Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-06T06:41:24.965Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  20 October 2016

Emmanuel Fricain
Affiliation:
Université Lyon I
Javad Mashreghi
Affiliation:
Université Laval, Québec
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abate, M. The Lindelöf principle and the angular derivative in strongly convex domains. J. Anal. Math. 54 (1990), 189–228.Google Scholar
[2] Abate, M. Angular derivatives in strongly pseudoconvex domains. In Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), vol. 52 of Proceedings of Symposia in Pure Mathematics. American Mathematical Society, Providence, RI, 1991, pp. 23–40.
[3] Abate, M. The Julia–Wolff–Carathéodory theorem in polydisks. J. Anal. Math. 74 (1998), 275–306.Google Scholar
[4] Abate, M. Angular derivatives in several complex variables. In Real methods in complex and CR geometry, vol. 1848 of Lecture Notes in Mathematics. Springer, Berlin, 2004, pp. 1–47.
[5] Abate, M., and Tauraso, R. The Julia–Wolff–Carathéodory theorem(s). In Complex geometric analysis in Pohang (1997), vol. 222 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 1999, pp. 161–172.
[6] Agler, J., and McCarthy, J.E. Pick interpolation and Hilbert function spaces, vol. 44 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
[7] Ahern, P.R., and Clark, D.N. Invariant subspaces and analytic continuation in several variables. J. Math. Mech. 19 (1969/1970), 963–969.Google Scholar
[8] Ahern, P.R., and Clark, D.N. On functions orthogonal to invariant subspaces. Acta Math. 124 (1970), 191–204.Google Scholar
[9] Ahern, P.R., and Clark, D.N. On star-invariant subspaces. Bull. Amer. Math. Soc. 76 (1970), 629–632.Google Scholar
[10] Ahern, P.R., and Clark, D.N. Radial limits and invariant subspaces. Amer. J. Math. 92 (1970), 332–342.Google Scholar
[11] Ahern, P.R., and Clark, D.N. Radia. nth derivatives of Blaschke products. Math. Scand. 28 (1971), 189–201.Google Scholar
[12] Ahern, P.R., and Clark, D.N. On inner functions with Hp.-derivative. Michigan Math. J. 21 (1974), 115–127.Google Scholar
[13] Ahern, P.R., and Clark, D.N. On inner functions with Bp derivative. Michigan Math. J. 23, 2 (1976), 107–118.Google Scholar
[14] Alexander, W. O., and Redheffer, R. The excess of sets of complex exponentials. Duke Math. J. 34 (1967), 59–72.Google Scholar
[15] Alpay, D., Dijksma, A., Rovnyak, J., and de Snoo, H. Schur functions, operator colligations, and reproducing kernel Pontryagin spaces, vol. 96 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1997.
[16] Alpay, D., and Dym, H. Hilbert spaces of analytic functions, inverse scattering and operator models. I. Integral Equations Operator Theor. 7, 5 (1984), 589–641.Google Scholar
[17] Alpay, D., and Dym, H. Hilbert spaces of analytic functions, inverse scattering and operator models. II. Integral Equations Operator Theor. 8, 2 (1985), 145–180.Google Scholar
[18] Anderson, J.M., and Rovnyak, J. On generalized Schwarz–Pick estimates. Mathematik. 53, 1 (2006), 161–168.Google Scholar
[19] Ando, T. De Branges spaces and analytic operator functions. Lecture notes. Hokkaido University, Sapporo, Japan, 1990.
[20] Ando, T., and Fan, K. Pick–Julia theorems for operators. Math. Z. 168, 1 (1979), 23–34.Google Scholar
[21] Andrews, G.E., Askey, R., and Roy, R. Special functions, vol. 71 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, UK, 1999.
[22] Aronszajn, N. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950), 337–404.Google Scholar
[23] Avdonin, S.A., and Ivanov, S.A. Families of exponentials: the method of moments in controllability problems for distributed parameter systems. Translated from Russian and revised by authors. Cambridge University Press, Cambridge, UK, 1995.
[24] Balayan, L., and Garcia, S.R. Unitary equivalence to a complex symmetric matrix: geometric criteria. Oper. Matrice. 4, 1 (2010), 53–76.Google Scholar
[25] Ball, J.A., and KrieteIII, T. L. Operator-valued Nevanlinna–Pick kernels and the functional models for contraction operators. Integral Equations Operator Theor. 10, 1 (1987), 17–61.Google Scholar
[26] Ball, J.A., and Lubin, A. On a class of contractive perturbations of restricted shifts. Pacific J. Math. 63, 2 (1976), 309–323.Google Scholar
[27] Baranov, A.D. Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings. J. Funct. Anal. 223, 1 (2005), 116–146.Google Scholar
[28] Baranov, A. Completeness and Riesz bases of reproducing kernels in model subspaces. Int. Math. Res. Not. 2006 (2006), 81530.Google Scholar
[29] Baranov, A., Fricain, E., and Mashreghi, J. Weighted norm inequalities for de Branges–Rovnyak spaces and their applications. Amer. J.Math. 132, 1 (2010), 125–155.Google Scholar
[30] Beneker, P. Strongly exposed points, Helson–Szegʺo weights and Toeplitz operators. Integral Equations Operator Theor. 31, 3 (1998), 299–306.Google Scholar
[31] Beneker, P., and Wiegerinck, J. The boundary of the unit ball in H1-type spaces. In Function spaces (Edwardsville, IL, 2002), vol. 328 of Contemporary Mathematics. AmericanMathematical Society, Providence, RI, 2003, pp. 59–84.
[32] Bénéteau, C., Dahlner, A., and Khavinson, D. Remarks on the Bohr phenomenon. Comput. Methods Funct. Theor. 4, 1 (2004), 1–19.Google Scholar
[33] Beurling, A. On two problems concerning linear transformations in Hilbert space. Acta Math. 81 (1948), 17.Google Scholar
[34] Blandign`eres, A., Fricain, E., Gaunard, F., Hartmann, A., and Ross, W. Reverse Carleson embeddings for model spaces. J. London Math. Soc. 88, 2 (2013), 437–464.Google Scholar
[35] Blandign`eres, A., Fricain, E., Gaunard, F., Hartmann, A., and Ross, W. Direct and reverse Carleson measures for H(b) spaces. Submitted, arXiv:1308.1574.
[36] Bolotnikov, V., and Kheifets, A. A higher order analogue of the Carathéodory–Julia theorem. J. Funct. Anal. 237, 1 (2006), 350–371.Google Scholar
[37] Boricheva, I. Geometric properties of projections of reproducing kernels o. z -invariant subspaces of H 2 . J. Funct. Anal. 161, 2 (1999), 397–417.Google Scholar
[38] Borwein, P., and Erdélyi, T. A sharp Bernstein-type inequality for exponential sums. J. Reine Angew. Math. 476 (1996), 127–141.Google Scholar
[39] Borwein, P., and Erdélyi, T. Sharp extensions of Bernstein's inequality to rational spaces. Mathematik. 43, 2 (1996), 413–423.Google Scholar
[40] Caratheódory, C. Ü ber die Winkelderivierten von beschra¨nkten analytischen Funktionen. Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl. (1929), 39–54.Google Scholar
[41] Carathéodory, C. Theory of functions of a complex variable. Vol. 1. Translated by F., Steinhardt. Chelsea, New York, 1954.
[42] Carathéodory, C. Theory of functions of a complex variable. Vol. 2. Translated by F. Steinhardt. Chelsea, New York, 1954.
[43] Cargo, G.T. The radial images of Blaschke products. J. London Math. Soc. 36 (1961), 424–430.Google Scholar
[44] Cargo, G.T. Angular and tangential limits of Blaschke products and their successive derivatives. Canad. J. Math. 14 (1962), 334–348.Google Scholar
[45] Cargo, G.T. The boundary bahavior of Blaschke products. J. Math. Anal. Appl. 5 (1962), 1–16.Google Scholar
[46] Chacón, G.R. Carleson measures on Dirichlet-type spaces. Proc. Amer. Math. Soc. 139, 5 (2011), 1605–1615.Google Scholar
[47] Chacón, G.R. Interpolating sequences in harmonically weighted Dirichlet spaces. Integral Equations Operator Theor. 69, 1 (2011), 73–85.Google Scholar
[48] Chacón, G.R. Closed-range composition operators on Dirichlet-type spaces. Complex Anal. Oper. Theor. 7, 4 (2013), 909–926.Google Scholar
[49] Chacón, G.R., Fricain, E., and Shabankhah, M. Carleson measures and reproducing kernel thesis in Dirichlet-type spaces. Algebra i Anali. 24, 6 (2012), 1–20.Google Scholar
[50] Chalendar, I., Fricain, E., and Partington, J.R. Overcompleteness of sequences of reproducing kernels in model spaces. Integral Equations Operator Theor. 56, 1 (2006), 45–56.Google Scholar
[51] Chalendar, I., Fricain, E., and Timotin, D. Functional models and asymptotically orthonormal sequences. Ann. Inst. Fourier (Grenoble. 53, 5 (2003), 1527–1549.Google Scholar
[52] Chevrot, N., Fricain, E., and Timotin, D. The characteristic function of a complex symmetric contraction. Proc. Amer. Math. Soc. 135, 9 (2007), 2877–2886.(electronic).Google Scholar
[53] Chevrot, N., Fricain, E., and Timotin, D. On certain Riesz families in vector-valued de Branges–Rovnyak spaces. J. Math. Anal. Appl. 355, 1 (2009), 110–125.Google Scholar
[54] Chevrot, N., Guillot, D., and Ransford, T. De Branges–Rovnyak spaces and Dirichlet spaces. J. Funct. Anal. 259, 9 (2010), 2366–2383.Google Scholar
[55] Clark, D.N. One dimensional perturbations of restricted shifts. J. Anal. Math. 25 (1972), 169–191.Google Scholar
[56] Cohn, B. Carleson measures for functions orthogonal to invariant subspaces. Pacific J. Math. 103, 2 (1982), 347–364.Google Scholar
[57] Cohn, W.S. Carleson measures and operators on star-invariant subspaces. J. Operator Theor. 15, 1 (1986), 181–202.Google Scholar
[58] Costara, C., and Ransford, T. Which de Branges–Rovnyak spaces are Dirichlet spaces (and vice versa). J. Funct. Anal. 265, 12 (2013), 3204–3218.Google Scholar
[59] Cowen, C.C., and MacCluer, B.D. Composition operators on spaces of analytic functions. In Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.
[60] Cowen, C., and Pommerenke, C. Inequalities for the angular derivative of an analytic function in the unit disk. J. London Math. Soc. 26, 2 (1982), 271–289.Google Scholar
[61] Crofoot, R.B. Multipliers between invariant subspaces of the backward shift. Pacific J. Math. 166, 2 (1994), 225–246.Google Scholar
[62] Davis, B.M., and McCarthy, J.E. Multipliers of de Branges spaces. Michigan Math. J. 38, 2 (1991), 225–240.Google Scholar
[63] de Branges, L. The story of the verification of the Bieberbach conjecture. In The Bieberbach conjecture (West Lafayette, IN, 1985), vol. 21 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1986, pp. 199–203.
[64] de Branges, L., and Rovnyak, J. Canonical models in quantum scattering theory. In Perturbation theory and its applications in quantum mechanics (Proc. Adv. Sem. Math. Res. Center, US Army, Theor. Chem. Inst., Univ. Wisconsin, Madison, WI, 1965). Wiley, New York, 1966, pp. 295–392.
[65] de Branges, L., and Rovnyak, J. Square summable power series. Holt, Rinehart and Winston, New York, 1966.
[66] de Leeuw, K., and Rudin, W. Extreme points and extremum problems in H1. Pacific J. Math. 8 (1958), 467–485.Google Scholar
[67] Douglas, R.G. On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc. 17 (1966), 413–415.Google Scholar
[68] Dyakonov, K.M. Entire functions of exponential type and model subspaces i. Hp Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 190, Issled. Linein. Oper. Teor. Funktsii. 19 (1991), 81–100.Google Scholar
[69] Dyakonov, K.M. Differentiation in star-invariant subspaces. I. Boundedness and compactness. J. Funct. Anal. 192, 2 (2002), 364–386.Google Scholar
[70] Dyakonov, K.M. Differentiation in star-invariant subspaces. II. Schatten class criteria. J. Funct. Anal. 192, 2 (2002), 387–409.Google Scholar
[71] Fan, K. Julia's lemma for operators. Math. Ann. 239, 3 (1979), 241–245.Google Scholar
[72] Fan, K. Iteration of analytic functions of operators. Math. Z. 179, 3 (1982), 293–298.Google Scholar
[73] Fan, K. Iteration of analytic functions of operators. II. Linear Multilinear Algebr. 12, 4 (1982/83), 295–304.Google Scholar
[74] Feje'r, L. Ü ber trigonometrische Polynome. J. Reine Angew. Math. 146 (1916), 53–82.Google Scholar
[75] Fricain, E. Bases of reproducing kernels in model spaces. J. Operator Theor. 46, 3, suppl. (2001), 517–543.Google Scholar
[76] Fricain, E. Complétude des noyaux reproduisants dans les espaces mod`eles. Ann. Inst. Fourier (Grenoble. 52, 2 (2002), 661–686.Google Scholar
[77] Fricain, E. Bases of reproducing kernels in de Branges spaces. J. Funct. Anal. 226, 2 (2005), 373–405.Google Scholar
[78] Fricain, E., and Hartmann, A. Regularity on the boundary in spaces of holomorphic functions on the unit disk. In Hilbert spaces of analytic functions, vol. 51 of CRM Proceedings and Lecture Notes. American Mathematical Society, Providence, RI, 2010, pp. 91–119.
[79] Fricain, E., Hartmann, A., and Ross, W. Concrete examples of H(b) spaces. arXiv:1405.2323.
[80] Fricain, E., and Mashreghi, J. Boundary behavior of functions in the de Branges–Rovnyak spaces. Complex Anal. Oper. Theor. 2, 1 (2008), 87–97.Google Scholar
[81] Fricain, E., and Mashreghi, J. Integral representation of the n-th derivative in de Branges–Rovnyak spaces and the norm convergence of its reproducing kernel. Ann. Inst. Fourier (Grenoble. 58, 6 (2008), 2113–2135.Google Scholar
[82] Fricain, E., Mashreghi, J., and Seco, D. Cyclicity in non-extreme de Branges–Rovnyak spaces. In Invariant subspaces of the shift operator, vol. 638 of Contemporary Mathematics (CRM Proceedings). American Mathematical Society, Providence, RI, 2015.
[83] Frostman, O. Sur les produits de Blaschke. Kungl. Fysiogr. Sällsk. Lund Förhandl. [Proc. Roy. Physiogr. Soc. Lund. 12, 15 (1942), 169–182.Google Scholar
[84] Frostman, O. Potentiel de masses à somme algébrique nulle. Kungl. Fysiogr. Sällsk. Lund Förhandl. [Proc. Roy. Physiogr. Soc. Lund. 20, 1 (1950), 1–21.Google Scholar
[85] Garcia, S.R., and Poore, D.E. On the norm closure problem for complex symmetric operators. Proc. Amer. Math. Soc. 141, 2 (2013), 549.Google Scholar
[86] Garcia, S.R., Poore, D.E., and Tener, J.E. Unitary equivalence to a complex symmetric matrix: low dimensions. Linear Algebra Appl. 437, 1 (2012), 271–284.Google Scholar
[87] Garcia, S.R., and Putinar, M. Complex symmetric operators and applications. Trans. Amer. Math. Soc. 358, 3 (2006), 1285–1315.(electronic).Google Scholar
[88] Garcia, S.R., and Putinar, M. Complex symmetric operators and applications. II. Trans. Amer. Math. Soc. 359, 8 (2007), 3913–3931.(electronic).Google Scholar
[89] Garcia, S.R., and Putinar, M. Interpolation and complex symmetry. Tohoku Math. J. (2. 60, 3 (2008), 423–440.Google Scholar
[90] Garcia, S.R., and Tener, J.E. Unitary equivalence of a matrix to its transpose. J. Operator Theor. 68, 1 (2012), 179–203.Google Scholar
[91] Garcia, S.R., and Wogen, W.R. Complex symmetric partial isometries. J. . Funct. Anal. 257, 4 (2009), 1251–1260.Google Scholar
[92] Garcia, S.R., and Wogen, W.R. Some new classes of complex symmetric operators. Trans. Amer. Math. Soc. 362, 11 (2010), 6065–6077.Google Scholar
[93] Garnett, J.B. Bounded analytic functions, 1st edn., vol. 236 of Graduate Texts in Mathematics. Springer, New York, 2007.
[94] Goebel, K., and Reich, S. Uniform convexity, hyperbolic geometry, and nonexpansive mappings, vol. 83 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York, 1984.
[95] Goldberg, J.L. Functions with positive real part in a half-plane. Duke Math. J. 29 (1962), 333–339.Google Scholar
[96] Guyker, J. The de Branges–Rovnyak model. Proc. Amer. Math. Soc. 111, 1 (1991), 95–99.Google Scholar
[97] Hartmann, A., Sarason, D., and Seip, K. Surjective Toeplitz operators. Acta Sci. Math. (Szeged). 70, 3–4 (2004), 609–621.Google Scholar
[98] Hayashi, E. The kernel of a Toeplitz operator. Integral Equations Operator Theor. 9, 4 (1986), 588–591.Google Scholar
[99] Hayashi, E. Classification of nearly invariant subspaces of the backward shift. Proc. Amer. Math. Soc. 110, 2 (1990), 441–448.Google Scholar
[100] Helson, H. Lectures on invariant subspaces. Academic Press, New York, 1964.
[101] Helson, H. Large analytic functions. In Linear operators in function spaces (Timisoara, 1988), vol. 43 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1990, pp. 209–216.
[102] Helson, H. Large analytic functions. II. In Analysis and partial differential equations, vol. 122 of Lecture Notes in Pure and Applied Mathematics. Dekker, New York, 1990, pp. 217–220.
[103] Hervé, M. Quelques propriétés des applications analytiques d'une boule à m dimensions dan elle-mˆeme. J. Math. Pures Appl. (9) 42 (1963), 117–147.Google Scholar
[104] Hitt, D. Invariant subspaces ofH 2 of an annulus. Pacific J. Math. 134, 1 (1988), 101–120.Google Scholar
[105] Hoffman, K. Banach spaces of analytic functions. Reprint of 1962 original. Dover, New York, 1988.
[106] Hruščëv, S.V., Nikolskii, N.K., and Pavlov, B.S. Unconditional bases of exponentials and of reproducing kernels. In Complex analysis and spectral theory (Leningrad, 1979/1980), vol. 864 of Lecture Notes in Mathematics. Springer, Berlin, 1981, pp. 214–335.
[107] Ingham, A.E. Some trigonometrical inequalities with applications to the theory of series.Math. Z. 41, 1 (1936), 367–379.Google Scholar
[108] Izuchi, K.J. Singular inner functions whose Frostman shifts are Carleson– Newman Blaschke products. Complex Var. Elliptic Equ. 51, 3 (2006), 255–266.Google Scholar
[109] Izuchi, K.J., and Kim, H.O. Singular inner functions whose Frostman shifts are Carleson–Newman Blaschke products. II. Complex Var. Elliptic Equ. 52, 5 (2007), 425–437.Google Scholar
[110] Jafari, F. Angular derivatives in polydiscs. Indian J. Math. 35, 3 (1993), 197–212.Google Scholar
[111] Julia, G. Extension nouvelle d'un lemme de Schwarz. Acta Math. 42, 1 (1920), 349–355.Google Scholar
[112] Jury, M.T. Reproducing kernels, de Branges–Rovnyak spaces, and norms of weighted composition operators. Proc. Amer. Math. Soc. 135, 11 (2007), 3669–3675.(electronic).Google Scholar
[113] Kadec, M. I. The exact value of the Paley–Wiener constant. Dokl. Akad. Nauk SSSR 155 (1964), 1253–1254.Google Scholar
[114] Kapustin, V.V. Real functions in weighted Hardy spaces. Zap. Nauchn. Sem. St.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 262, Issled. Linein. Oper. Teor. Funkts. 27 (1999), 138–146. 233–234.Google Scholar
[115] Landau, E., and Valiron, G. A deduction from Schwarz's lemma. J. London Math. Soc. 1–4. 3 (1929), 162–163.Google Scholar
[116] Leech, R.B. On the characterization of H(b) spaces. Proc. Amer. Math. Soc. 23 (1969), 518–520.Google Scholar
[117] Levin, M.B. An estimate of the derivative of a meromorphic function on the boundary of the domain. Dokl. Akad. Nauk SSSR. 216 (1974), 495–497.Google Scholar
[118] Li, K.Y. Inequalities for fixed points of holomorphic functions. Bull. London Math. Soc. 22, 5 (1990), 446–452.Google Scholar
[119] Li, X., Mohapatra, R.N., and Rodriguez, R.S. Bernstein-type inequalities for rational functions with prescribed poles. J. London Math. Soc. (2. 51, 3 (1995), 523–531.Google Scholar
[120] Lotto, B.A. Inner multipliers of de Branges's spaces. Integral Equations Operator Theor. 13, 2 (1990), 216–230.Google Scholar
[121] Lotto, B.A. Toeplitz operators on weighted Hardy spaces. In Function spaces (Edwardsville, IL, 1990), vol. 136 of Lecture Notes in Pure and Applied Mathematics. Dekker, New York, 1992, pp. 295–300.
[122] Lotto, B.A., and McCarthy, J.E. Composition preserves rigidity. Bull. London Math. Soc. 25, 6 (1993), 573–576.Google Scholar
[123] Lotto, B.A., and Sarason, D. Multiplicative structure of de Branges's spaces. Rev. Mat. Iberoamer. 7, 2 (1991), 183–220.Google Scholar
[124] Lotto, B.A., and Sarason, D. Multipliers of de Branges–Rovnyak spaces. Indiana Univ. Math. J. 42, 3 (1993), 907–920.Google Scholar
[125] Lotto, B.A., and Sarason, D. Multipliers of de Branges–Rovnyak spaces. II. In Harmonic analysis and hypergroups (Delhi, 1995), vol. of Trends in Mathematics. Birkhäuser, Boston, MA, 1998, pp. 51–58.
[126] MacCluer, B.D., Stroethoff, K., and Zhao, R. Generalized Schwarz–Pick estimates. Proc. Amer. Math. Soc. 131, 2 (2003), 593–599.(electronic).Google Scholar
[127] MacCluer, B.D., Stroethoff, K., and Zhao, R. Schwarz–Pick type estimates. Complex Var. Theory Appl. 48, 8 (2003), 711–730.Google Scholar
[128] Makarov, N., and Poltoratski, A. Beurling–Malliavin theory for Toeplitz kernels. Invent. Math. 180, 3 (2010), 443–480.Google Scholar
[129] Mashreghi, J. Derivatives of inner functions, vol. 31 of Fields Institute Monographs. Springer, New York, 2013.
[130] Matheson, A.L., and Ross, W.T. An observation about Frostman shifts. Comput. Methods Funct. Theor. 7, 1 (2007), 111–126.Google Scholar
[131] Mellon, P. Another look at results of Wolff and Julia type for J algebras. J. Math. Anal. Appl. 198, 2 (1996), 444–457.Google Scholar
[132] Mercer, P.R. On a strengthened Schwarz–Pick inequality. J. Math. Anal. Appl. 234, 2 (1999), 735–739.Google Scholar
[133] Mortini, R., and Nicolau, A. Frostman shifts of inner functions. J. Anal.Math. 92 (2004), 285–326.Google Scholar
[134] Nakamura, Y. One-dimensional perturbations of isometries. Integral Equations Operator Theor. 9, 2 (1986), 286–294.Google Scholar
[135] Nevanlinna, R. Remarques sur le lemme de Schwarz. C. R. Acad. Sci. Paris. 188 (1929), 1027–1029.Google Scholar
[136] Nikolskii, N.K. Bases of exponentials and values of reproducing kernels. Dokl. Akad. Nauk SSS. 252, 6 (1980), 1316–1320.Google Scholar
[137] Nikolskii, N.K. Treatise on the shift operator. Spectral function theory, vol. 273 of Grundlehren der Mathematischen Wissenschaften. With appendix by S. V., Hruščev and V. V., Peller. Translated from Russian by J., Peetre. Springer, Berlin, 1986.
[138] Nikolskii, N.K. Operators, functions, and systems: an easy reading. Vol. 2, Model operators and systems, vol. 93 of Mathematical Surveys and Monographs. Translated from French by A., Hartmann and revised by the author. American Mathematical Society, Providence, RI, 2002.
[139] Nikolskii, N.K., and Vasyunin, V.I. Notes on two function models. In The Bieberbach conjecture (West Lafayette, IN, 1985), vol. 21 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1986, pp. 113–141.
[140] Nikolskii, N.K., and Vasyunin, V.I. A unified approach to function models, and the transcription problem. In The Gohberg anniversary collection, Vol. II (Calgary, AB, 1988), vol. 41 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1989, pp. 405–434.
[141] Nikolskii, N.K., and Vasyunin, V.I. Quasi-orthogonal Hilbert space decompositions and estimates of univalent functions. I. In Functional analysis and related topics (Sapporo, 1990). World Scientific, River Edge, NJ, 1991, pp. 19–28.
[142] Nikolskii, N.K., and Vasyunin, V.I. Quasi-orthogonal Hilbert space decompositions and estimates of univalent functions. II. In Progress in approximation theory (Tampa, FL, 1990), vol. 19 of Springer Series in Computational Mathematics. Springer, New York, 1992, pp. 315–331.
[143] Nikolskii, N., and Vasyunin, V. Elements of spectral theory in terms of the free function model. I. Basic constructions. In Holomorphic spaces (Berkeley, CA, 1995), vol. 33 of Mathematical Sciences Research Institute Publications. Cambridge University Press, Cambridge, UK, 1998, pp. 211–302.
[144] Paley, R. E. A. C., and Wiener, N. Fourier transforms in the complex domain, vol. 19 of American Mathematical Society Colloquium Publications. Reprint of the 1934 original. American Mathematical Society, Providence, RI, 1987.
[145] Potapov, V.P. The multiplicative structure of J-contractive matrix functions. Amer. Math. Soc. Transl. (2) 15 (1960), 131–243.Google Scholar
[146] Redheffer, R.M. Completeness of sets of complex exponentials. Adv. Math. 24, 1 (1977), 1–62.Google Scholar
[147] Reich, S., and Shoikhet, D. The Denjoy–Wolff theorem. In Proceedings of workshop on fixed point theory (Kazimierz Dolny, Poland, 1997), vol. 51 of Annales Universitatis Mariae Curie-Skłodowska, 1997, pp. 219–240.Google Scholar
[148] Renaud, A. Quelques propriétés des applications analytiques d'une boule de dimension infinie dans une autre. Bull. Sci. Math. (2) 97 (1973), 129–159.Google Scholar
[149] Richter, S. A representation theorem for cyclic analytic two-isometries. Trans. Amer. Math. Soc. 328, 1 (1991), 325–349.Google Scholar
[150] Richter, S., and Sundberg, C. A formula for the local Dirichlet integral. Michigan Math. J. 38, 3 (1991), 355–379.Google Scholar
[151] Richter, S., and Sundberg, C. Multipliers and invariant subspaces in the Dirichlet space. J. Operator Theor. 28, 1 (1992), 167–186.Google Scholar
[152] Richter, S., and Sundberg, C. Invariant subspaces of the Dirichlet shift and pseudocontinuations. Trans. Amer. Math. Soc. 341, 2 (1994), 863–879.Google Scholar
[153] Riesz, M. Sur certaines inégalités dans la théorie des fonctions. Kungl. Fysiogr. Sällsk. Lund Förhandl. [Proc. Roy. Physiogr. Soc. Lund]. 1 (1931), 18–38.Google Scholar
[154] Rosenblum, M., and Rovnyak, J. Hardy classes and operator theory. Corrected reprint of 1985 original. Dover, Mineola, NY, 1997.
[155] Rovnyak, J. Ideals of square summable power series. Math. Mag. 33 (1959/1960), 265–270.Google Scholar
[156] Rudin, W. Function theory in the unit ball of Cn , vol. of Classics in Mathematics. Reprint of 1980 edition. Springer, Berlin, 2008.
[157] Ruscheweyh, S. Two remarks on bounded analytic functions. Serdic. 11, 2 (1985), 200–202.Google Scholar
[158] Sarason, D. Generalized interpolation in H ∞ Trans. Amer. Math. Soc. 127 (1967), 179–203.Google Scholar
[159] Sarason, D. Doubly shift-invariant spaces in H 2 . J. Operator Theor. 16, 1 (1986), 75–97.Google Scholar
[160] Sarason, D. Shift-invariant spaces from the Brangesian point of view. In The Bieberbach conjecture (West Lafayette, IN, 1985), vol. 21 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1986, pp. 153–166.
[161] Sarason, D. Angular derivatives via Hilbert space. Complex Var. Theory Appl. 10, 1 (1988), 1–10.Google Scholar
[162] Sarason, D. Nearly invariant subspaces of the backward shift. In Contributions to operator theory and its applications (Mesa, AZ, 1987), vol. 35 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1988, pp. 481–493.
[163] Sarason, D. Exposed points in H1. I. In The Gohberg anniversary collection, Vol. II (Calgary, AB, 1988), vol. 41 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1989, pp. 485–496.
[164] Sarason, D. Exposed points in H1. II. In Topics in operator theory: Ernst D. Hellinger memorial volume, vol. 48 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1990, pp. 333–347.
[165] Sarason, D. Kernels of Toeplitz operators. In Toeplitz operators and related topics (Santa Cruz, CA, 1992), vol. 71 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1994, pp. 153–164.
[166] Sarason, D. Sub-Hardy Hilbert spaces in the unit disk, vol. 10 of University of Arkansas Lecture Notes in the Mathematical Sciences. Wiley-Interscience, New York, 1994.
[167] Sarason, D. Local Dirichlet spaces as de Branges–Rovnyak spaces. Proc. Amer. Math. Soc. 125, 7 (1997), 2133–2139.Google Scholar
[168] Sarason, D. Harmonically weighted Dirichlet spaces associated with finitely atomic measures. Integral Equations Operator Theor. 31, 2 (1998), 186–213.Google Scholar
[169] Sarason, D. Errata: “Harmonically weighted Dirichlet spaces associated with finitely atomic measures”. Integral Equations Operator Theor. 36, 4 (2000), 499–504.Google Scholar
[170] Sarason, D. Unbounded Toeplitz operators. Integral Equations Operator Theory. 61 (2008), 281–298.Google Scholar
[171] Sarason, D., and Silva, J.-N. O. Composition operators on a local Dirichlet space. J. Anal. Math. 87 (2002), 433–450.Google Scholar
[172] Sedleckiı, A. M. The stability of the completeness and of the minimality in L2 of a system of exponential functions. Mat. Zametki. 15 (1974), 213–219.Google Scholar
[173] Serrin, J. A note on harmonic functions defined in a half plane. Duke Math. J. 23 (1956), 523–526.Google Scholar
[174] Seubert, S. Unbounded dissipative compressed Toeplitz operators. J. Math. Anal. Appl. 290 (2004), 132–146.Google Scholar
[175] Shapiro, J.H. Composition operators and classical function theory, vol. of Universitext: Tracts in Mathematics. Springer, New York, 1993.
[176] Shields, A.L., and Wallen, L.J. The commutants of certain Hilbert space operators. Indiana Univ. Math. J. 20 (1970/1971), 777–788.Google Scholar
[177] Slater, L.J. Generalized hypergeometric functions. Cambridge University Press, Cambridge, UK, 1966.
[178] Stein, E.M. Singular integrals and differentiability properties of functions, vol. 30 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1970.
[179] Stein, E.M. (with assistance of T. S. Murphy). Harmonic analysis: realvariable methods, orthogonality, and oscillatory integrals, vol. III of Monographs in Harmonic Analysis, vol. 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993.
[180] Suárez, D. Multipliers of de Branges–Rovnyak spaces in H 2 . Rev. Mat. Iberoamer. 11, 2 (1995), 375–415.Google Scholar
[181] Suárez, D. Backward shift invariant spaces in H 2 . Indiana Univ. Math. J. 46, 2 (1997), 593–619.Google Scholar
[182] Suárez, D. Closed commutants of the backward shift operator. Pacific J. Math. 179, 2 (1997), 371–396.Google Scholar
[183] Sz.-Nagy, B., and Foiaş, C. Dilatation des commutants d'opérateurs. C. R. Acad. Sci. Paris Sér. A–B. 266 (1968), A493–A495.Google Scholar
[184] Sz.-Nagy, B., and Foiaş, C. Harmonic analysis of operators on Hilbert space. Translated from the French and revised. North-Holland, Amsterdam, 1970.
[185] Temme, D., and Wiegerinck, J. Extremal properties of the unit ball in H1. Indag. Math. (N.S.. 3, 1 (1992), 119–127.Google Scholar
[186] Timotin, D. Note on a Julia operator related to model spaces. In Invariant subspaces of the shift operator, vol. 638 of Contemporary Mathematics (CRM Proceedings). American Mathematical Society, Providence, RI, 2015.
[187] Timotin, D. A short introduction to de Branges–Rovnyak spaces. In Invariant subspaces of the shift operator, vol. 638 of Contemporary Mathematics (CRM Proceedings). American Mathematical Society, Providence, RI, 2015.
[188] Vasjunin, V.I. The construction of the B. Szʺokefalvi-Nagy and C. Foiaş functional model. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 73, Issled. Linein. Oper. Teorii Funktsii. 8 (1977), 16–23. 229.Google Scholar
[189] Vinogradov, S.A. Properties of multipliers of integrals of Cauchy–Stieltjes type, and some problems of factorization of analytic functions. In Mathematical programming and related questions (Proceedings of the Seventh Winter School, Drogobych, 1974), Theory of functions and functional analysis. Central Ekonom.-Mat. Inst. Akad. Nauk SSSR, Moscow, 1976, pp. 5–39 (in Russian).
[190] Volberg, A.L., and Treil, S.R. Embedding theorems for invariant subspaces of the inverse shift operator. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 149, Issled. Linein. Teor. Funktsii. 15 (1986), 38–51. 186–187.Google Scholar
[191] Wolff, J. Sur une généralisation d'un théor`eme de Schwarz. C. R. Acad. Sci. 182 (1926), 918–920.Google Scholar
[192] Wolff, J. Sur l'itération des fonctions holomorphes dans un demi-plan. Bull. Soc. Math. France. 57 (1929), 195–203.Google Scholar
[193] Young, R.M. An introduction to nonharmonic Fourier series, vol. 93 of Pure and Applied Mathematics. Academic Press, New York, 1980.
[194] Younis, R. Subordination an. Hp functions. Proc. Amer. Math. Soc. 110, 3 (1990), 653–660.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Emmanuel Fricain, Université Lyon I, Javad Mashreghi, Université Laval, Québec
  • Book: The Theory of <I>H</I>(<I>b</I>) Spaces
  • Online publication: 20 October 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139226769.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Emmanuel Fricain, Université Lyon I, Javad Mashreghi, Université Laval, Québec
  • Book: The Theory of <I>H</I>(<I>b</I>) Spaces
  • Online publication: 20 October 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139226769.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Emmanuel Fricain, Université Lyon I, Javad Mashreghi, Université Laval, Québec
  • Book: The Theory of <I>H</I>(<I>b</I>) Spaces
  • Online publication: 20 October 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139226769.019
Available formats
×