Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T18:28:38.326Z Has data issue: false hasContentIssue false

2 - De Broglie's pilot-wave theory

Published online by Cambridge University Press:  05 March 2013

Guido Bacciagaluppi
Affiliation:
University of Aberdeen
Antony Valentini
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Background

At a time when no single known fact supported this theory, Louis de Broglie asserted that a stream of electrons which passed through a very small hole in an opaque screen must exhibit the same phenomena as a light ray under the same conditions.

(Prof. C. W. Oseen, Chairman of the Nobel Committee for Physics, presentation speech, 12 December 1929 (Oseen 1999))

In September 1923, Prince Louis de Brogliea made one of the most astonishing predictions in the history of theoretical physics: that material bodies would exhibit the wave-like phenomena of diffraction and interference upon passing through sufficiently narrow slits. Like Einstein's prediction of the deflection of light by the sun, which was based on a reinterpretation of gravitational force in terms of geometry, de Broglie's prediction of the deflection of electron paths by narrow slits was made on the basis of a fundamental reappraisal of the nature of forces and of dynamics. De Broglie had proposed that Newton's first law of motion be abandoned, and replaced by a new postulate, according to which a freely moving body follows a trajectory that is orthogonal to the surfaces of equal phase of an associated guiding wave. The resulting ‘de Broglian dynamics’ – or pilot-wave theory as de Broglie later called it – was a new approach to the theory of motion, as radical as Einstein's interpretation of the trajectories of falling bodies as geodesics of a curved spacetime, and as far-reaching in its implications. In 1929 de Broglie received the Nobel Prize ‘for his discovery of the wave nature of electrons’.

Type
Chapter
Information
Quantum Theory at the Crossroads
Reconsidering the 1927 Solvay Conference
, pp. 27 - 79
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×