Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T23:51:28.269Z Has data issue: false hasContentIssue false

Chapter 38 - Diffusion MR imaging in neuropsychiatry and aging

from Section 6 - Psychiatric and neurodegenerative diseases

Published online by Cambridge University Press:  05 March 2013

Jonathan H. Gillard
Affiliation:
University of Cambridge
Adam D. Waldman
Affiliation:
Imperial College London
Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Introduction

The development of specialized neuroimaging modalities has enabled the quest for identification of brain mechanisms underlying complex cognitive, motor, and other behavioral functioning to shift from single structures or loci to systems and circuits. Among the forces guiding this change have been the many functional MR imaging (fMRI) studies that confirm that multiple brain regions are involved in the execution of even ostensibly simple tasks. While it is undeniable that a single, focal lesion can produce impairment in a complex function, such as word naming, a systems concept of brain functioning has logical appeal for understanding the neural bases of the highly variable and vastly complex characteristics of neuropsychiatric conditions, and it may serve to explain patterns of functional degradation that are seen in normal aging. There is increasing recognition of the relevance of connecting elements of brain circuitry, and the possibility that disruption of these connections may be as effective as lesions in gray matter (GM) nodes in producing functional impairment. The neural system’s zeitgeist has provided impetus for the rapid development of MR diffusion imaging as a non-invasive, in vivo method for characterizing the integrity of microstructure of white matter (WM) fibers in the brain.

This chapter provides a review of diffusion imaging findings in normal aging and a sampling of neuropsychiatric diseases, and adds to a growing list of such overviews.[1–8] To provide a context, the physical structure of WM is reviewed and then the principles of diffusion imaging are briefly summarized, with the aim of illustrating how this imaging modality is suitable for visualizing and quantifying disruptions to WM microstructure with aging and disease. More detailed descriptions of diffusion methodology and analysis are found in Chs. 4–6.

Type
Chapter
Information
Clinical MR Neuroimaging
Physiological and Functional Techniques
, pp. 593 - 617
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Waxman, SG, Kocsis, JD, Stys, PK. The Axon: Structure, Function and Pathophysiology. New York: Oxford University Press, 1995.CrossRefGoogle Scholar
Arfanakis, K, Haughton, VM, Carew, JD, et al. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 2002; 23: 794–802.Google ScholarPubMed
Song, SK, Sun, SW, Ramsbottom, MJ, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 2002; 17(3): 1429–1436.CrossRefGoogle Scholar
Basser, PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 1995; 8: 333–344.CrossRefGoogle ScholarPubMed
Moseley, ME, Mintorovitch, J, Cohen, Y, et al. Early detection of ischemic injury: comparison of spectroscopy, diffusion-, T2-, and magnetic susceptibility-weighted MRI in cats. Acta Neurochir Suppl 1990; 51: 207–209.Google ScholarPubMed
Spielman, D, Butts, K, de Crespigny, A, Moseley, M. Diffusion-weighted imaging of clinical stroke. Int J Neuroradiol 1996; 1: 44–55.Google Scholar
Basser, PJ, Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative diffusion tensor MRI. J Magn Reson B 1996; 111: 209–219.CrossRefGoogle ScholarPubMed
Pierpaoli, C, Basser, PJ. Towards a quantitative assessment of diffusion anisotropy. Magn Reson Med 1996; 36: 893–906.CrossRefGoogle Scholar
Virta, A, Barnett, A, Pierpaoli, C. Visualizing and characterizing white matter fiber structure and architecture in the human pyramidal tract using diffusion tensor MR. Magn Reson Imaging 1999; 17: 1121–1133.CrossRefGoogle Scholar
Pierpaoli, C, Barnett, A, Pajevic, S, et al. Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage 2001; 13: 1174–1185.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Sullivan, EV.Increased brain white matter diffusivity in normal adult aging: relationship to anisotropy and partial voluming. Magn Reson Med 2003; 49: 953–961.CrossRefGoogle ScholarPubMed
Tang, CY, Lu, D, Wei, TC, et al. Image processing techniques for the eigenvectors of the diffusion tensor. In Proceedings of the 5th Annual Meeting of the International Society for Magnetic Resonance in Medicine, 1997, p. 2054.Google Scholar
Basser, PJ, Pierpaoli, C. A simplified method to measure the diffusion tensor from seven MR images. Magn Reson Med 1998; 39: 928–934.CrossRefGoogle ScholarPubMed
Mori, S, Kaufmann, WE, Davatzikos, C, et al. Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med 2002; 47: 215–223.CrossRefGoogle ScholarPubMed
Masutani, Y, Aoki, S, Abe, O, Hayashi, N, Otomo, K. MR diffusion tensor imaging: recent advance and new techniques for diffusion tensor visualization. Eur J Radiol 2003; 46: 53–66.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Sullivan, EV, Hedehus, M, et al. Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med 2000; 44: 259–268.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Jones, D, Simmons, A, Williams, S, Horsfield, M. Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med 1999; 42: 37–41.3.0.CO;2-O>CrossRefGoogle Scholar
Gerig, G, Corouge, I, Vachet, C, Krishnan, KR, MacFall, JR. Quantitative analysis of diffusion properties of white matter fiber tracts: a validation study. In The Proceedings of the 13th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Miami, 2005, Abst 1337.Google Scholar
Le Bihan, D. The “wet mind”: water and functional neuroimaging. Phys Med Biol 2007; 52: R57–R90.CrossRefGoogle ScholarPubMed
Sullivan, EV, Adalsteinsson, E, Pfefferbaum, A. Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking. Cereb Cortex. 2006; 16: 1030–1039.CrossRefGoogle ScholarPubMed
Chanraud, S, Reynaud, M, Wessa, M, et al. Diffusion tensor tractography in mesencephalic bundles: relation to mental flexibility in detoxified alcohol-dependent subject. Neuropsychopharmacology 2009; 34: 1223–1232.CrossRefGoogle Scholar
Sullivan, EV, Pfefferbaum, A. Neuroradiological characterization of normal adult aging. Br J Radiol 2007; 60: S99–S108.CrossRefGoogle Scholar
Pfefferbaum, A, Mathalon, DH, Sullivan, EV, et al. A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 1994; 51: 874–887.CrossRefGoogle ScholarPubMed
Blatter, DD, Bigler, ED, Gale, SD, et al. Quantitative volumetric analysis of brain MRI: normative database spanning five decades of life. AJNR Am J Neuroradiol 1995; 16: 241–245.Google Scholar
Raz, N, Gunning, FM, Head, D, et al. Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex 1997; 7: 268–282.CrossRefGoogle ScholarPubMed
Sullivan, EV, Rosenbloom, MJ, Serventi, KL, Pfefferbaum, A. Effects of age and sex on volumes of the thalamus, pons, and cortex. Neurobiol Aging 25: 185–192.CrossRef
Sullivan, EV, Adalsteinsson, E, Hedehus, M, et al. Equivalent disruption of regional white matter microstructure in aging healthy men and women. Neuroreport 2001; 12(22): 99–104.CrossRefGoogle ScholarPubMed
Jernigan, TL, Archibald, SL, Fennema-Notestine, C, et al. Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 2001; 22: 581–594.CrossRefGoogle ScholarPubMed
Guttmann, CRG, Jolesz, FA, Kikinis, R, et al. White matter changes with normal aging. Neurology 1998; 50: 972–978.CrossRefGoogle ScholarPubMed
Miller, AKH, Alston, RL, Corsellis, JAN. Variations with age in the volumes of grey and white matter in the cerebral hemispheres of man: measurements with an image analyzer. Neuropathol Appl Neurobiol 1980; 6: 119–132.CrossRefGoogle Scholar
Sullivan, EV, Pfefferbaum, A, Adalsteinsson, E, Swan, GE, Carmelli, D. Differential rates of regional change in callosal and ventricular size: a 4-year longitudinal MRI study of elderly men. Cereb Cortex 2002; 12: 438–445.CrossRefGoogle ScholarPubMed
Salat, DH, Kaye, JA, Janowsky, JS.Prefrontal gray and white matter volumes in healthy aging and Alzheimer disease. Arch Neurol 1999; 56: 338–344.CrossRefGoogle ScholarPubMed
Raz, N, Lindenberger, U, Rodrigue, KM, et al. Regional brain changes in aging healthy adults: general trends, individual differences, and modifiers. Cereb Cortex 2005; 15: 1676–1689.CrossRefGoogle ScholarPubMed
Malloy, P, Correia, S, Stebbins, G, Laidlaw, DH. Neuroimaging of white matter in aging and dementia. Clin Neuropsychologist 2007; 21: 73–109.CrossRefGoogle ScholarPubMed
Fazekas, F, Kleinert, R, Offenbacher, H, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 1993; 43: 1683–1689.CrossRefGoogle ScholarPubMed
Cahn, DA, Malloy, PF, Salloway, S, et al. Subcortical hyperintensities on MRI and activities of daily living in geriatric depression. J Neuropsychiatry Clin Neurosci 1996; 8: 404–411.Google Scholar
Kemper, TL. Neuroanatomical and neuropathological changes during aging and dementia. In Clinical Neurology of Aging, 2nd edn, eds. Albert, ML, Knoefel, JE. New York: Oxford University Press, 1994, pp. 3–67.Google Scholar
Craik, FIM, Morris, LW, Morris, RG, Loewen, ER.Relations between source amnesia and frontal lobe functioning in older adults. Psychol Aging 1990; 5: 148–151.CrossRefGoogle ScholarPubMed
Raz, N.Aging of the brain and its impact on cognitive performance: integration of structural and functional findings. In Handbook of Aging and Cognition II, eds. Craik, FIM, Salthouse, TA. Mahwah, NJ: Erlbaum, 1999, pp. 1–90.Google Scholar
Meier-Ruge, W, Ulrich, J, Bruhlmann, M, Meier, E. Age-related white matter atrophy in the human brain. Ann N Y Acad Sci 1992; 673: 260–269.CrossRefGoogle Scholar
Aboitiz, F, Rodriguez, E, Olivares, R, Zaidel, E. Age-related changes in fibre composition of the human corpus callosum: sex differences. Neuroreport 1996; 7: 1761–1764.CrossRefGoogle ScholarPubMed
Chun, T, Filippi, CG, Zimmerman, RD, Ulug, AM. Diffusion changes in the aging human brain. AJNR Am J Neuroradiol 2000; 21: 1078–1083.Google ScholarPubMed
Nusbaum, AO, Tang, CY, Buchsbaum, MS, Wei, TC, Atlas, SW. Regional and global changes in cerebral diffusion with normal aging. AJNR Am J Neuroradiol 2001; 22: 136–142.Google ScholarPubMed
O’Sullivan, M, Jones, D, Summers, P, et al. Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 2001; 57: 632–638.CrossRefGoogle ScholarPubMed
Stebbins, G, Carrillo, MD, Medina, D, et al. Frontal white matter integrity in aging and its relation to reasoning performance: a diffusion tensor imaging study (abs 456.3). Soc Neurosci Abstr. 2001; 27: 1204.Google Scholar
Chepuri, NB, Yen, YF, Burdette, JH, et al. Diffusion anisotropy in the corpus callosum. AJNR Am J Neuroradiol 2002; 23: 803–808.Google ScholarPubMed
Pfefferbaum, A, Sullivan, EV, Hedehus, M, et al. In vivo detection and functional correlates of white matter microstructural disruption in chronic alcoholism. Alcoholism: Clin Exp Res 2000; 24: 1214–1221.CrossRefGoogle ScholarPubMed
Ota, M, Obata, T, Akine, Y, et al. Age-related degeneration of corpus callosum measured with diffusion tensor imaging. Neuroimage 2006; 31: 1445–1452.CrossRefGoogle Scholar
Hsu, JL, Leemans, A, Bai, CH, et al. Gender differences and age-related white matter changes of the human brain: a diffusion tensor imaging study. Neuroimage 2008; 39: 566–577.CrossRefGoogle Scholar
Pfefferbaum, A, Rosenbloom, MJ, Adalsteinsson, E, Sullivan, EV.Diffusion tensor imaging with quantitative fiber tracking in HIV infection and alcoholism comorbidity: Synergistic white matter damage. Brain 2007; 130: 48–64.CrossRefGoogle Scholar
Engelter, ST, Provenzale, JM, Petrella, JR, DeLong, DM, MacFall, JR. The effect of aging on the apparent diffusion coefficient of normal-appearing white matter. Am J Roentgenol 2000; 175: 425–430.CrossRefGoogle ScholarPubMed
Helenius, J, Soinne, L, Perkio, J, et al. Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR Am J Neuroradiol 2002; 23: 194–199.Google Scholar
Pfefferbaum, A, Adalsteinsson, E, Sullivan, EV.Frontal circuitry degradation marks healthy adult aging: evidence from diffusion tensor imaging. Neuroimage 2005; 26: 891–899.CrossRefGoogle ScholarPubMed
Camara, E, Bodammer, N, Rodriguez-Fornells, A, Tempelmann, C.Age-related water diffusion changes in human brain: a voxel-based approach. Neuroimage 2007; 34: 1588–1599.CrossRefGoogle ScholarPubMed
Abe, O, Aoki, S, Hayashi, N, et al. Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis. Neurobiol Aging 2002; 23: 433–441.CrossRefGoogle ScholarPubMed
Salat, DH, Tuch, DS, Hevelone, ND, et al. Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Ann N Y Acad Sci 2005; 1064: 37–49.CrossRefGoogle Scholar
Ardekani, S, Kumar, A, Bartzokis, G, Sinha, U. Exploratory voxel-based analysis of diffusion indices and hemispheric asymmetry in normal aging. Magn Reson Imaging 2007; 25: 154–167.CrossRefGoogle Scholar
Head, D, Buckner, RL, Shimony, JS, et al. Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cereb Cortex 2004; 14: 410–423.CrossRefGoogle ScholarPubMed
Foong, J, Maier, M, Clark, C, et al. Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study. J Neurol Neurosurg Psychiatry 2000; 68: 242–244.CrossRefGoogle Scholar
Bhagat, YA, Beaulieu, C. Diffusion anisotropy in subcortical white matter and cortical gray matter: changes with aging and the role of CSF-suppression. J Magn Reson Imaging 2004; 20: 216–227.CrossRefGoogle ScholarPubMed
Madden, DJ, Whiting, WL, Huettel, SA, et al. Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time. Neuroimage 2004; 21: 1174–1181.CrossRefGoogle ScholarPubMed
Takahashi, T, Murata, T, Omori, M, et al. Quantitative evaluation of age-related white matter microstructural changes on MRI by multifractal analysis. J Neurol Sci 2004; 225: 33–37.CrossRefGoogle ScholarPubMed
Ardekani, S, Kumar, A, Bartzokis, G, Sinha, U. Exploratory voxel-based analysis of diffusion indices and hemispheric asymmetry in normal aging. Magn Reson Imaging 2007; 25: 154–167.CrossRefGoogle ScholarPubMed
Grieve, SM, Williams, LM, Paul, RH, Clark, CR, Gordon, E.Cognitive aging, executive function, and fractional anisotropy: a diffusion tensor MR imaging study. AJNR Am J Neuroradiol 2007; 28: 226–235.Google Scholar
Bucur, B, Madden, DJ, Spaniol, J, et al. Age-related slowing of memory retrieval: contributions of perceptual speed and cerebral white matter integrity. Neurobiol Aging 2008; 29: 1070–1079.CrossRefGoogle ScholarPubMed
Madden, DJ, Spaniol, J, Whiting, WL, et al. Adult age differences in the functional neuroanatomy of visual attention: a combined fMRI and DTI study. Neurobiol Aging 2007; 28: 459–476.CrossRefGoogle ScholarPubMed
Yoon, B, Shim, YS, Lee, KS, Shon, YM, Yang, DW. Region-specific changes of cerebral white matter during normal aging: a diffusion-tensor analysis. Arch Gerontol Geriatr 2008; 47: 129–138.CrossRefGoogle Scholar
Makris, N, Papadimitrioua, GM, van der Kouwe, A, et al. Frontal connections and cognitive changes in normal aging rhesus monkeys: A DTI study. Neurobiol Aging 2007; 28: 1556–1567.CrossRefGoogle ScholarPubMed
Mori, S, Wakana, S, Nagae-Poetscher, LM, van Zijl, PMC. An Atlas of Human White Matter. Amsterdam: Elsevier, 2005.Google Scholar
Sullivan, EV, Rohlfing, T, Pfefferbaum, A. Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: relations to timed performance. Neurobiol Aging 2008; Epub ahead of print PMID 18495300.
Stadlbauer, A, Salomonowitz, E, Strunk, G, Hammen, T, Ganslandt, O. Age-related degradation in the central nervous system: assessment with diffusion-tensor imaging and quantitative fiber tracking. Radiology 2008; 247: 179–188.CrossRefGoogle ScholarPubMed
Zahr, NM, Rohlfing, T, Pfefferbaum, A, Sullivan, EV. Problem solving, working memory, and motor correlates of association and commissural fiber bundles in normal aging: a quantitative fiber tracking study. Neuroimage 2009; 44: 1050–1062.CrossRefGoogle ScholarPubMed
Lewis, JD, Theilmann, RJ, Sereno, MI, Townsend, J.The relation between connection length and degree of connectivity in young adults: a DTI analysis. Cereb Cortex 2009; 19: 554–562.CrossRefGoogle Scholar
Sullivan, EV, Rohlfing, T, Pfefferbaum, A. Longitudinal study of callosal microstructure in the normal adult aging brain using quantitative DTI fiber tracking. Dev Neuropsychol 2009; in press.
Pfefferbaum, A, Sullivan, EV, Swan, GE, Carmelli, D. Brain structure in men remains highly heritable in the seventh and eighth decades of life. Neurobiol Aging 2000; 21: 63–74.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Sullivan, EV, Carmelli, D. Morphological changes in aging brain structures are differentially affected by time-linked environmental influences despite strong genetic stability. Neurobiol Aging 2004; 25: 175–183.CrossRefGoogle Scholar
Pfefferbaum, A, Sullivan, EV, Carmelli, D. Genetic regulation of regional microstructure of the corpus callosum in late life. Neuroreport 2001; 12: 1677–1681.CrossRefGoogle ScholarPubMed
Nomura, Y, Sakuma, H, Takeda, K, et al. Diffusional anisotropy of the human brain assessed with diffusion-weighted MR: relation with normal brain devlopment and aging. AJNR Am J Neuroradiol 1994; 15: 231–238.Google Scholar
Charlton, RA, Barrick, TR, McIntyre, DJ, et al. White matter damage on diffusion tensor imaging correlates with age-related cognitive decline. Neurology 2006; 66: 217–222.CrossRefGoogle ScholarPubMed
Charlton, R, Landau, S, Schiavone, F, et al. A structural equation modeling investigation of age-related variance in executive function and DTI measured white matter damage. Neurobiol Aging 2008; 29: 1547–1555.CrossRefGoogle ScholarPubMed
Naganawa, S, Sato, K, Katagiri, T, Mimura, T, Ishigaki, T. Regional ADC values of the normal brain: differences due to age, gender, and laterality. Eur Radiol 2003; 13: 6–11.Google ScholarPubMed
Pfefferbaum, A, Adalsteinsson, E, Sullivan, EV. Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain. J Magn Reson Imaging 2003; 18: 427–433.CrossRefGoogle ScholarPubMed
Shimony, JS, McKinstry, RC, Akbudak, E, et al. Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology 1999; 212: 770–784.CrossRefGoogle ScholarPubMed
Jack, C, Petersen, R, Xu, Y, et al. Rate of medial temporal-lobe atrophy in typical aging and Alzheimer’s disease. Neurology 1998; 51: 993–999.CrossRefGoogle ScholarPubMed
Jack, CR, Dickson, DW, Parisi, JE, et al. Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 2002; 58: 750–757.CrossRefGoogle ScholarPubMed
Killiany, RJ, Gomez-Isla, T, Moss, M, et al. Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Ann Neurol 2000; 47: 430–439.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Laakso, MP, Soininen, H, Partanen, K, et al. Volumes of hippocampus, amygdala and frontal lobes in the MRI-based diagnosis of early Alzheimer’s disease: correlation with memory functions. J Neural Transm 1995; 9: 73–86.CrossRefGoogle ScholarPubMed
Braak, H, Braak, E. Morphological criteria for the recognition of Alzheimer’s disease and the distribution pattern of cortical changes related to this disorder. Neurobiol Aging 1994; 15: 355–356.CrossRefGoogle ScholarPubMed
Brun, A. Regional rather than global pathology decides symptoms in senile dementia of Alzheimer’s type. Neurobiol Aging 1994; 15: 367–368.CrossRefGoogle ScholarPubMed
Cummings, JL. Cognitive and behavioral heterogeneity in Alzheimer’s disease: seeking the neurobiological basis. Neurobiol Aging 2000; 21: 845–861.CrossRefGoogle Scholar
Teipel, SJ, Bayer, W, Alexander, GE, et al. Progression of corpus callosum atrophy in Alzheimer disease. Arch Neurol 2002; 59: 243–248.CrossRefGoogle ScholarPubMed
Hanyu, H, Sakurai, H, Iwamoto, T, et al. Diffusion-weighted MR imaging of the hippocampus and temporal white matter in Alzheimer’s disease. J Neurol Sci 1998; 156: 195–200.CrossRefGoogle Scholar
Sandson, TA, Felician, O, Edelman, RR, Warach, S.Diffusion-weighted magnetic resonance imaging in Alzheimer’s disease. Dement Geriatr Cogn Disord 1999; 10: 166–171.CrossRefGoogle ScholarPubMed
Hanyu, H, Asano, T, Sakurai, H, et al. Diffusion-weighted and magnetization transfer imaging of the corpus callosum in Alzheimer’s disease. J Neurol Sci 1999; 167: 37–44.CrossRefGoogle Scholar
Bozzao, A, Floris, R, Baviera, ME, Apruzzese, A, Simonetti, G. Diffusion and perfusion MR imaging in cases of Alzheimer’s disease: correlations with cortical atrophy and lesion load. AJNR Am J Neuroradiol 2001; 22: 1030–1036.Google ScholarPubMed
Hanyu, H, Asano, T, Sakurai, H, et al. Magnetization transfer ratio in cerebral white matter lesions of Binswanger’s disease. J Neurol Sci 1999; 166: 85–90.CrossRefGoogle ScholarPubMed
Assaf, Y, Mayzel-Oreg, O, Gigi, A, et al. High b value q-space-analyzed diffusion MRI in vascular dementia: a preliminary study. J Neurol Sci 2002; 203–204: 235–239.CrossRefGoogle Scholar
Kantarci, K, Jack, CR, Xu, YC, et al. Mild cognitive impairment and Alzheimer disease: regional diffusivity of water. Radiology 2001; 219: 101–107.CrossRefGoogle Scholar
Schwartz, RB.Apparent diffusion coefficient mapping in patients with Alzheimer disease or mild cognitive impairment and in normally aging control subjects: present and future. Radiology 2001; 219: 8–9.CrossRefGoogle Scholar
Bozzali, M, Franceschi, M, Falini, A, et al. Quantification of tissue damage in AD using diffusion tensor and magnetization transfer MRI. Neurology 2001; 57: 1135–1137.CrossRefGoogle ScholarPubMed
Bozzali, M, Falini, A, Franceschi, M, et al. White matter damage in Alzheimer’s disease assessed in vivo using diffusion tensor magnetic resonance imaging. J Neurol Neurosurg Psychiatry 2002; 72: 742–746.CrossRefGoogle ScholarPubMed
Rose, SE, Chen, F, Chalk, JB, et al. Loss of connectivity in Alzheimer’s disease: an evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging. J Neurol Neurosurg Psychiatry 2000; 69: 528–530.CrossRefGoogle ScholarPubMed
Takahashi, S, Yonezawa, H, Takahashi, J, et al. Selective reduction of diffusion anisotropy in white matter of Alzheimer disease brains measured by 3.0 T magnetic resonance imaging. Neurosci Lett 2002; 332: 45–48.CrossRefGoogle Scholar
Duan, JH, Wang, HQ, Xu, J, et al. White matter damage f patients with Alzheimer’s disease correlated with the decreased cognitive function. Surg Radiol Anat 2006; 28: 150–156.CrossRefGoogle Scholar
Yasmin, H, Nakata, Y, Aoki, S, et al. Diffusion abnormalities of the uncinate fasciculus in Alzheimer’s disease: diffusion tensor tract-specific analysis using a new method to measure the core of the tract. Neuroradiology 2008; 50: 293–299.CrossRefGoogle ScholarPubMed
Song, SK, Kim, JH, Lin, SJ, Brendza, RP, Holtzman, DM. Diffusion tensor imaging detects age-dependent white matter changes in a transgenic mouse model with amyloid deposition. Neurobiol Dis 2004; 15: 640–647.CrossRefGoogle Scholar
Sun, SW, Song, SK, Harms, MP, et al. Detection of age-dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer’s disease using magnetic resonance diffusion tensor imaging. Exp Neurol 2005; 191: 77–85.CrossRefGoogle Scholar
Ringman, JM, O’Neill, J, Geschwind, D, et al. Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer’s disease mutations. Brain 2007; 130: 1767–1776.CrossRefGoogle ScholarPubMed
Studholme, C.Incorporating DTI data as a constraint in deformation tensor morphometry between T1 MR images. Inf Process Med Imaging 2007; 20: 223–232.Google ScholarPubMed
Rohlfing, T, Zahr, NM, Sullivan, EV, Pfefferbaum, A. The SRI24 multi-channel brain atlas: construction and applications. In Medical Imaging 2008: Image Processing, Proceedings of SPIE, 2008, 6914:EID691409.CrossRefGoogle ScholarPubMed
Vita, A, Sacchetti, E, Valvassori, G, Cazzullo, CL.Brain morphology in schizophrenia: a 2- to 5-year CT scan follow-up study. Acta Psychiatr Scand 1988; 78: 618–621.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Zipursky, RB, Lim, KO, et al. Computed tomographic evidence for generalized sulcal and ventricular enlargement in schizophrenia. Arch Gen Psychiatry 1988; 45: 633–640.CrossRefGoogle Scholar
Illowsky, B, Juliano, DM, Bigelow, LB, Weinberger, DR. Stability of CT scan findings in schizophrenia: results of an 8 year follow-up study. J Neurol Neurosurg Psychiatry 1988; 51: 209–213.CrossRefGoogle ScholarPubMed
Shenton, M, Dickey, C, Frumin, M, McCarley, R. A review of MRI findings in schizophrenia. Schizophr Res 2001; 49: 1–52.CrossRefGoogle Scholar
Pearlson, G, Marsh, L.Structural brain imaging in schizophrenia: a selective review. Biol Psychiatry 1999; 46: 627–649.CrossRefGoogle ScholarPubMed
Marsh, L, Lauriello, J, Sullivan, EV, Pfefferbaum, A.Neuroimaging in neuropsychiatric disorders. In Neuroimaging II: Clinical Applications, ed. Bigler, E.New York: Plenum Press, 1996, pp. 73–125.CrossRefGoogle Scholar
Zipursky, RB, Lim, KO, Sullivan, EV, Brown, BW, Pfefferbaum, A.Widespread cerebral gray matter volume deficits in schizophrenia. Arch Gen Psychiatry 1992; 49: 195–205.CrossRefGoogle Scholar
Kubicki, M, Shenton, ME, Salisbury, DF, et al. Voxel-based morphometric analysis of gray matter in first episode schizophrenia. Neuroimage 2002; 17: 1711–1719.CrossRefGoogle ScholarPubMed
Sullivan, EV, Lim, KO, Mathalon, DH, et al. A profile of cortical dysmorphology characteristic of schizophrenia. Cereb Cortex 1998; 8: 117–124.CrossRefGoogle Scholar
Bartzokis, G, Nuechterlein, KH, Lu, PH, et al. Dysregulated brain development in adult men with schizophrenia: a magnetic resonance imaging study. Biol Psychiatry 2003; 53: 412–421.CrossRefGoogle ScholarPubMed
Selemon, LD, Kleinman, JE, Herman, MM, Goldman-Rakic, PS.Smaller frontal gray matter volume in postmortem schizophrenic brains. Am J Psychiatry 2002; 159: 1983–1991.CrossRefGoogle ScholarPubMed
Wolkin, A, Rusinek, H, Vaid, G, et al. Structural magnetic resonance image averaging in schizophrenia. Am J Psychiatry 1998; 155: 1064–1073.CrossRefGoogle Scholar
Buchanan, RW, Vladar, K, Barta, PE, Pearlson, GD. Structural evaluation of the prefrontal cortex in schizophrenia. Am J Psychiatry 1998; 155: 1049–1055.CrossRefGoogle Scholar
Breier, A, Buchanan, RW, Elkashef, A, et al. Brain morphology and schizophrenia: a magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures. Arch Gen Psychiatry 1992; 49: 921–926.CrossRefGoogle ScholarPubMed
Benes, FM, Turtle, M, Khan, Y, Farol, P. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 1994; 51: 477–484.CrossRefGoogle Scholar
Benes, FM. What an archaeological dig can tell us about macro- and microcircuitry in brains of schizophrenia subjects. Schizophr Bull 1997; 23: 503–507.CrossRefGoogle ScholarPubMed
Akbarian, S, Kim, JJ, Potkin, SG, Hetrick, WP, Bunney, WE, Jones EG. Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry 1996; 53: 425–436.CrossRefGoogle ScholarPubMed
Lim, KO, Adalsteinson, E, Spielman, D, et al. Proton magnetic resonance spectroscopic imaging of cortical gray and white matter in schizophrenia. Arch Gen Psychiatry 1998; 55: 346–352.CrossRefGoogle Scholar
McGuire, PK, Frith, CD.Disordered functional connectivity in schizophrenia. Psychol Med 1996; 26: 663–667.CrossRefGoogle Scholar
Buchsbaum, MS, Tang, CY, Peled, S, et al. MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia. Neuroreport 1998; 9: 425–430.CrossRefGoogle Scholar
Friston, KJ, Holmes, AP, Worsley, J-P, et al. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1995; 2: 189–210.CrossRefGoogle Scholar
Lim, KO, Hedehus, M, Moseley, M, et al. Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch Gen Psychiatry 1999; 56: 367–374.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Sullivan, EV, Hedehus, M, Moseley, M, Lim, KO.Brain gray and white matter transverse relaxation time in schizophrenia. Schizophr Res 1999; 91: 93–100.Google Scholar
Nierenberg, J, Hoptman, MJ, Choi, SJ, et al. Abnormal white matter integrity in schizophrenia and schizoaffective disorder revealed by diffusion tensor imagingSchizophr Res 2003; 60: 203S.CrossRefGoogle Scholar
Agartz, I, Andersson, JL, Skare, S.Abnormal brain white matter in schizophrenia: a diffusion tensor imaging study. Neuroreport 2001; 12: 2251–2254.CrossRefGoogle ScholarPubMed
Hoptman, MJ, Volavka, J, Johnson, G, et al. Frontal white matter microstructure, aggression, and impulsivity in men with schizophrenia: a preliminary study. Biol Psychiatry 2002; 52: 9–14.CrossRefGoogle ScholarPubMed
Wolkin, A, Choi, SJ, Szilagyi, S, et al. Inferior frontal white matter anisotropy and negative symptoms of schizophrenia: a diffusion tensor imaging study. Am J Psychiatry 2003; 160: 572–574.CrossRefGoogle ScholarPubMed
Butler, PD, Lim, KO, Nierenberg, J, et al. Primary visual dysfunction in schizophrenia: relationship to white matter integrity inferred from diffusion tensor imagingSchizophr Res 2003; 60: 190S.CrossRefGoogle Scholar
Foong, J, Symms, MR, Barker, GJ, et al. Investigating regional white matter in schizophrenia using diffusion tensor imaging. Neuroreport 2002; 13: 333–336.CrossRefGoogle ScholarPubMed
Steel, R, Bastin, M, McConnell, S, et al. Diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy (1H MRS) in schizophrenic subjects and normal controls. Psychiatry Res 2001; 106: 161–170.CrossRefGoogle ScholarPubMed
Kubicki, M, Westin, CF, Maier, SE, et al. Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. Am J Psychiatry 2002; 159: 813–820.CrossRefGoogle ScholarPubMed
Carbon, M, Bates, J, Bilder, RM, Lim, KO. Microstructural white matter changes as correlates of impaired performance in first episode schizophrenia. Schizophr Res 2003; 60: 191S.CrossRefGoogle Scholar
Ford, JM, Mathalon, DH, Whitfield, S, Faustman, WO, Roth, WT.Reduced communication between frontal and temporal lobes during talking in schizophrenia. Biol Psychiatry 2002; 21: 485–492.CrossRefGoogle Scholar
Jones, DK, Symms, MR, Cercignani, M, Howard, RJ. The effect of filter size on VBM analyses of DT-MRI data. Neuroimage 2005; 26: 546–554.CrossRefGoogle ScholarPubMed
Kubicki, M, McCarley, R, Westin, CF, et al. A review of diffusion tensor imaging studies in schizophrenia. J Psychiatry Res 2007; 41: 15–30.CrossRefGoogle Scholar
Kanaan, RA, Kim, JS, Kaufmann, WE, et al. Diffusion tensor imaging in schizophrenia. Biol Psychiatry 2005; 58: 921–929.CrossRefGoogle Scholar
Kyriakopoulos, M, Bargiotas, T, Barker, GJ, Frangou, S.Diffusion tensor imaging in schizophrenia. Eur Psychiatry 2008; 23: 255–273.CrossRefGoogle Scholar
Assaf, Y, Pasternak, O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 2008; 34: 51–61.CrossRefGoogle ScholarPubMed
Lim, KO, Helpern, JA. Neuropsychiatric applications of DTI: a review. NMR Biomed 2002; 15: 587–593.CrossRefGoogle ScholarPubMed
Cheung, V, Cheung, C, McAlonan, GM, et al. A diffusion tensor imaging study of structural dysconnectivity in never-medicated, first-episode schizophrenia. Psychol Med 2008; 38: 877–885.CrossRefGoogle ScholarPubMed
Friedman, JI, Tang, C, Carpenter, D, et al. Diffusion tensor imaging findings in first-episode and chronic schizophrenia patients. Am J Psychiatry 2008; 165: 1024–1032.CrossRefGoogle ScholarPubMed
Price, G, Cercignani, M, Parker, GJ, et al. White matter tracts in first-episode psychosis: a DTI tractography study of the uncinate fasciculus. NeuroImage 2008; 39: 949–955.CrossRefGoogle ScholarPubMed
Rosenberger, G, Kubicki, M, Nestor, PG, et al. Age-related deficits in fronto-temporal connections in schizophrenia: A diffusion tensor imaging study. Schizophr Res 2008; 102: 181–188.CrossRefGoogle ScholarPubMed
Mori, T, Ohnishi, T, Hashimoto, R, et al. Progressive changes of white matter integrity in schizophrenia revealed by diffusion tensor imaging. Psychiatry Res 2007; 154: 133–145.CrossRefGoogle ScholarPubMed
Garver, DL, Holcomb, JA, Christensen, JD. Compromised myelin integrity during psychosis with repair during remission in drug-responding schizophrenia. Int J Neuropsychopharmacol 2008; 11: 49–61.CrossRefGoogle ScholarPubMed
Takei, K, Yamasue, H, Abe, O, et al. Disrupted integrity of the fornix is associated with impaired memory organization in schizophrenia. Schizophr Res 2008; 103: 52–61.CrossRefGoogle Scholar
Manoach, DS, Ketwaroo, GA, Polli, FE, et al. Reduced microstructural integrity of the white matter underlying anterior cingulate cortex is associated with increased saccadic latency in schizophrenia. Neuroimage 2007; 37: 599–610.CrossRefGoogle Scholar
Ford, JM, Roach, BJ, Faustman, WO, Mathalon, DH. Out-of-synch and out-of-sorts: dysfunction of motor-sensory communication in schizophrenia. Biol Psychiatry 2008; 63: 736–743.CrossRefGoogle Scholar
Winterer, G, Konrad, A, Vucurevic, G, et al. Association of 5′ end neuregulin-1 (NRG1) gene variation with subcortical medial frontal microstructure in humans. Neuroimage 2008; 40: 712–718.CrossRefGoogle ScholarPubMed
Seok, JH, Park, HJ, Chun, JW, et al. White matter abnormalities associated with auditory hallucinations in schizophrenia: a combined study of voxel-based analyses of diffusion tensor imaging and structural magnetic resonance imaging. Psychiatr Res 2007; 156: 93–104.CrossRefGoogle ScholarPubMed
Shergill, SS, Kanaan, RA, Chitnis, XA, et al. A diffusion tensor imaging study of fasciculi in schizophrenia. Am J Psychiatry 2007; 164: 467–473.CrossRefGoogle Scholar
Sullivan, EV, Rosenbloom, MJ, Lim, KO, Pfefferbaum, A.Longitudinal changes in cognition, gait, and balance in abstinent and relapsed alcoholic men: relationships to changes in brain structure. Neuropsychology 2000; 14: 178–188.CrossRefGoogle ScholarPubMed
Rourke, SB, Grant, I. The interactive effects of age and length of abstinence on the recovery of neuropsychological functioning in chronic male alcoholics: a 2-year follow-up study. J Int Neuropsychol Soc 1999; 5: 234–246.CrossRefGoogle ScholarPubMed
Brandt, J, Butters, N, Ryan, C, Bayog, R.Cognitive loss and recovery in long-term alcohol abusers. Arch Gen Psychiatry 1983; 40: 435–442.CrossRefGoogle ScholarPubMed
Harper, C. The neuropathology of alcohol-specific brain damage, or does alcohol damage the brain?Neuropathol Exp Neurol 1998; 57: 101–110.CrossRefGoogle ScholarPubMed
Badsberg-Jensen, G, Pakkenberg, B.Do alcoholics drink their neurons away?Lancet 1993; 342: 1201–1204.CrossRefGoogle Scholar
De la Monte, SM. Disproportionate atrophy of cerebral white matter in chronic alcoholics. Arch Neurol 1988; 45: 990–992.CrossRefGoogle ScholarPubMed
Harper, CG, Kril, JJ, Holloway, RL.Brain shrinkage in chronic alcoholics: a pathological study. Br Med J 1985; 290: 501–504.CrossRefGoogle ScholarPubMed
Harper, CG, Smith, NA, Kril, JJ. The effects of alcohol on the female brain: a neuropathological studyAlcohol Alcohol 1990; 25: 445–448.Google ScholarPubMed
Harper, C, Kril, JJ. Patterns of neuronal loss in the cerebral cortex in chronic alcoholic patients. J Neurolog Sci 1989; 92: 81–89.CrossRefGoogle ScholarPubMed
Harper, CG, Kril, JJ, Daly, JM.Are we drinking our neurones away?Br Med J 1987; 294: 534–536.CrossRefGoogle ScholarPubMed
Kril, JJ, Halliday, GM, Svoboda, MD, Cartwright, H. The cerebral cortex is damaged in chronic alcoholics. Neuroscience 1997; 79: 983–998.CrossRefGoogle ScholarPubMed
Alling, C, Bostrom, K. Demyelination of the mamillary bodies in alcoholism. A combined morphological and biochemical study. Acta Neuropathol (Berl) 1980; 50: 77–80.CrossRefGoogle ScholarPubMed
Tarnowska-Dziduszko, E, Bertrand, E, Szpak, G. Morphological changes in the corpus callosum in chronic alcoholism. Folia Neuropathol 1995; 33: 25–29.Google ScholarPubMed
Harper, CG, Kril, JJ.Corpus callosal thickness in alcoholics. Br J Addict 1988; 83: 577–580.CrossRefGoogle ScholarPubMed
Charness, ME.Brain lesions in alcoholics. Alcohol Clin Exp Res 1993; 17: 2–11.CrossRefGoogle ScholarPubMed
Victor, M, Adams, RD, Collins, GH. The Wernicke–Korsakoff Syndrome and Related Neurologic Disorders Due to Alcoholism and Malnutrition, 2nd edn. Philadelphia, PA: Davis, 1989.Google Scholar
Pfefferbaum, A, Sullivan, EV, Mathalon, DH, Lim, KO.Frontal lobe volume loss observed with magnetic resonance imaging in older chronic alcoholics. Alcohol Clin Exp Res 1997; 21: 521–529.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Lim, KO, Zipursky, RB, et al. Brain gray and white matter volume loss accelerates with aging in chronic alcoholics: a quantitative MRI study. Alcohol Clin Exp Res 1992; 16: 1078–1089.CrossRefGoogle ScholarPubMed
Hommer, DW, Momenan, R, Kaiser, E, Rawlings RR. Evidence for a gender-related effect of alcoholism on brain volumes. Am J Psychiatry 2001; 158: 198–204.CrossRefGoogle Scholar
Pfefferbaum, A, Lim, KO, Desmond, JE, Sullivan, EV. Thinning of the corpus callosum in older alcoholic men: a magnetic resonance imaging study. Alcohol Clin Exp Res 1996; 20: 752–757.CrossRefGoogle ScholarPubMed
Estruch, R, Nicolas, JM, Salamero, M, et al. Atrophy of the corpus callosum in chronic alcoholism. J Neurol Sci 1997; 146: 145–151.CrossRefGoogle ScholarPubMed
Hommer, D, Momenan, R, Rawlings, R, et al. Decreased corpus callosum size among alcoholic women. Arch Neurol 1996; 53: 359–363.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Rosenbloom, MJ, Deshmukh, A, Sullivan, EV. Sex differences in the effects of alcohol on brain structure. Am J Psychiatry 2001; 158: 188–197.CrossRefGoogle ScholarPubMed
Rosenbloom, MJ, Pfefferbaum, A. In vivo magnetic resonance brain imaging of neurodegeneration and recovery in alcoholism. Alcohol Res Health 2008; 31: 362–376.Google Scholar
Pfefferbaum, A, Sullivan, EV. Microstructural but not macrostructural disruption of white matter in women with chronic alcoholism. Neuroimage 2002; 15: 708–718.CrossRefGoogle Scholar
Pfefferbaum, A, Adalsteinsson, E, Sullivan, EV. Supratentorial profile of white matter microstructural integrity in recovering alcoholic men and women. Biol Psychiatry. 2006; 59: 364–372.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Adalsteinsson, E, Sullivan, EV. Dysmorphology and microstructural degradation of the corpus callosum: interaction of age and alcoholism. Neurobiol Aging 2006; 27: 994–1009.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Rosenbloom, MJ, Rohlfing, T, Sullivan, EV. Degradation of association and projection white matter systems in alcoholism detected with quantitative fiber tracking. Biol Psychiatry 2009; 65: 680–690.CrossRefGoogle ScholarPubMed
Sheedy, D, Lara, A, Garrick, T, Harper, C. Size of mamillary bodies in health and disease: useful measurements in neuroradiological diagnosis of Wernicke’s encephalopathy. Alcohol Clin Exp Res 1999; 23: 1624–1628.Google ScholarPubMed
Caine, D, Halliday, GM, Kril, JJ, Harper, CG. Operational criteria for the classification of chronic alcoholics: identification of Wernicke’s encephalopathy. J Neurol Neurosurg Psychiatry 1997; 62: 51–60.CrossRefGoogle ScholarPubMed
Bergui, M, Bradac, GB, Zhong, JJ, Barbero, PA, Durelli, L.Diffusion-weighted MR in reversible Wernicke encephalopathy. Neuroradiology 2001; 43: 969–972.CrossRefGoogle ScholarPubMed
Doherty, MJ, Watson, NF, Uchino, K, Hallam, DK, Cramer, SC.Diffusion abnormalities in patients with Wernicke encephalopathy. Neurology 2002; 58: 655–657.CrossRefGoogle ScholarPubMed
Kashihara, K, Irisawa, M. Diffusion weighted magnetic resonance imaging in a case of acute Wernicke’s encephalopathy. J Neurol Neurosurg Psychiatry 2002; 73: 181.CrossRefGoogle Scholar
Ducreux, D, Petit-Lacour, MC, Benoudiba, F, Castelain, V, Marsot-Dupuch, K. Diffusion-weighted imaging in a case of Wernicke encephalopathy. J Neuroradiol 2002; 29: 39–42.Google Scholar
Niclot, P, Guichard, JP, Djomby, R, et al. Transient decrease of water diffusion in Wernicke’s encephalopathy. Neuroradiology 2002; 44: 305–307.CrossRefGoogle ScholarPubMed
Inagaki, T, Saito, K. A case of Marchiafava–Bignami disease demonstrated by MR diffusion-weighted image. No To Shinkei 2000; 52: 633–637.Google ScholarPubMed
Riley, EP, Mattson, SN, Sowell, ER, et al. Abnormalities of the corpus callosum in children prenatally exposed to alcohol. Alcohol Clin Exp Res 1995; 19: 1198–1202.CrossRefGoogle Scholar
Wozniak, JR, Mueller, BA, Chang, PN, et al. Diffusion tensor imaging in children with fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2006; 30: 1799–1806.CrossRefGoogle ScholarPubMed
Fryer, SL, Schweinsburg, BC, Bjorkquist, OA, et al. Characterization of white matter microstructure in fetal alcohol spectrum disorders. Alcohol: Clin Exp Res 2009; 33: 514–521.Google ScholarPubMed
Ma, X, Coles, CD, Lynch, ME, et al. Evaluation of corpus callosum anisotropy in young adults with fetal alcohol syndrome according to diffusion tensor imaging. Alcohol Clin Exp Res 2005; 29: 1214–1222.CrossRefGoogle ScholarPubMed
Harper, CG, Kril, JJ. Neuropathology of alcoholism. Alcohol Alcohol 1990; 25: 207–216.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Sullivan, EV. Disruption of brain white matter microstructure by excessive intracellular and extracellular fluid in alcoholism: evidence from diffusion tensor imaging. Neuropsychopharmacology 2005; 30: 423–432.CrossRefGoogle ScholarPubMed
UNAIDS. AIDS Epidemic Update December 2002. Geneva: UNAIDS, 2002.Google Scholar
Masliah, E, DeTeresa, RM, Mallory, ME, Hansen, LA. Changes in pathological findings at autopsy in AIDS cases for the last 15 years. AIDS 2000; 14: 69–74.CrossRefGoogle ScholarPubMed
Trillo-Pazos, G, Everall, IP. From human immunodeficiency virus (HIV) infection of the brain to dementia. Genitourin Med 1997; 73: 343–347.Google Scholar
Ruiz, A, Post, JD, Ganz, WI, Georgiou, M. Nuclear medicine applications to the neuroimaging of AIDS. A neuroradiologist’s perspective. Neuroimaging Clin N Am 1997; 7: 499–511.Google ScholarPubMed
Post, MJ, Berger, JR, Duncan, R, et al. Asymptomatic and neurologically symptomatic HIV-seropositive subjects: results of long-term MR imaging and clinical follow-up. Radiology 1993; 188: 727–733.CrossRefGoogle ScholarPubMed
Manji, H, Connolly, S, McAllister, R, et al. Serial MRI of the brain in asymptomatic patients infected with HIV: results from the UCMSM/Medical Research Council neurology cohort. J Neurol Neurosurg Psychiatry 1994; 57: 144–149.CrossRefGoogle ScholarPubMed
Jernigan, TL, Archibald, S, Hesselink, JR, et al. Magnetic resonance imaging morphometric analysis of cerebral volume loss in human immunodeficiency virus infection. Arch Neurol 1993; 50: 250–255.CrossRefGoogle ScholarPubMed
Aylward, EH, Henderer, JD, McArthur, JC, et al. Reduced basal ganglia volume in HIV-1-associated dementia: results from quantitative neuroimaging. Neurology 1993; 43: 2099–2104.CrossRefGoogle ScholarPubMed
Berger, JR, Nath, A, Greenberg, RN, et al. Cerebrovascular changes in the basal ganglia with HIV dementia. Neurology 2000; 54: 921–926.CrossRefGoogle ScholarPubMed
Sacktor, NC, Bacellar, H, Hoover, DR, et al. Psychomotor slowing in HIV infection: a predictor of dementia, AIDS and death. J Neurovirol 1996; 2: 404–410.CrossRefGoogle ScholarPubMed
Symonds, LL, Archibald, SL, Grant, I, Zisook, S, Jernigan, TL. Does an increase in sulcal or ventricular fluid predict where brain tissue is lost?J Neuroimaging 1999; 9: 201–209.CrossRefGoogle ScholarPubMed
Stout, J, Ellis, R, Jernigan, T, et al. Progressive cerebral volume loss in human immunodeficiency virus infection: a longitudinal volumetric magnetic resonance imaging study. Arch Neurol 1998; 55: 161–168.CrossRefGoogle ScholarPubMed
Di Sclafani, V, Mackay, RD, Meyerhoff, DJ, et al. Brain atrophy in HIV infection is more strongly associated with CDC clinical stage than with cognitive impairment. J Int Neuropsychol Soc 1997; 3: 276–287.Google ScholarPubMed
Aylward, EH, Brettschneider, PD, McArthur, JC, et al. Magnetic resonance imaging measurement of gray matter volume reductions in HIV dementia. Am J Psychiatry 1995; 152: 987–994.Google ScholarPubMed
Tagliati, M, Simpson, D, Morgello, S, et al. Cerebellar degeneration associated with human immunodeficiency virus infection. Neurology 1998; 50: 244–251.CrossRefGoogle ScholarPubMed
Sclar, G, Kennedy, CA, Hill, JM, McCormack, MK.Cerebellar degeneration associated with HIV infection. Neurology 2000; 54: 1012–1013.CrossRefGoogle ScholarPubMed
Miller, RF, Harrison, MJ, Hall-Craggs, MA, Scaravilli, F.Central pontine myelinolysis in AIDS. Acta Neuropathol (Berlin) 1998; 96: 537–540.CrossRefGoogle Scholar
Chang, L, Ernst, T.MR spectroscopy and diffusion-weighted MR imaging in focal brain lesions in AIDS. Neuroimaging Clin N Am 1997; 7: 409–426.Google Scholar
Ulug, AM, Filippi, CG, Ruyan, E, Ferrando, SJ, van Gorp, W. Utility of DWI, tensor imaging, and MR spectroscopy in HIV patients with normal brain MR scans. In Proceedings of the 8th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Denver, 2000, p. 1200.Google Scholar
Stebbins, GT, Smith, CA, Bartt, RE, et al. HIV-associated alterations in normal-appearing white matter: a voxel-wise diffusion tensor imaging study. J Acquir Immune Defic Syndr 2007; 46: 564–573.CrossRefGoogle ScholarPubMed
Schaefer, PW, Gonzalez, RG, Hunter, G, et al. Diagnostic value of apparent diffusion coefficient hyperintensity in selected patients with acute neurologic deficits. J Neuroimaging 2001; 11: 369–380.CrossRefGoogle ScholarPubMed
Pomara, N, Crandall, DT, Choi, SJ, Johnson, G, Lim, KO.White matter abnormalities in HIV-1 infection: a diffusion tensor imaging study. Psychiatry Res 2001; 106: 15–24.CrossRefGoogle ScholarPubMed
Filippi, CG, Ulug, AM, Ryan, E, Ferrando, SJ, van Gorp, W. Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. AJNR Am J Neuroradiol 2001; 22: 277–283.Google Scholar
Berger, JR, Avison, MJ. Diffusion tensor imaging in HIV infection: what is it telling us?AJNR Am J Neuroradiol 2001; 22: 237–238.Google ScholarPubMed
Thurnher, MM, Castillo, M, Stadler, A, et al. Diffusion-tensor MR imaging of the brain in human immunodeficiency virus-positive patients. AJNR Am J Neuroradiol 2005; 26: 2275–2281.Google ScholarPubMed
Ragin, AB, Storey, P, Cohen, BA, Edelman, RR, Epstein, LG. Disease burden in HIV-associated cognitive impairment: a study of whole-brain imaging measures. Neurology 2004; 63: 2293–2297.CrossRefGoogle ScholarPubMed
Wu, Y, Storey, P, Cohen, BA, et al. Diffusion alterations in corpus callosum of patients with HIV. AJNR Am J Neuroradiol 2006; 27: 656–660.Google Scholar
Ragin, AB, Wu, Y, Storey, P, et al. Diffusion tensor imaging of subcortical brain injury in patients infected with human immunodeficiency virus. J Neurovirol 2005; 11: 292–298.CrossRefGoogle ScholarPubMed
Paul, RH, Laidlaw, DH, Tate, DF, et al. Neuropsychological and neuroimaging outcome of HIV-associated progressive multifocal leukoencephalopathy in the era of antiretroviral therapy. J Integrat Neurosci 2007; 6: 191–203.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Rosenbloom, MJ, Sullivan, EV. Alcoholism and AIDS: magnetic resonance imaging approaches for detecting interactive neuropathology. Alcohol: Clin Exp Res 2002; 26: 1031–1046.CrossRefGoogle ScholarPubMed
Samet, JH, Horton, NJ, Traphagen, ET, Lyon, SM, Freedberg, KA.Alcohol consumption and HIV disease progression: are they related?Alcohol Clin Exp Res 2003; 27: 862–827.CrossRefGoogle ScholarPubMed
Samet, JH, Horton, NJ, Meli, S, Freedberg, KA, Palepu, A.Alcohol consumption and antiretroviral adherence among HIV-infected persons with alcohol problems. Alcohol Clin Exp Res 2004; 28: 572–577.CrossRefGoogle ScholarPubMed
Samet, JH, Phillips, SJ, Horton, NJ, Traphagen, ET, Freedberg, KA. Detecting alcohol problems in HIV-infected patients: use of the CAGE questionnaire. AIDS Res Hum Retroviruses 2004; 20: 151–155.CrossRefGoogle ScholarPubMed
Cook, RL, Sereika, SM, Hunt, SC, et al. Problem drinking and medication adherence among persons with HIV infection. J Gen Intern Med 2001; 16: 83–88.CrossRefGoogle ScholarPubMed
Petry, NM.Alcohol use in HIV patients: what we don’t know may hurt us. Int J STD AIDS 1999; 10: 561–570.CrossRefGoogle ScholarPubMed
Taylor, WD, Payne, ME, Krishnan, KR, et al. Evidence of white matter tract disruption in MRI hyperintensities. Biol Psychiatry 2001; 50: 179–183.CrossRefGoogle ScholarPubMed
Kramer-Ginsberg, E, Greenwald, BS, Krishnan, KR, et al. Neuropsychological functioning and MRI signal hyperintensities in geriatric depression. Am J Psychiatry 1999; 156: 438–444.Google ScholarPubMed
O’Brien, J, Perry, R, Barber, R, Gholkar, A, Thomas, A. The association between white matter lesions on magnetic resonance imaging and noncognitive symptoms. Ann N Y Acad Sci 2000; 903: 482–489.CrossRefGoogle ScholarPubMed
Yang, Q, Huang, X, Hong, N, Yu, X. White matter microstructural abnormalities in late-life depression. Int Psychogeriatr 2007; 19: 757–766.CrossRefGoogle ScholarPubMed
Alexopoulos, GS, Kiosses, DN, Choi, SJ, Murphy, CF, Lim, KO. Frontal white matter microstructure and treatment response of late-life depression: a preliminary study. Am J Psychiatry 2002; 159: 1929–1932.CrossRefGoogle ScholarPubMed
Xia, J, Lei, Y, Xu, HJ, et al. [Preliminary study of diffusion tensor imaging in treatment response assessment of major depression]. Nan fang yi ke da xue xue bao [J Southern Med Uni] 2007; 27: 1905–1907.Google Scholar
Li, L, Ma, N, Li, Z, et al. Prefrontal white matter abnormalities in young adult with major depressive disorder: a diffusion tensor imaging study. Brain Res 2007; 1168: 124–128.CrossRefGoogle ScholarPubMed
Pettigrew, DB, Crutcher, KA. Myelin contributes to the parallel orientation of axonal growth on white matter in vitro. BioMed Cent Neurosci 2001; 2: 9–20.Google ScholarPubMed
Molko, N, Cohen, L, Mangin, JF, et al. Visualizing the neural bases of a disconnection syndrome with diffusion tensor imaging. J Cogn Neurosci 2002; 14: 629–636.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×