariate sequences. II. Multiple points of the singular variety.” Combin. Probab. Comput. 13, pp. 735–761 (cit. on pp. 8, 12, 13, 104, 148, 159, 222, 251).CrossRefGoogle Scholar
Pemantle, R. and M. C., Wilson (2008). “Twenty combinatorial examples of asymptotics derived from multivariate generating functions.” SIAM Rev. 50, pp. 199–272 (cit. on pp. 8, 137, 221, 278, 289, 295, 299).CrossRefGoogle Scholar
Pemantle, R. and M. C., Wilson (2010). “Asymptotic expansions of oscillatory integrals with complex phase.” In: Algorithmic probability and combinatorics. Vol. 520. Contemp. Math. Providence, RI: Amer. Math. Soc., pp. 221–240 (cit. on pp. 8, 104, 105, 162, 316).Google Scholar
Petersen, T. K. and D., Speyer (2005). “An arctic circle theorem for Groves.” J. Combin. Theory Ser.A 111, pp. 137–164 (cit. on p. 271).CrossRefGoogle Scholar
Petkovšek, M., H. S., Wilf, and D., Zeilberger (1996). A = B. Wellesley, MA: A K Peters (cit. on p. 44).Google Scholar
Pólya, G. (1969). “On the number of certain lattice polygons.” J. Combin. Theory 6, pp. 102–105 (cit. on p. 278).CrossRefGoogle Scholar
Pólya, G. and G., Szegő (1998). Problems and theorems in analysis. II. Classics in Mathematics. Theory of functions, zeros, polynomials, determinants, number theory, geometry, Translated from the German by C. E., Billigheimer, Reprint of the 1976 English translation. Berlin: Springer-Verlag (cit. on p. 30).CrossRefGoogle Scholar
Raichev, A. and M. C., Wilson (2007). “A new method for computing asymptotics of diagonal coefficients of multivariate generating functions.” In: 2007 Conference on Analysis of Algorithms, AofA 07. Discrete Math. Theor. Comput. Sci. Proc., AH. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, pp. 439–449 (cit. on p. 314).Google Scholar
Raichev, A. and M. C., Wilson (2008). “Asymptotics of coefficients of multivariate generating functions: improvements for smooth points.” Electron. J. Combin. 15, Research Paper 89, 17 (cit. on pp. 8, 314).Google Scholar
Raichev, A. and M. C., Wilson (Feb. 2012a). “A new approach to asymptotics of Maclaurin coefficients of algebraic functions.” ArXiv e-prints. arXiv:1202.3826 [math.CO] (cit. on pp. 183, 314).Google Scholar
Raichev, A. and M. C., Wilson (2012b). “Asymptotics of coefficients of multivariate generating functions: improvements for multiple points.” Online J. Anal. Combin. 7, to appear (cit. on pp. 8, 309, 314).Google Scholar
Rannou, E. (1998). “The complexity of stratification computation.” Discrete Comput. Geom. 19, pp. 47–78 (cit. on p. 352).CrossRefGoogle Scholar
Riddell, R. J. Jr., and G. E., Uhlenbeck (1953). “On the theory of the virial development of the equation of state of mono-atomic gases.” J. Chem. Phys. 21, pp. 2056–2064 (cit. on p. 43).CrossRefGoogle Scholar
Riesz, M. (1949). “L'intégrale de Riemann-Liouville et le problème de Cauchy.” Acta Mathematica 81, pp. 1–223 (cit. on p. 267).CrossRefGoogle Scholar
Rockefellar, R. T. (1966). Convex analysis. Princeton: Princeton University Press (cit. on p. 130).Google Scholar
Rogers, D. G. (1978). “Pascal triangles, Catalan numbers and renewal arrays.” Discrete Math. 22, pp. 301–310 (cit. on p. 288).CrossRefGoogle Scholar
Rubel, L. A. (1983). “Some research problems about algebraic differential equations.” Trans. Amer. Math. Soc. 280, pp. 43–52 (cit. on p. 44).CrossRefGoogle Scholar
Rubel, L. A. (1992). “Some research problems about algebraic differential equations. II.” Illinois J. Math. 36, pp. 659–680 (cit. on p. 44).Google Scholar
Safonov, K. V. (1987). “On conditions for the sum of a power series to be algebraic and rational.” Mat. Zametki 41, pp. 325–332, 457 (cit. on p. 305).Google Scholar
Safonov, K. V. (2000). “On power series of algebraic and rational functions in Cn.” J. Math. Anal. Appl. 243, pp. 261–277 (cit. on pp. 305, 307, 308).CrossRefGoogle Scholar
Saito, M., B., Sturmfels, and N., Takayama (2000). Gröbner deformations of hypergeometric differential equations. Vol. 6. Algorithms and Computation in Mathematics. Berlin: Springer-Verlag (cit. on pp. 44, 117).CrossRefGoogle Scholar
Shapiro, L. W. et al. (1991). “The Riordan group.” Discrete Appl. Math. 34. Combinatorics and theoretical computer science (Washington, DC, 1989), pp. 229–239 (cit. on p. 288).CrossRefGoogle Scholar
Sprugnoli, R. (1994). “Riordan arrays and combinatorial sums.” Discrete Math. 132, pp. 267–290 (cit. on p. 288).CrossRefGoogle Scholar
Stanley, R. P. (1997). Enumerative combinatorics. Vol. 1. Vol. 49. Cambridge Studies in Advanced Mathematics. With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original. Cambridge: Cambridge University Press (cit. on pp. 13, 15, 43, 231, 278).CrossRefGoogle Scholar
Stanley, R. P. (1999). Enumerative combinatorics. Vol. 2. Vol. 62. Cambridge Studies in Advanced Mathematics. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. Cambridge: Cambridge University Press (cit. on pp. 25, 33–35, 38, 43, 302, 304).CrossRefGoogle Scholar
Stanley, R. P. (1980). “Differentiably finite power series.” Euro. J. Combin. 1, pp. 175–188 (cit. on p. 44).CrossRefGoogle Scholar
Stein, E. M. (1993). Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Vol. 43. Princeton Mathematical Series. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. Princeton, NJ: Princeton University Press (cit. on pp. 81, 87, 94, 104, 105).Google Scholar
Sturmfels, B. (2002). Solving systems of polynomial equations. Vol. 97. CBMS regional conference series in mathematics. Providence RI: American Mathematical Society, pp. viii+152 (cit. on p. 118).CrossRefGoogle Scholar
Szegö, G. (1933). “Über gewisse Potenzreihen mit lauter positiven Koeffizienten.” Math. Z. 37, pp. 674–688 (cit. on p. 270).CrossRefGoogle Scholar
Theobald, T. (2002). “Computing amoebas.” Experiment. Math. 11, 513–526 (2003) (cit. on pp. 127, 131).CrossRefGoogle Scholar
Van der Hoeven, J. (2009). “Ball arithmetic.” HAL preprints. HAL: 00432152 (cit. on p. 183).Google Scholar
Van Lint, J. H. and R. M., Wilson (2001). A course in combinatorics. Second ed. Cambridge: Cambridge University Press (cit. on pp. 10, 15).CrossRefGoogle Scholar
Varchenko, A. N. (1977). “Newton polyhedra and estimation of oscillating integrals.” Functional Anal. Appl. 10, pp. 175–196 (cit. on pp. 161, 250).CrossRefGoogle Scholar
Vince, A. and M., Bona (Apr. 2012). “The number of ways to assemble a graph.” ArXiv e-prints. arXiv:1204.3842 [math.CO] (cit. on p. 316).Google Scholar
Wagner, D. G. (2011). “Multivariate stable polynomials: theory and application.” Bull. AMS 48, pp. 53–84 (cit. on p. 276).CrossRefGoogle Scholar
Ward, M. (2010). “Asymptotic rational approximation to Pi: Solution of an unsolved problem posed by Herbert Wilf.” Disc. Math. Theor. Comp. Sci. AM, pp. 591–602 (cit. on p. 63).Google Scholar
Warner, F. W. (1983). Foundations of differentiable manifolds and Lie groups. Vol. 94. Graduate Texts in Mathematics. Corrected reprint of the 1971 edition. New York: Springer-Verlag (cit. on pp. 321, 324, 339).CrossRefGoogle Scholar
Whitney, H. (1965). “Tangents to an analytic variety.” Annals Math. 81, pp. 496–549 (cit. on p. 98).CrossRefGoogle Scholar
Wilf, H. S. (1994). Generatingfunctionology. Second ed. Boston, MA: Academic Press (cit. on p. 278).Google Scholar
Wilf, H. S. (2006). Generatingfunctionology. Third ed. Available at http://www.math.upenn.edu/~wilf/DownldGF.html. Wellesley, MA: A K Peters (cit. on pp. 10, 15, 43).Google Scholar
Wilson, M. C. (2005). “Asymptotics for generalized Riordan arrays.” In: 2005 International Conference on Analysis of Algorithms. Discrete Math. Theor. Comput. Sci. Proc., AD. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 323–333 (electronic) (cit. on pp. 8, 288, 293).Google Scholar
Wimp, J. and D., Zeilberger (1985). “Resurrecting the asymptotics of linear recurrences.” J. Math. Anal. Appl. 111, pp. 162–176 (cit. on p. 314).CrossRefGoogle Scholar
Wong, R. (2001). Asymptotic approximations of integrals. Vol. 34. Classics in Applied Mathematics. Corrected reprint of the 1989 original. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) (cit. on pp. 87, 104).CrossRefGoogle Scholar
Zeilberger, D. (1982). “Sister Celine's technique and its generalizations.” J. Math. Anal. Appl. 85, pp. 114–145 (cit. on p. 44).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Robin Pemantle, University of Pennsylvania, Mark C. Wilson, University of Auckland
  • Book: Analytic Combinatorics in Several Variables
  • Online publication: 05 July 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139381864.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Robin Pemantle, University of Pennsylvania, Mark C. Wilson, University of Auckland
  • Book: Analytic Combinatorics in Several Variables
  • Online publication: 05 July 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139381864.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Robin Pemantle, University of Pennsylvania, Mark C. Wilson, University of Auckland
  • Book: Analytic Combinatorics in Several Variables
  • Online publication: 05 July 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139381864.018
Available formats
×