Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-10T17:36:47.939Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 March 2014

Simon T. Bate
Affiliation:
GlaxoSmithKline
Robin A. Clark
Affiliation:
Huntingdon Life Sciences
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afsarinejad, K. (1983). Balanced repeated measurements designs. Biometrika, 70(1), 199–204.CrossRefGoogle Scholar
Anderson, V. L. and McLean, R. A. (1974). Design of Experiments. Marcel Dekker Inc.: New York.Google Scholar
Andreasen, J. T., Henningsen, K., Bate, S. T., Christiansen, S. and Wiborg, O. (2011). Nicotine reverses anhedonic-like response and cognitive impairment in the rat chronic mild stress model of depression: comparison with sertraline. Journal of Psychopharmacology, 25(8), 1134–41.CrossRefGoogle ScholarPubMed
Armitage, P., Berry, G. and Matthews, J. N. S. (2002). Statistical Methods in Medical Research, 4th edition. Wiley-Blackwell: Malden, MA.CrossRefGoogle Scholar
Aylott, M., Bate, S. T., Collins, S., Jarvis, P. and Saul, J. (2011). Review of the statistical analysis of the dog telemetry study. Pharmaceutical Statistics, 10(3), 236–49.CrossRefGoogle ScholarPubMed
Bailey, R. A. (2008). Design of Comparative Experiments. Cambridge University Press: Cambridge, UK.CrossRefGoogle Scholar
Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Statistical Society Series A – Mathematical and Physical Sciences, 160(901), 268–82.CrossRefGoogle Scholar
Barton, N. J., Strickland, I. T., Bond, S. M., et al. (2007). Pressure application measurement (PAM): a novel behavioural technique for measuring hypersensitivity in a rat model of joint pain. Journal of Neuroscience Methods, 163(1), 67–75.CrossRefGoogle Scholar
Bate, S. T. and Boxall, J. (2008). The construction of multi-factor crossover designs in animal husbandry studies. Pharmaceutical Statistics, 7(3), 179–94.CrossRefGoogle ScholarPubMed
Bate, S. T. and Jones, B. (2008). A review of uniform cross-over designs. Journal of Statistical Planning and Inference, 138(2), 336–51.CrossRefGoogle Scholar
Belluzzi, J. D., Lee, A. G., Oliff, H. S. and Leslie, F. M. (2004). Age-dependent effects of nicotine on locomotor activity and conditioned place preference in rats. Psychopharmacology, 174, 389–95.CrossRefGoogle ScholarPubMed
Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57, 289–300.Google Scholar
Bennett, C. M., Wolford, G. L. and Miller, M. B. (2009). The principled control of false positives in neuroimaging. Social Cognitive and Affective Neuroscience, 4(4), 417–22.CrossRefGoogle ScholarPubMed
Bianchi, M. and Baulieu, E. E. (2012). 3β-methoxy-pregnenolone (MAP4343) as an innovative therapeutic approach for depressive disorders. Proceedings of the National Academy of Sciences, 109(5), 1713–18.CrossRefGoogle ScholarPubMed
Biggers, J. D., Baskar, J. F. and Torchiana, D. F. (1981). Reduction of fertility of mice by the intrauterine injection of prostaglandin antagonists. Journal of Reproduction and Fertility, 63, 365–72.CrossRefGoogle ScholarPubMed
Bison, S., Carboni, L., Arban, R., et al. (2009). Differential behavioral, physiological, and hormonal sensitivity to LPS challenge in rats. International Journal of Interferon, Cytokine and Mediator Research, 1, 1–13.CrossRefGoogle Scholar
Blakesley, R. E., Mazumdar, S., Dew, M. A., et al. (2009). Comparisons of methods for multiple hypothesis testing in neuropsychological research. Neuropsychology, 23(2), 255–64.CrossRefGoogle ScholarPubMed
Bonferroni, C. E. (1936). Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 8, 3–62.Google Scholar
Box, G. E. P. (1953). Non-normality and tests on variance. Biometrika, 40(3/4), 318–35.CrossRefGoogle Scholar
Boxall, J., Heath, S., Bate, S. and Brautigam, J. (2004). Modern concepts of socialisation for dogs: implications for their behaviour, welfare and use in scientific procedures. ATLA. Alternatives to Laboratory Animals, 32, 81–93.Google ScholarPubMed
Brammer, R. J. (2003). Modelling covariance structure in ascending dose studies of isolated tissues and organs. Pharmaceutical Statistics, 2(2), 103–12.CrossRefGoogle Scholar
Bright, J., Aylott, M., Bate, S., et al. (2011). Recommendations on the statistical analysis of the Comet assay. Pharmaceutical Statistics, 10(6), 485–93.CrossRefGoogle ScholarPubMed
Brooks, K. J., Bunce, K. T., Hasse, M. V., et al. (2005). MRI quantification in vivo of corticosteroid induced thymus involution in mice: correlation with ex vivo measurements. Steroids, 70(4), 267–72.CrossRefGoogle ScholarPubMed
Brown, M. B. and Forsythe, A. B. (1974). Robust tests for equality of variances. Journal of the American Statistical Society, 69(346), 364–7.CrossRefGoogle Scholar
Burden, R. L. and Faires, J. D. (2011). Numerical Analysis, 9th edition. Brooks/Cole Publishing: Pacific Grove, CA.Google Scholar
Button, K. S., Ioannidis, J. P., Mokrysz, C., et al. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14, 365–76.CrossRefGoogle ScholarPubMed
Chaves, A. A., Keller, W. J., O’Sullivan, S., et al. (2006). Cardiovascular monkey telemetry: sensitivity to detect QT interval prolongation. Journal of Pharmacological and Toxicological Methods, 54(2), 150–8.CrossRefGoogle ScholarPubMed
Clark, R. A., Shoaib, M., Hewitt, K. N., Stanford, S. C. and Bate, S. T. (2012). A comparison of InVivoStat with other statistical software packages for analysis of data generated from animal experiments. Journal of Psychopharmacology, 26(8), 1136–42.CrossRefGoogle ScholarPubMed
Clarke, G. M. and Kempson, R. E. (1997). Introduction to the Design and Analysis of Experiments. Arnold: London.Google Scholar
Cochran, W. G. and Cox, G. M. (1957). Experimental Designs, 2nd edition. Wiley & Sons, Inc.: New York, London.Google Scholar
Cohen, J. (1988). Statistical Power Analysis for the Behavioural Sciences, 2nd edition. Lawrence Erlbaum Associates: Hillsdale, NJ.Google Scholar
Crowder, M. J. and Hand, D. J. (1990). Analysis of Repeated Measures. Chapman and Hall/CRC: London.Google Scholar
Cumming, G., Fidler, F. and Vaux, D. L. (2007). Error bars in experimental biology. The Journal of Cell Biology, 177(1), 7–11.CrossRefGoogle ScholarPubMed
Curran-Everett, D. (2000). Multiple comparisons: philosophies and illustrations. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 279(1), R1–8.CrossRefGoogle ScholarPubMed
Curtin, L. I., Grakowsky, J. A., Suarez, M., et al. (2009). Evaluation of buprenorphine in a postoperative pain model in rats. Comparative Medicine, 59(1), 60–71.Google Scholar
Downie, D., Antipatis, C., Delday, M. I., Maltin, C. A. and Sneddon, A. A. (2005). Moderate maternal vitamin A deficiency alters myogenic regulatory protein expression and perinatal organ growth in the rat. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 288(1), 73–9.CrossRefGoogle ScholarPubMed
Dudchenko, P. A., Wood, E. R. and Eichenbraum, H. (2000). Neurotoxic hippocampal lesions have no effect on odor span and little effect on odor recognition memory but produce significant impairments on spatial span, recognition, and alteration. The Journal of Neuroscience, 20(8), 2964–77.CrossRefGoogle Scholar
Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11(1), 1–42.CrossRefGoogle Scholar
Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association, 50(272), 1096–121.CrossRefGoogle Scholar
Dunnett, C. W. (1964). New tables for multiple comparisons with a control. Biometrics, 20(3), 482–91.CrossRefGoogle Scholar
Elashoff, J. D. (1981). Down with multiple t-tests!Gastroenterology, 80, 615–20.Google ScholarPubMed
Festing, M. F. W. (1994). Reduction of animal use: experimental design and quality of experiments. Laboratory Animals, 28(3), 212–21.CrossRefGoogle Scholar
Festing, M. F. W. (2003a). Principles: the need for better experimental design. Trends in Pharmacological Sciences, 24(7), 341–5.CrossRefGoogle ScholarPubMed
Festing, M. F. W. (2003b). We should be designing better experiments. Veterinary Anaesthesia and Analgesia, 30, 58–60.CrossRefGoogle ScholarPubMed
Festing, M. F. W. and Altman, D. G. (2002). Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR Journal, 43(4), 244–58.CrossRefGoogle ScholarPubMed
Festing, M. F. W., Diamanti, P. and Turton, J. A. (2001). Strain differences in haematological response to chloroamphenicol succinate in mice: implications for toxicological research. Food and Chemical Toxicology, 39(4), 375–83.CrossRefGoogle Scholar
Festing, M. F. W., Overend, P., Gaines Das, R., Cortina-Borja, M. and Berdoy, M. (2002). The Design of Animal Experiments: Reducing the Use of Animals in Research through Better Experimental Design. Royal Society of Medicine Press: London.Google Scholar
Field, A. (1998). A bluffer’s guide to… sphericity. The British Psychological Society: Mathematical, Statistical & Computing Section Newsletter, 6, 13–22.Google Scholar
Findlay, J. W. A. and Dillard, R. F. (2007). Appropriate calibration curve fitting in ligand binding assays. The AAPS Journal, 9(2), E260–7.CrossRefGoogle ScholarPubMed
Ford, D. J. (1977). Effect of autoclaving and physical structure of diets on their utilization by mice. Laboratory Animals, 11(4), 235–9.CrossRefGoogle ScholarPubMed
Gaines Das, R. (2004). ‘Statistics’ is not a sausage machine: a statistician’s viewpoint and some comments on experimental design. ATLA. Alternatives to Laboratory Animals, 32(2), 5–8.Google Scholar
Gaines Das, R., Fry, D., Preziosi, R. and Hudson, M. (2009). Planning for reduction. ATLA. Alternatives to Laboratory Animals, 37(1), 27–32.Google ScholarPubMed
Giesbrecht, F. G. and Gumpertz, M. L. (2004). Planning, Construction, and Statistical Analysis of Comparative Experiments. Wiley & Sons, Inc.: Hoboken, NJ.CrossRefGoogle Scholar
Godolphin, J. D. (2004). Simple pilot procedures for the avoidance of disconnected experimental designs. Journal of the Royal Statistical Society Series C (Applied Statistics), 53(1), 133–47.CrossRefGoogle Scholar
Gore, K. H. and Stanley, P. J. (2005). An illustration that statistical design mitigates environmental variation and ensures unambiguous study conclusions. Animal Welfare, 14(4), 361–5.Google Scholar
Grayson, B., Idris, N. F. and Neill, J. C. (2007). Atypical antipsychotics attenuate a sub-chronic PCP-induced cognitive deficit in the novel object recognition task in the rat. Behavioural Brain Research, 184(1), 31–8.CrossRefGoogle ScholarPubMed
Green, C. R., Ham, K. N. and Tange, J. D. (1969). Kidney lesions induced in rats by p-aminophenol. British Medical Journal, 18(1), 162–4.CrossRefGoogle Scholar
Harris, R. B. S., Zhou, J., Youngblood, B. D., et al. (1998). Effect of repeated stress on body weight and body composition of rats fed low- and high-fat diets. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 275(6), R1928–38.CrossRefGoogle ScholarPubMed
Hatcher, P. D., Brown, V. J., Tait, D. S., et al. (2005). 5-HT6 receptor antagonists improve performance in an attentional set shifting task in rats. Psychopharmacology, 181(2), 253–9.CrossRefGoogle Scholar
Hedenqvist, P., Roughan, J. V., Antunes, L., Orr, H. and Flecknell, P. A. (2001). Induction of anaesthesia with desflurane and isoflurane in the rabbit. Laboratory Animals, 35(2), 172–9.CrossRefGoogle ScholarPubMed
Hille, C., Bate, S., Davis, J. and Gonzalez, M. I. (2008). 5-HT4 receptor agonism in the five-choice serial reaction time task. Behavioural Brain Research, 195(1), 180–6.CrossRefGoogle ScholarPubMed
Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75(4), 800–3.CrossRefGoogle Scholar
Hoenig, J. M. and Heisey, D. M. (2001). The abuse of power: the pervasive fallacy of power calculations for data analysis. The American Statistician, 55(1), 19–24.CrossRefGoogle Scholar
Holland, B. S. and Copenhaver, M. D. (1988). Improved Bonferroni-type multiple testing procedures. Psychological Bulletin, 104(1), 145–9.CrossRefGoogle Scholar
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.Google Scholar
Holson, R. R., Freshwater, L., Maurissen, J. P. J., Moser, V. C. and Phang, W. (2008). Statistical issues and techniques appropriate for developmental neurotoxicity testing: a report from the ILSI Research Foundation/Risk Science Institute expert working group on neurodevelopmental endpoints. Neurotoxicology and Teratology, 30(4), 326–48.CrossRefGoogle Scholar
Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika, 75(2), 383–6.CrossRefGoogle Scholar
Hsu, J. (1996). Multiple Comparisons: Theory and Methods. Chapman and Hall/CRC: London.CrossRefGoogle Scholar
Hulshoff, J. E. G, Van Dijk, K., van der Waerden, J. P. C. M., et al. (1996). Evaluation of plasma-spray and magnetron-sputter Ca-P-coated implants: an in vivo experiment using rabbits. Journal of Biomedical Materials Research, 31(3), 329–37.3.0.CO;2-O>CrossRefGoogle Scholar
Ingram-Ross, J. L., Curran, A. K., Miyamoto, M., et al. (2012). Cardiorespiratory safety evaluation in non-human primates. Journal of Pharmacological and Toxicological Methods, 66, 114–24.CrossRefGoogle ScholarPubMed
Jones, B. and Kenward, M. G. (2003). Design and Analysis of Cross-Over Trials. Chapman and Hall/CRC: London.Google Scholar
Kalinichev, M., Bate, S. T. and Jones, D. N. C. (2009). Models of aspects of schizophrenia: behavioral sensitization induced by subchronic phencyclidine administration. Current Protocols in Pharmacology, 45, 5.54.1–13.Google Scholar
Karp, N. A., Segonds-Pichon, A., Gerdin, A. K. B., Ramirez-Solis, R. and White, J. K. (2012). The fallacy of ratio correction to address confounding factors. Laboratory Animals, 46(3), 245–52.CrossRefGoogle ScholarPubMed
Keuls, M. (1952). The use of the ‘studentized range’ in connection with an analysis of variance. Euphytica, 1(2), 112–22.CrossRefGoogle Scholar
Kilkenny, C., Brown, W. J., Cuthill, I. C., Emerson, M. and Altman, D. G. (2010). Improving bioscience research: the ARRIVE guidelines for reporting animal research. PLoS Biol, 8(6), e1000412.CrossRefGoogle ScholarPubMed
Kilkenny, C., Parsons, N., Kadyszewski, E., et al. (2009). Survey of the quality of experimental design, statistical analysis and reporting of research using animals. PLoS One, 4(11), e7824.CrossRefGoogle ScholarPubMed
Kleinbaum, D. G. and Klein, M. (2005). Survival Analysis: A Self-Learning Text, 2nd edition. Springer: New York.Google Scholar
Kolmogorov, A. N. (1933). Sulla determinazione empirica di una legge di distribuzione. Giornale dell’Istituto Italiano degli Attuari, 4(1), 83–91.Google Scholar
Kramer, C. Y. (1956). Extension of multiple range tests to group means with unequal numbers of replications. Biometrics, 12(3), 307–10.CrossRefGoogle Scholar
Kuentz, M., Rothlisberger, D. and Richter, W. (2003). Design of experiment (DoE) methods maximize information from a minimal number of animals in special cases of preclinical bioavailability testing. Pharmaceutical Development and Technology, 8(4), 453–8.CrossRefGoogle ScholarPubMed
Kwan, K. Y., Allchome, A. J., Vollrath, M. A., et al. (2006). TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron, 50, 277–89.CrossRefGoogle Scholar
Lazic, S. E. (2010). The problem of pseudoreplication in neuroscientific studies: is it affecting your analysis?BMC Neuroscience, 11(1), 5.CrossRefGoogle ScholarPubMed
Lehmann, E. L. (1999). Elements of Large-Sample Theory. Springer: New York.CrossRefGoogle Scholar
Levene, H. (1960). Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, editors Olkin, I., Ghurye, S. G., Hoeffding, W., Madow, W. G. and Mann, H. B.278–292. Stanford University Press: Stanford, CA.Google Scholar
Liao, J. J. Z. and Liu, R. (2009). Re-parameterization of five-parameter logistic function. Journal of Chemometrics, 23(5), 248–53.CrossRefGoogle Scholar
Ludbrook, J. (1998). Multiple comparison procedures updated. Clinical and Experimental Pharmacology and Physiology, 25(12), 1032–7.CrossRefGoogle ScholarPubMed
Macleod, M. R., Fisher, M., O’Collins, V., et al. (2009). Reprint: good laboratory practice: preventing introduction of bias at the bench. Journal of Cerebral Blood Flow and Metabolism, 29, 2213.CrossRefGoogle ScholarPubMed
Maheswaran, S., Barjat, H., Rueckert, D., et al. (2009). Longitudinal regional brain volume changes quantified in normal aging and Alzheimer’s APP × PS1 mice using MRI. Brain Research, 1270, 19–32.CrossRefGoogle ScholarPubMed
Manser, C. E., Broom, D. M., Overend, P. and Morris, T. H. (1998). Investigations into the preferences of laboratory rats for nest-boxes and nesting materials. Laboratory Animals, 32(1), 23–35.CrossRefGoogle ScholarPubMed
Mathew, G., Watson, D. I., Rofe, A. M., et al. (1996). Wound metastases following laparoscopic and open surgery for abdominal cancer in a rat model. British Journal of Surgery, 83(8), 1087–90.CrossRefGoogle Scholar
Mauchly, J. W. (1940). Test for sphericity of a normal n-variate distribution. Annals of Mathematical Statistics, 11(2), 204–9.CrossRefGoogle Scholar
McCance, I. (1995). Assessment of statistical procedures used in papers in the Australian Veterinary Journal. Australian Veterinary Journal, 72(9), 322–8.CrossRefGoogle ScholarPubMed
McQuade, R., Creton, D. and Stanford, S. C. (1999). Effect of novel environmental stimuli on rat behaviour and central noradrenaline function measured by in vivo microdialysis. Psychopharmacology, 145(4), 393–400.CrossRefGoogle ScholarPubMed
Mead, R. (1988). The Design of Experiments: Statistical Principles for Practical Applications. Cambridge University Press: Cambridge.Google Scholar
Mead, R., Curnow, R. N. and Hasted, A. M. (2003). Statistical Methods in Agriculture and Experimental Biology, 3rd edition. Chapman and Hall/CRC: London.Google Scholar
Miller, R. G. (1981). Simultaneous Statistical Inference, 2nd edition. Springer-Verlag: New York.CrossRefGoogle Scholar
Milliken, G. A. and Johnson, D. E. (2002). Analysis of Messy Data Volume III: Analysis of Covariance. Chapman & Hall/CRC: New York.Google Scholar
Miyazaki, H., Watanabe, H., Kitayama, T., et al. (2005). QT PRODACT: sensitivity and specificity of the canine telemetry assay for detecting drug-induced QT interval prolongation. Journal of Pharmacological Sciences, 99, 523–9.CrossRefGoogle ScholarPubMed
Montgomery, D. C. (1997). Design and Analysis of Experiments, 4th edition. Wiley: New York.Google Scholar
Morris, T. R. (1999). Experimental Design and Analysis in Animal Sciences. CABI Publishing: Wallingford, UK.Google Scholar
Murphy, N., Bruckdorfer, K. R., Grimsditch, D. C., et al. (2003). Temporal relationships between circulating levels of CC and CXC chemokines and developing atherosclerosis in Apolipoprotein E*3 Leiden mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1615–20.CrossRefGoogle ScholarPubMed
Nakagawa, S. (2004). A farewell to Bonferroni: the problems of low statistical power and publication bias. Behavioral Ecology, 15(6), 1044–5.CrossRefGoogle Scholar
Nesnow, S., Mass, M. J., Ross, J. A., et al. (1998). Lung tumourigenic interactions in strain A/J mice of five environmental polycyclic aromatic hydrocarbons. Environmental Health Perspectives, 106(Suppl 6), 1337–46.CrossRefGoogle Scholar
Newman, D. (1939). The distribution of range in samples from a normal population, expressed in terms of an independent estimate of standard deviation. Biometrika, 31(1/2), 20–30.CrossRefGoogle Scholar
Nieuwenhuis, S., Forstmann, B. U. and Wagenmakers, E. J. (2011). Erroneous analyses of interactions in neuroscience: a problem of significance. Nature Neuroscience, 14(9), 1105–7.CrossRefGoogle ScholarPubMed
Onyango, E. M. and Adeola, O. (2011). Dietary cholecalciferol lowers the maximal activity of intestinal mucosa phytase in ducklings fed low-phosphorus diets. Canadian Journal of Animal Science, 91(3), 399–404.CrossRefGoogle Scholar
Parkin, S. L., Pritchett, J. P., Grimsditch, D. C., et al. (2004). Circulating levels of the chemokines JE and KC in female C3H apolipoprotein-E-deficient and C57BL apolipoprotein-E-deficient mice as potential markers of atherosclerosis development. Biochemical Society Transactions, 32(1), 128–30.CrossRefGoogle ScholarPubMed
Patel, S. R., Murphy, K. G., Thompson, E. L., et al. (2008). Pyroglutamylated RFamide peptide 43 stimulates the hypothalamic-pituitary-gonadal axis via gonadotropin-releasing hormone in rats. Endocrinology, 149(9), 4747–54.CrossRefGoogle ScholarPubMed
Pinheiro, J., Bates, D., DebRoy, S. and Sarkar, D. (2008). The R Development Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1–93. R Foundation for Statistical Computing, Vienna, Austria. .
Plackett, R. L. and Burman, J. P. (1946). The design of optimal multifactorial experiments. Biometrika, 33(4), 305–25.CrossRefGoogle Scholar
Pugh, P. L., Richardson, J. C., Bate, S. T., Upton, N. and Sunter, D. (2007). Non-cognitive behaviours in an APP/PS1 transgenic model of Alzheimer’s disease. Behavioural Brain Research, 178(1), 18–28.CrossRefGoogle Scholar
R Development Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0, .Google Scholar
Rooke, E. D. M., Vesterinen, H. M., Sena, E. S., Egan, K. J. and Macleod, M. R. (2011). Dopamine agonists in animal models of Parkinson’s disease: A systematic review and meta-analysis. Parkinsonism and Related Disorders, 17(5), 313–20.CrossRefGoogle ScholarPubMed
Rosnow, R. L. and Rosenthal, R. (1989). Statistical procedures and the justification of knowledge in psychological science. American Psychologist, 44(10), 1276–84.CrossRefGoogle Scholar
Rumble, R., Saville, M., Simmons, L., et al. (2005). The preference of the common marmoset for nest boxes made from three different materials – wood, plastic, metal. Animal Technology and Welfare, 4(3), 185–7.Google Scholar
Russell, W. M. S. and Burch, R. L. (1959). The Principles of Humane Experimental Technique. Methuen & Co. Ltd: London.Google Scholar
Ruxton, G. G. and Colegrave, N. (2006). Experimental Design for the Life Sciences. OxfordUniversity Press: Oxford.Google Scholar
Scheffé, H. (1953). A method for judging all contrasts in the analysis of variance. Biometrika, 40(1–2), 87–110.Google Scholar
Schleiss, M. R., Anderson, J. L. and McGregor, A. (2006). Cyclic cidofovir (cHPMPC) prevents congenital cytomegalovirus infection in a guinea pig model. Virology Journal, 3, 9.CrossRefGoogle Scholar
Seacat, A. M., Thomford, P. J., Hansen, K. J., et al. (2002). Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicological Sciences, 68(1), 249–64.CrossRefGoogle ScholarPubMed
Semela, D., Piguet, A. C., Kolev, M., et al. (2007). Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma. Journal of Hepatology, 46(5), 840–8.CrossRefGoogle Scholar
Sena, E. S., van der Worp, H. B., Bath, P. M. W., Howells, D. W. and Macleod, M. R. (2010). Publication bias in reports of animal stroke studies leads to major overstatement of efficacy. PLoS Biol, 8(3), e1000344.CrossRefGoogle Scholar
Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46, 561–84.CrossRefGoogle Scholar
Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–9.CrossRefGoogle Scholar
Shaw, R. (2004). Reduction in laboratory animal use by factorial design. Alternatives to Laboratory Animals: ATLA, 32(2), 49–51.Google ScholarPubMed
Shaw, R., Festing, M. F. W., Peers, I. and Furlong, L. (2002). Use of factorial designs to optimize animal experiments and reduce animal use. ILAR Journal, 43(4), 223–32.CrossRefGoogle ScholarPubMed
Shoaib, M., Sidhpura, N. and Shafait, S. (2003). Investigating the actions of bupropion on dependence-related effects of nicotine in rats. Psychopharmacology 165, 404–12.CrossRefGoogle ScholarPubMed
Shirley, E. A. C. (1977). The analysis of organ weight data. Toxicology, 8, 13–22.CrossRefGoogle ScholarPubMed
Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association, 62(318), 626–33.Google Scholar
Singleton, K. D. and Wischmeyer, P. E. (2003). Distance of cecum ligated influences mortality, tumor necrosis factor-alpha and interleukin-6 expression following cecal ligation and puncture in the rat. European Surgical Research, 35(6), 486–91.CrossRefGoogle ScholarPubMed
Sjödin, L., Visser, S. and Al-Saffar, A. (2011). Using pharmacokinetic modeling to determine the effect of drug and food on gastrointestinal transit in dogs. Journal of Pharmacological and Toxicological Methods, 64(1), 42–52.CrossRefGoogle ScholarPubMed
Skene, S. S. and Kenward, M. G. (2010). The analysis of very small samples of repeated measurements I: an adjusted sandwich estimator. Statistics in Medicine, 29(27), 2825–37.CrossRefGoogle ScholarPubMed
Slob, W. (2002). Dose-response modeling of continuous endpoints. Toxicological Sciences, 66(2), 298–312.CrossRefGoogle ScholarPubMed
Slotten, H. A., Kalinichev, M., Hagan, J. J., Marsden, C. A. and Fone, K. C. F. (2006). Long-lasting changes in behavioural and neuroendocrine indices in the rat following neonatal maternal separation: gender-dependent effects. Brain Research, 1097(1), 123–32.CrossRefGoogle ScholarPubMed
Smirnov, N. V. (1939). Estimation of deviation between empirical distribution functions in two independent samples. Bulletin Moscow University, 2(2), 3–16.Google Scholar
Smith, P. F. (2012). A note on the advantages of using linear mixed model analysis with maximal likelihood estimation over repeated measures ANOVAs in psychopharmacology: comment on Clark et al. (2012). Journal of Psychopharmacology, 26(12), 1605–7.CrossRefGoogle Scholar
Smith, C. C., Adkins, D. J., Martin, E. A. and O’Donovan, M. R. (2008). Recommendations for design of the rat comet assay. Mutagenesis, 23(3), 233–40.CrossRefGoogle ScholarPubMed
Snedecor, G. W. and Cochran, W. G. (1989). Statistical Methods, 8th edition. Iowa State University Press: Ames, IA.Google Scholar
Stufken, J. (1996). Optimal crossover designs. In Handbook of Statistics 13: Design and Analysis of Experiments, editors Ghosh, S. and Rao, C. R.63–90. North-Holland: Amsterdam.Google Scholar
Tallarida, R. J. (2000). Drug Synergism and Dose-Effect Data Analysis. Chapman and Hall/CRC Press: Boca Raton, FL.CrossRefGoogle Scholar
Tallarida, R. J. and Jacob, L. S. (1979). The Dose-Response Relation in Pharmacology. Springer-Verlag: New York.CrossRefGoogle Scholar
Teng, Y. D., Lavik, E. B., Qu, X., et al. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proceedings of the National Academy of Sciences, 99(5), 3024–9.CrossRefGoogle ScholarPubMed
Toothaker, L. E. (1993). Multiple Comparison Procedures. No. 89. SAGE Publications Inc.: London, UK.CrossRefGoogle Scholar
Torrallardona, D., Conde, M. R., Badiola, I., Polo, J. and Brufau, J. (2003). Effect of fishmeal replacement with spray-dried animal plasma and colistin on intestinal structure, intestinal microbiology, and performance of weanling pigs challenged with Escherichia coli K99. Journal of Animal Science, 81(5), 1220–6.CrossRefGoogle ScholarPubMed
Tufte, E. R. (1983). The Visual Display of Quantitative Information. Graphics Press: Cheshire, CT.Google Scholar
Tukey, J. W. (1953). The Problem of Multiple Comparisons. Unpublished Notes, Princeton University.Google Scholar
van der Worp, H. B., Howells, D. W., Sena, E. S., et al. (2010). Can animal models of disease reliably inform human studies?PLoS Medicine, 7(3), e1000245.CrossRefGoogle ScholarPubMed
Vesterinen, H. M., Sena, E. S., ffrench-Constant, C., et al. (2010). Improving the translational hit of experimental treatments in multiple sclerosis. Multiple Sclerosis, 16(9), 1044–55.CrossRefGoogle ScholarPubMed
Wiklund, S. J. and Agurell, E. (2003). Aspects of design and statistical analysis in the Comet assay. Mutagenesis, 18(2), 167–75.CrossRefGoogle ScholarPubMed
Williams, E. J. (1949). Experimental designs balanced for the estimation of residual effects of treatments. Australian Journal of Scientific Research Series A, 2, 149–68.Google Scholar
Wolfram, S., Raederstorff, D., Preller, M., et al. (2006). Epigallocatechin gallate supplementation alleviates diabetes in rodents. The Journal of Nutrition, 136, 2512–18.CrossRefGoogle ScholarPubMed
Woolley, M. L., Pemberton, D. J., Bate, S., Corti, C. and Jones, D. N. C. (2008). The mGlu2 but not the mGlu3 receptor mediates the actions of the mGluR2/3 agonist, LY379268, in mouse models predictive of antipsychotic activity. Psychopharmacology, 196(3), 431–40.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Simon T. Bate, Robin A. Clark
  • Book: The Design and Statistical Analysis of Animal Experiments
  • Online publication: 05 March 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139344319.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Simon T. Bate, Robin A. Clark
  • Book: The Design and Statistical Analysis of Animal Experiments
  • Online publication: 05 March 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139344319.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Simon T. Bate, Robin A. Clark
  • Book: The Design and Statistical Analysis of Animal Experiments
  • Online publication: 05 March 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139344319.012
Available formats
×