Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T20:29:16.408Z Has data issue: false hasContentIssue false

7 - Life: the final frontier for complexity?

from Part III - Biological complexity, evolution, and information

Published online by Cambridge University Press:  05 July 2013

Charles H. Lineweaver
Affiliation:
Australian National University, Canberra
Paul C. W. Davies
Affiliation:
Arizona State University
Michael Ruse
Affiliation:
Florida State University
Get access

Summary

The concept of complexity reminds one of the tasting notes of a rare vintage: everybody knows what you are talking about, but the realities continuously slip through our fingers. Moreover, in the scale of complexities most would agree that life is intrinsically more complex than, say, a galaxy. So too we suppose that some sort of metric stretches through the history of life: be it in terms of ecologies, bodyplans or nervous systems. In other words what we see today is manifestly more complex than what was found in the Precambrian. Yet an evolutionary perspective on complexity reveals some unexpected angles. To start with, although the history of life might fall into the cliché of “Once there were bacteria, now there is New York”, in fact when one investigates what are evidently the most primitive representatives of a given group repeatedly they turn out to be “unexpectedly” complex. Many such examples are now available, but amongst the most telling are the eukaryotes. Second, there is the phenomenon of evolutionary inherency, the observation that much that will be required for the emergence of a complex form has already evolved at a substantially earlier stage. A good example involves the protein collagen, essential as a structural molecule in metazoans, but whose origins not only lie deeper in eukaryotic history but whose functions were evidently quite different. Inherency indicates, therefore, that much of complexity is nascent, almost homunculus-like, lying far deeper in the Tree of Life than generally appreciated. Third, whilst the arrow of time seems to lead to ever greater levels of organic complexity, it is as well to remember that these may well include examples that are often dismissed as “simplification” or “regression”.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamowicz, S. J., Purvis, A., & Wills, M.A. (2008). Increasing morphological complexity in multiple parallel lineages of the Crustacea. Proc. Natl. Acad. Sci. USA, 105, 4786–4791.CrossRefGoogle ScholarPubMed
Aruga, J., Odaka, Y. S., Kamiya, A., & Furuya, H. (2007). Dicyema Pax6 and Zic: tool-kit genes in a highly simplified bilaterian. BMC Evol. Biol., 7, art. 201.CrossRefGoogle Scholar
Badger, M. R., Hanson, D., & Price, G. D. (2002). Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Functional Plant Biol., 29, 161–173.CrossRefGoogle Scholar
Bertolino, E., Reimund, B., Wildt-Perinic, D., & Clerc, R. G. (1995). A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J. Biological Chem., 270, 31178–31188.CrossRefGoogle ScholarPubMed
Burkhardt, P., Stegmann, C. M., Cooper, B. et al. (2011). Primordial neurosecretory apparatus identified in the choanoflagellateMonosiga brevicollis. Proc. Natl. Acad. Sci. USA, 108, 15264–15269.CrossRefGoogle ScholarPubMed
Christin, P.-A., Weinreich, D. M., & Besnard, G. (2010). Causes and evolutionary significance of genetic convergence. Trends Genetics, 26, 400–405.CrossRefGoogle ScholarPubMed
Cnotka, J., Güntürkün, O., Rehkämper, G., Gray, R. D., & Hunt, G. R. (2008). Extraordinary large brains in tool-using New Caledonian crows(Corvus moneduloides). Neurosci. Letters, 433, 241–245.CrossRefGoogle ScholarPubMed
Conway Morris, S. (2003). Life's Solution: Inevitable Humans in a Lonely Universe. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Conway Morris, S. (2010a). The predictability of evolution: glimpses into a post-Darwinian world. Naturwissenschaften, 96, 1313–1337.CrossRefGoogle Scholar
Conway Morris, S. (2010b). Evolution: like any other science it is predictable. Phil. Trans. R. Soc. Lond. B., 365, 133–145.CrossRefGoogle Scholar
Conway Morris, S. (2010c). Aliens at home?EMBO Rep., 11, 563.CrossRefGoogle Scholar
Conway Morris, S. (2011a). Consider the octopus. EMBO Rep., 12, 182.CrossRefGoogle Scholar
Conway Morris, S. (2011b). Predicting what extraterrestrials will be like: and preparing for the worst. Phil. Trans. R. Soc. Lond. A., 369, 555–571.CrossRefGoogle Scholar
Conway Morris, S. (2011c). Complexity: the ultimate frontier?EMBO Reports, 12, 481–482.CrossRefGoogle Scholar
Crespi, B. J. (2001). The evolution of social behavior in microorganisms. Trends Ecology Evol., 16, 178–183.CrossRefGoogle ScholarPubMed
Derelle, R., Lopez, P., Le Guyader, H., & Manuel, M. (2007). Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes. Evol. Dev., 9, 212–219.CrossRefGoogle ScholarPubMed
Ellis, R. J. (1979). The most abundant protein in the world. Trends Biochem. Sci., 4, 241–244.CrossRefGoogle Scholar
Elsasser, W. M. (1998). Reflections on a Theory of Organisms: Holism in Biology. Baltimore:John Hopkins University Press.Google Scholar
Evans, D. R. & Sanson, G. D. (2003). The tooth of perfection: functional and spatial constraints on mammalian tooth shape. Biol. J. Linn. Soc., 78, 173–191.CrossRefGoogle Scholar
Fanenbruck, M. & Harzsch, S. (2005). A brain atlas of Godzilliognomus frondosus Yager, 1989 (Remipedia, Godzilliidae) and comparison with the brain of Speleonectes tulumensis Yager, 1987 (Remipedia, Speleonectidiae): implications for arthropod relationships. Arthropod Struct. Dev., 34, 343–378.CrossRefGoogle Scholar
Farrell, B. D., Sequeira, A. S., O’Meara, B. C., Normark, B. B., Chung, J. H., & Jordal, B. H. (2001). The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution, 55, 2011–2027.CrossRefGoogle Scholar
Fraser, C. M., Gocayne, J. D., White, O. et al. (1995). The minimal gene complement ofMycoplasma genitalium. Science, 270, 397–403.Google Scholar
Fritz-Laylin, L. K., Prochnik, S. E., Ginger, M. L. et al. (2010). The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell, 140, 631–642.CrossRefGoogle ScholarPubMed
Furuya, H. & Tsuneki, K. (2003). Biology of dicyemid mesozoans. Zool. Sci., 20, 519–532.CrossRefGoogle ScholarPubMed
Gehring, W. J. (2005). New perspectives on eye development and the evolution of eyes and photoreceptors. J. Heredity, 96, 171–184.CrossRefGoogle ScholarPubMed
Graumann, P. L. (2007). Cytoskeletal elements in bacteria. Ann. Review Microbiol., 61, 589–618.CrossRefGoogle ScholarPubMed
Harcet, M., Roller, M., Ćetković, H. et al. (2010). Demosponge EST sequencing reveals a complex genetic toolkit of the simplest metazoans. Mol. Biol. Evol., 27, 2747–2756.CrossRefGoogle ScholarPubMed
Haring, E., Däubl, B., Pinsker, W., Kryukov, A., & Gamauf, A. (2012). Genetic divergences and intraspecific variation in corvids of the genus Corvus (Aves: Passeriformes: Corvidae) – a first survey based on museum specimens. J. Zoological Systematics Evolutionary Research, 50, 230–246.CrossRefGoogle Scholar
Hata, H. & Kato, M. (2006). A novel obligate cultivation mutualism between damselfish and Polysiphonia algae. Biol. Lett., 2, 593–596.CrossRefGoogle ScholarPubMed
Heanue, T. A., Reshef, R., Davis, R. J. et al. (1999). Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation. Genes Dev., 13, 3231–3243.CrossRefGoogle ScholarPubMed
Heino, J. (2007). The collagen family members as cell adhesion receptors. BioEssays, 29, 1001–1010.CrossRefGoogle Scholar
Hochberg, F. G. (1982). The “kidneys” of cephalopods: a unique habitat for parasites. Malacologia, 23, 121–134.Google Scholar
Hofmann, M. A. (2001). Brain evolution in hominids: are we at the end of the road? In Falk, D. & Gibson, K. R. (eds.), Evolutionary anatomy of the primate cerebral cortex, pp. 113–127. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kant, S., Bagaria, D., & Ramakumar, S. (2002). Putative homeodomain proteins identified in prokaryotes based on pattern and sequence similarity. Biochem. Biophys. Res. Comm., 299, 229–232.CrossRefGoogle ScholarPubMed
Keim, C. N. F., Abreu, F., Lins, U., Lins de Barros, H., & Farina, M. (2004). Cell organization and ultrastructure of a magnetotactic multicellular organism. J. Struct. Biol., 145, 254–262.CrossRefGoogle ScholarPubMed
Kent, M. L., Andree, K. B., Bartholoew, J. L. et al. (2001). Recent advances in our knowledge of the Myxozoa. J. Eukaryotic Microbiol., 48, 395–413.CrossRefGoogle ScholarPubMed
King, N., Westbrook, M. J., Young, S. L. et al. (2008). The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature, 451, 783–788.CrossRefGoogle ScholarPubMed
Kloepper, T. H., Kienle, C. N., & Fasshauer, D. (2007). An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol. Biol. Cell, 18, 3463–3471.CrossRefGoogle ScholarPubMed
Kloepper, T. H., Kienle, C. N., & Fasshauer, D. (2008). SNAREing the basis of multicellularity: consequences of protein family expansion during evolution. Mol. Biol. Evol., 25, 2055–2068.CrossRefGoogle ScholarPubMed
Kozmik, Z. (2008). The role of Pax genes in eye evolution. Brain Research Bull., 75, 335–339.CrossRefGoogle ScholarPubMed
Kozmik, Z., Daube, M., Frei, E. et al. (2003). Role of Pax genes in eye evolution: a cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev. Cell, 5, 773–785.CrossRefGoogle ScholarPubMed
Kozmik, Z., Swamynathan, S. K., Ruzickova, J. et al. (2008). Cubozoan crystallins: evidence for convergent evolution of pax regulatory sequences. Evol. Dev., 10, 52–61.CrossRefGoogle ScholarPubMed
Kuch, U., Müller, J., Mödden, C., & Mebs, D. (2006). Snake fangs from the Lower Miocene of Germany: evolutionary stability of perfect weapons. Naturwissenschaften, 98, 84–87.CrossRefGoogle Scholar
Laughlin, S. B., van Steveninck, R. R. de R., & Anderson, J. C. (1998). The metabolic cost of neural information. Nature Neuroscience, 1, 36–41.CrossRefGoogle ScholarPubMed
Li, Q., Chen, Y., & Yang, F. (2004). Identification of a collagen-like protein gene from white spot syndrome virus. Archives Virology, 149, 215–223.CrossRefGoogle ScholarPubMed
Lüttge, U. (2004). Ecophysiology of crassulacean acid metabolism (CAM). Annals Botany, 93, 629–652.CrossRefGoogle Scholar
McShea, D. W. (1998). Possible largest-scale trends in organismal evolution: eight ‘live hypotheses’. Annu. Rev. Ecol. Systematics, 29, 293–318.CrossRefGoogle Scholar
McShea, D. W. (2002). A complexity drain on cells in the evolution of multicellularity. Evolution, 56, 441–452.CrossRefGoogle ScholarPubMed
Macklem, P. T. (2008). Emergent phenomenon and the secrets of life. J. Applied Physiol., 104, 1844–1846.CrossRefGoogle Scholar
Marino, L., McShea, D. W., & Uhen, M. D. (2004). Origin and evolution of large brains in toothed whales. Anatomical Record, 281A, 1247–1256.CrossRefGoogle Scholar
Mineta, K., Nakazawa, M., Cebrià, F., Ikeo, K., Agata, K., & Gojobori, T. (2003). Original and evolutionary process of the CNS elucidated by comparative genomics analysis of planarian ESTs. Proc. Natl. Acad. Sci. USA, 100, 7666–7671.CrossRefGoogle Scholar
Mongodin, E. F., Nelson, K. E., Dougherty, S. et al. (2005). The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc. Natl. Acad. Sci. USA, 102, 18147–18152.CrossRefGoogle ScholarPubMed
Nickel, M. (2010). Evolutionary emergence of synaptic nervous systems: what can we learn from the non-synaptic, nerveless Porifera? Invertebrate Biol., 129, 1–16.CrossRefGoogle Scholar
Pecoits, E., Konhauser, K. O., Aubet, R. R. et al. (2012). Bilaterian burrows and grazing behavior at >585 million years ago. Science, 336, 1693–1696.CrossRefGoogle ScholarPubMed
Penrose, R. (1994). Shadows of the Mind: a Search for the Missing Science of Consciousness. Oxford: Oxford University Press.Google Scholar
Piraino, S., Zega, G., Di Benedetto, C. et al. (2011). Complex neural architecture in the diploblastic larva of Clava multicornis (Hydrozoa, Cnidaria). J. Comparative Neurology, 519, 1931–1951.CrossRefGoogle Scholar
Puigbò, P., Passamontes, A., & Garcia-Vallve, S. (2008). Gaining and losing the thermophilic adaptation in prokaryotes. Trends Genetics, 24, 10–14.CrossRefGoogle ScholarPubMed
Putnam, N. H., Srivastava, M., Hellsten, U. et al. (2007). Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science, 317, 86–94.CrossRefGoogle ScholarPubMed
Royo, J. L., Maesto, I., Irimia, M. et al. (2011). Transphyletic conservation of developmental regulatory state in animal evolution. Proc. Natl. Acad. Sci. USA, 108, 14186–14191.CrossRefGoogle Scholar
Ryan, T. J. & Grant, S. G. N. (2009). The origin and evolution of synapses. Nature Reviews. Neurosci., 10, 701–712.CrossRefGoogle ScholarPubMed
Sage, R. F. (2004). The evolution of C4 photosynthesis. New Phytol., 161, 341–370.CrossRefGoogle Scholar
Salthe, S. N. (2008). Natural selection in relation to complexity. Artificial Life, 14, 363–374.CrossRefGoogle ScholarPubMed
Schultz, T. R. & Brady, R. (2008). Major evolutionary transitions in ant agriculture. Proc. Natl. Acad. Sci. USA, 105, 5435–5440.CrossRefGoogle ScholarPubMed
Setiawan, J., Roccatagliata, V., Fedele, D. et al. (2012). Planetary companions around the metal-poor star HIP 11952. Astronomy Astrophysics, 540, A141.CrossRefGoogle Scholar
Srivastava, M., Simakov, O., Chapman, J. et al. (2010). The Amphimedon queenslandica genome and the evolution of animal complexity. Nature, 466, 720–726.CrossRefGoogle ScholarPubMed
Tcherkez, G. G. B., Farquhar, G. D., & Andrews, T. J. (2006). Despite slow catalysis and confused substrate specificity all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc. Natl. Acad. Sci. USA, 103, 7246–7251.CrossRefGoogle ScholarPubMed
Thompson, , D’Arcy, W (1942). On Growth and Form. Cambridge: Cambridge University Press.Google Scholar
Valentine, J. W. (2000). Two genomic paths to the evolution of complexity in bodyplans. Paleobiology, 26, 513–519.2.0.CO;2>CrossRefGoogle Scholar
Waller, L. N., Stump, N. J., Fox, K. F. et al. (2005). Identification of a second collagen-like glycoprotein produced by Bacillus anthracis and demonstration of associated spore-specific sugars. J. Bacteriol., 187, 4592–4597.CrossRefGoogle ScholarPubMed
Wang, C.-S. & St. Leger, R. J. (2006). A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc. Natl. Acad. Sci. USA, 103, 6647–6652.CrossRefGoogle ScholarPubMed
Wickstead, B., Gull, K., & Richards, T. A. (2010). Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton. BMC Evolutionary Biol., 10, art. 110.CrossRefGoogle ScholarPubMed
Zollikofer, C. P. E., Ponco de Léon, M. S., Lieberman, D. E. et al. (2005). Virtual cranial reconstruction ofSahelanthropus tchadensis. Nature, 434, 755–759.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×