Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T13:49:12.586Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 March 2013

Michael Rowan-Robinson
Affiliation:
Imperial College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Night Vision
Exploring the Infrared Universe
, pp. 211 - 246
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

*Aannestad, P.A. and Purcell, E.M. 1973. ‘Interstellar grains’. Astrophysical Journal 186, 705.Google Scholar
*Aaronson, M., Huchra, J. and Mould, J. 1979. ‘The infrared luminosity/HI velocity-width relation and its application to the distance scale’. Astrophysical Journal 229, 1.CrossRefGoogle Scholar
*Aaronson, M. et al. 1982. ‘A catalog of infrared magnitudes and HI velocity widths for nearby galaxies’. Astrophysical Journal Supplement Series 50, 241.CrossRefGoogle Scholar
*Aaronson, M. and Mould, J. 1983. ‘A distance scale from the infrared magnitude/HI velocity-width relation IV – The morphological type dependence and scatter in the relation; the distances to nearby groups’. Astrophysical Journal 275, 1.CrossRefGoogle Scholar
*Aaronson, M. et al. 1986. ‘A distance scale from the infrared magnitude/HI velocity-width relations. V – Distance moduli to 10 galaxy clusters, and positive detection of bulk supercluster motion toward the microwave anisotropy’. Astrophysical Journal 302, 536.CrossRefGoogle Scholar
Abbott, C.J. 1924. ‘Radiometer observations of stellar energy spectra’. Astrophysical Journal 60, 87.Google Scholar
*Adams, F.C., Lada, C.J. and Shu, F.H. 1987. ‘Spectral evolution of young stellar objects’. Astrophysical Journal 312, 788.CrossRefGoogle Scholar
*Adams, F.C., Shu, F.H. and Lada, C.J. 1988. ‘The disks of T Tauri stars with flat infrared spectra’. Astrophysical Journal 326, 865.CrossRefGoogle Scholar
*Adams, F.C and Shu, F.H. 1986. ‘Infrared spectra of rotating protostars’. Astrophysical Journal 308, 836.CrossRefGoogle Scholar
Alexander, D.M. et al. 2005. ‘Nature of hard X-ray background sources: optical, near-infrared, submillimeter and radio properties; X-ray spectral properties of SCUBA galaxies’. Astrophysical Journal 632, 736.CrossRefGoogle Scholar
*Allamandola, L.J., Tielens, A.G.G.M. and Barker, J.R. 1985. ‘Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands – Auto exhaust along the Milky Way’. Astrophysical Journal Letters 290, L25.CrossRefGoogle Scholar
*Allamandola, L.J., Tielens, A.G.G.M. and Barker, J.R. 1989. ‘Interstellar polycyclic aromatic hydrocarbons – The infrared emission bands, the excitation/emission mechanism, and the astrophysical implications’. Astrophysical Journal Supplement Series 71, 733.CrossRefGoogle ScholarPubMed
*Allamandola, L.J., Sandford, S.A., Tielens, A.G.G.M. and Herbst, T.M. 1992. ‘Infrared spectroscopy of dense clouds in the C-H stretch region – Methanol and “diamonds”’. Astrophysical Journal 399, 134.CrossRefGoogle Scholar
Allamandola, L.J. and Hudgins, D.M. 2003. Solid State Astrochemistry, ed. Pirronello, V. et al., NATO Science Series II, volume 120, p. 251. Berlin: Springer.Google Scholar
*Allen, D.A. 1973. ‘Near infra-red magnitudes of 248 early-type emission-line stars and related objects’. Monthly Notices of the Royal Astronomical Society 161, 145.CrossRefGoogle Scholar
Allen, D.A. et al. 1977. ‘Optical, infrared and radio studies of AFCRL sources’. Astrophysical Journal 217, 108.CrossRefGoogle Scholar
*Anders, E. and Zinner, L. 1993. ‘Interstellar grains in primitive meteorites – Diamond, silicon carbide, and graphite’. Meteoritics 28, 490.CrossRefGoogle Scholar
*André, P., Ward-Thompson, D. and Barsony, M. 1993. ‘Submillimeter continuum observations of Rho Ophiuchi A – The candidate protostar VLA 1623 and prestellar clumps’. Astrophysical Journal 406, 122.CrossRefGoogle Scholar
*André, P. and Montmerle, T. 1994. ‘From T Tauri stars to protostars: circumstellar material and young stellar objects in the rho Ophiuchi cloud’. Astrophysical Journal 420, 837.CrossRefGoogle Scholar
*André, P., Ward-Thompson, D. and Barsony, M. 2000. ‘From prestellar cores to protostars: the initial conditions of star formation’. In Protostars and Planets IV, ed. Mannings, V., Boss, A.P. and Russell, S.S., p. 59. Tucson: University of Arizona Press.Google Scholar
*Angel, J.R.P. and Stockman, H.S. 1980. ‘Optical and infrared polarization of active extragalactic objects’. Annual Review of Astronomy and Astrophysics 18, 321.CrossRefGoogle Scholar
*Armandroff, T.E. and Zinn, R. 1988. ‘Integrated-light spectroscopy of globular clusters at the infrared Ca ii lines’. Astronomical Journal 96, 92.CrossRefGoogle Scholar
Armitage, A. 1953. William Herschel. London: Nelson.Google Scholar
Astier, P. et al. 2006. ‘The Supernova Legacy Survey: measurement of ΩM, ΩΛ and w from the first year data set’. Astronomy and Astrophysics 447, 31.CrossRefGoogle Scholar
Aumann, H.H., Gillespie, C.M. and Low, F.J. 1969. ‘The internal powers and effective temperatures of Jupiter and Saturn’. Astrophysical Journal Letters 157, 69.CrossRefGoogle Scholar
*Aumann, H.H. et al. 1984. ‘Discovery of a shell around Alpha Lyrae’. Astrophysical Journal Letters 278, L23.CrossRefGoogle Scholar
*Aussel, H., Cesarsky, C.J., Elbaz, D. and Starck, J.L. 1999. ‘ISOCAM observations of the Hubble Deep Field reduced with the PRETI method’. Astronomy and Astrophysics 342, 313.Google Scholar
*Bakes, E.L.O. and Tielens, A.G.G.M. 1994. ‘The photoelectric heating mechanism for very small graphitic grains and polycyclic aromatic hydrocarbons’. Astrophysical Journal 427, 822.CrossRefGoogle Scholar
Balbi, A. et al. 2000. ‘Constraints on cosmological parameters from MAXIMA-1’. Astrophysical Journal Letters 545, L1.CrossRefGoogle Scholar
*Bally, J. and Lada, C.J. 1983. ‘The high-velocity molecular flows near young stellar objects’. Astrophysical Journal 265, 824.CrossRefGoogle Scholar
*Barger, A.J. et al. 1998. ‘Submillimetre-wavelength detection of dusty star-forming galaxies at high redshift’. Nature 394, 248.CrossRefGoogle Scholar
*Barger, A.J., Cowie, L.L. and Sanders, D.B. 1999. ‘Resolving the submillimeter background: the 850 micron galaxy counts’. Astrophysical Journal Letters 518, L5.CrossRefGoogle Scholar
Barger, A.J. et al. 1999. ‘Redshift distribution of submillimetre galaxies – Keck spectroscopy of SCUBA lensed galaxies’. Astronomical Journal 117, 2656.CrossRefGoogle Scholar
*Barger, A.J., Cowie, L.L. and Richards, E.A. 2000. ‘Mapping the evolution of high-redshift dusty galaxies with submillimeter observations of a radio-selected sample’. Astronomical Journal 119, 2092.CrossRefGoogle Scholar
*Barger, A.J., Cowie, L.L., Mushotzky, R.F. and Richards, E.A. 2001. ‘The nature of the hard x-ray background sources: optical, near-infrared, submillimeter, and radio properties’. Astronomical Journal 121, 662.CrossRefGoogle Scholar
*Barlow, M.J. and Cohen, M. 1977. ‘Infrared photometry and mass loss rates for OBA supergiants and Of stars’. Astrophysical Journal 213, 737.CrossRefGoogle Scholar
*Barvainis, R. 1987. ‘Hot dust and the near-infrared bump in the continuum spectra of quasars and active galactic nuclei’. Astrophysical Journal 320, 537.CrossRefGoogle Scholar
Bastin, J.A. et al. 1964. ‘Spectroscopy at extreme infra-red wavelengths. III. Astrophysical and atmospheric measurements’. Proceedings of the Royal Society of London A 278, 543.CrossRefGoogle Scholar
*Baugh, C.M. et al. 2005. ‘Can the faint submillimetre galaxies be explained in the Λ dark matter model?Monthly Notices of the Royal Astronomical Society 356, 1191.CrossRefGoogle Scholar
Becklin, E.E. and Neugebauer, G. 1967. ‘Observations of an infrared star in the Orion nebula’. Astrophysical Journal 147, 799.CrossRefGoogle Scholar
*Becklin, E.E. and Neugebauer, G. 1968. ‘Infrared observations of the galactic center’. Astrophysical Journal 151, 145.CrossRefGoogle Scholar
*Becklin, E.E., Neugebauer, G., Willner, S.P. and Matthews, K. 1978. ‘Infrared observations of the galactic center. IV – The interstellar extinction’. Astrophysical Journal 220, 831.CrossRefGoogle Scholar
Beckman, J.E., Bastin, J.A. and Clegg, P.E. 1969. ‘Continuous spectrum of Taurus A at 1.2 mm wavelength’. Nature 221, 944.CrossRefGoogle Scholar
*Beckwith, S., Persson, S.E., Neugebauer, G. and Becklin, E.E. 1978.‘Observations of the molecular hydrogen emission from the Orion Nebula’. Astrophysical Journal 223, 464.CrossRefGoogle Scholar
*Beckwith, S.V.W., Sargent, A., Chini, R.S. and Guesten, R. 1990. ‘A survey for circumstellar disks around young stellar objects’. Astronomical Journal 99, 924.CrossRefGoogle Scholar
*Beckwith, S.V.W. and Sargent, A. 1991. ‘Particle emissivity in circumstellar disks’. Astrophysical Journal 381, 250.CrossRefGoogle Scholar
*Bedijn, P.J. 1987. ‘Dust shells around Miras and OH/IR stars – Interpretation of IRAS and other infrared measurements’. Astronomy and Astrophysics 186, 136.Google Scholar
Beichman, C.A. et al. 1984. ‘The formation of solar type stars – IRAS observations of the dark cloud Barnard 5’. Astrophysical Journal Letters 278, L45.CrossRefGoogle Scholar
*Beichman, C.A. et al. 1986. ‘Candidate solar-type protostars in nearby molecular cloud cores’. Astrophysical Journal 307, 337.CrossRefGoogle Scholar
Beichman, C.A. 1987. ‘The IRAS view of the Galaxy and the solar system’. Annual Review of Astronomy and Astrophysics 25, 521.CrossRefGoogle Scholar
*Beichman, C.A. et al. 1988. Infrared Astronomical Satellite (IRAS) Catalogs and Atlases. Volume 1: Explanatory Supplement. Washington, DC: NASA.Google Scholar
*Bell, E.F. and de Jong, R.S. 2001. ‘Stellar mass-to-light ratios and the Tully–Fisher relation’. Astrophysical Journal 550, 212.CrossRefGoogle Scholar
*Bell, E.F., McIntosh, D.H., Katz, N. and Weinberg, M.D. 2003. ‘The optical and near-infrared properties of galaxies I. Luminosity and stellar mass functions’. Astrophysical Journal Supplement Series 149, 289.CrossRefGoogle Scholar
*Bell, E.F. et al. 2005. ‘Toward an understanding of the rapid decline of the cosmic star formation rate’. Astrophysical Journal 625, 23.CrossRefGoogle Scholar
*Benjamin, R.A. et al. 2003. ‘GLIMPSE. I. An SIRTF legacy project to map the inner galaxy’. Publications of the Astronomical Society of the Pacific 115, 953.CrossRefGoogle Scholar
*Bennett, C.L. et al. 1992. ‘Preliminary separation of galactic and cosmic microwave emission for the COBE Differential Microwave Radiometer’. Astrophysical Journal Letters 396, L7.CrossRefGoogle Scholar
Bertoldi, F. et al. 2003. ‘Dust emission from the most distant quasars’. Astronomy and Astrophysics Letters 406, L55.CrossRefGoogle Scholar
*Bertout, C., Basri, G. and Bouvier, J. 1988. ‘Accretion disks around T Tauri stars’. Astrophysical Journal 330, 350.CrossRefGoogle Scholar
*Black, J.H. and Dalgarno, A. 1976. ‘Interstellar H2 – The population of excited rotational states and the infrared response to ultraviolet radiation’. Astrophysical Journal 203, 132.CrossRefGoogle Scholar
*Blackwell, D.E. and Sallis, M.J. 1977. ‘Stellar angular diameters from infrared photometry – Application to Arcturus and other stars; with effective temperatures’. Monthly Notices of the Royal Astronomical Society 180, 177.CrossRefGoogle Scholar
*Blain, A.W., Kneib, J.-P., Ivison, R.J. and Smail, I. 1999. ‘Deep counts of submillimeter galaxies’. Astrophysical Journal Letters 512, L87.CrossRefGoogle Scholar
*Blain, A.W., Smail, I., Ivison, R.J. and Kneib, J.-P. 1999. ‘The history of star formation in dusty galaxies’. Monthly Notices of the Royal Astronomical Society 302, 632.CrossRefGoogle Scholar
*Blain, A.W. et al. 2002. ‘Submillimeter galaxies’. Physics Reports 369, 111.CrossRefGoogle Scholar
*Blake, G.A., Sutton, E.C., Masson, C.R. and Phillips, T.G. 1987. ‘Molecular abundances in OMC-1 – The chemical composition of interstellar molecular clouds and the influence of massive star formation’. Astrophysical Journal 315, 621.CrossRefGoogle Scholar
Blitz, L. 1979. ‘A study of the molecular complexes accompanying Mon OB1, Mon OB2 and CMa OB1’. PhD thesis, Columbia University.
*Blitz, L. and Shu, F.H. 1980. ‘The origin and lifetime of giant molecular cloud complexes’. Astrophysical Journal 238, 148.CrossRefGoogle Scholar
*Blitz, L., Fich, M. and Stark, A.A. 1982. ‘Catalog of CO radial velocities toward galactic H II regions’. Astrophysical Journal Supplement Series 49, 183.CrossRefGoogle Scholar
*Blitz, L. and Spergel, D.N. 1991. ‘Direct evidence for a bar at the Galactic center’. Astrophysical Journal 379, 631.CrossRefGoogle Scholar
*Blitz, L. et al. 1999. ‘High-velocity clouds: building blocks of the Local Group’. Astrophysical Journal 514, 818.CrossRefGoogle Scholar
*Bloemen, J.B.G.M. et al. 1986. ‘The radial distribution of galactic gamma rays. III – The distribution of cosmic rays in the Galaxy and the CO-H2 calibration’. Astronomy and Astrophysics 154, 25.Google Scholar
*Bontemps, S., Andre, P., Terebey, S. and Cabrit, S. 1996. ‘Evolution of outflow activity around low-mass embedded young stellar objects’. Astronomy and Astrophysics 311, 858.Google Scholar
*Bouchet, P. et al. 1985. ‘The visible and infrared extinction law and the gas-to-dust ratio in the Small Magellanic Cloud’. Astronomy and Astrophysics 149, 330.Google Scholar
*Boulanger, F. and Perault, M. 1988. ‘Diffuse infared emission from the Galaxy I. – Solar neighbourhood’. Astrophysical Journal 330, 964.CrossRefGoogle Scholar
Bouwens, R.J. et al. 2004. ‘Star formation at z ~ 6: The Hubble Ultra Deep Parallel Fields’. Astrophysical Journal Letters 606, L25.CrossRefGoogle Scholar
Bouwens, R.J., Illingworth, G.D., Blakeslee, J.P. and Franx, M. 2006. ‘Galaxies at z ~ 6: the UV luminosity function and luminosity density from 506 HUDF, HUDF Parallel ACS Field and GOODS i–dropouts’. Astrophysical Journal 653, 53.CrossRefGoogle Scholar
Boys, C.V. 1890. ‘On the heat of the moon and stars’. Proceedings of the Royal Society 47, 480.CrossRefGoogle Scholar
*Brand, J. and Blitz, L. 1993. ‘The velocity field of the outer galaxy’. Astronomy and Astrophysics 275, 67.Google Scholar
*Bronfman, L. et al. 1988. ‘A CO survey of the southern Milky Way – The mean radial distribution of molecular clouds within the solar circle’. Astrophysical Journal 324, 248.CrossRefGoogle Scholar
Brown, R.L. and Vanden Bout, P.A. 1991. ‘CO emission at z = 2.2867 in the galaxy IRAS F10214+4724’. Astronomical Journal 102, 1956.CrossRefGoogle Scholar
Brown, R.L. and Vanden Bout, P.A. 1992. ‘IRAS F1024+4724 – an extended CO emission source at z = 2.2867’. Astrophysical Journal Letters 397, L19.CrossRefGoogle Scholar
*Bruzual, G. and Charlot, S. 1993. ‘Spectral evolution of stellar populations using isochrone synthesis’. Astrophysical Journal 405, 538.CrossRefGoogle Scholar
*Bruzual, G. and Charlot, S. 2003. ‘Stellar population synthesis at the resolution of 2003’. Monthly Notices of the Royal Astronomical Society 344, 1000.CrossRefGoogle Scholar
Bunker, A.J., Stanway, E.R., Ellis, R.S. and McMahon, R.G. 2004. ‘The star formation rate of the Universe at z~6 from the Hubble Ultra-Deep Field’. Monthly Notices of the Royal Astronomical Society 355, 374.CrossRefGoogle Scholar
Burbidge, E.M., Burbidge, G.R., Fowler, W.A. and Hoyle, F. 1957. ‘Synthesis of the elements in stars’. Reviews of Modern Physics 29, 547.CrossRefGoogle Scholar
Burgasser, A.J. et al. 2002. ‘The spectra of T dwarfs. I. Near-infrared data and spectral classification’. Astrophysical Journal 564, 421.CrossRefGoogle Scholar
*Burrows, A. et al. 1997. ‘A nongray theory of extrasolar giant planets and brown dwarfs’. Astrophysical Journal 491, 856.CrossRefGoogle Scholar
*Burton, M.G., Hollenbach, D.J. and Tielens, A.G.G.M. 1990. ‘Line emission from clumpy photodissociation regions’. Astrophysical Journal 365, 620.CrossRefGoogle Scholar
*Cabrit, S., Edwards, S., Strom, S.E. and Strom, K.M. 1990. ‘Forbidden-line emission and infrared excesses in T Tauri stars – Evidence for accretion-driven mass loss?’. Astrophysical Journal 354, 687.CrossRefGoogle Scholar
*Calzetti, D. 1997. ‘Reddening and star formation in starburst galaxies’. Astronomical Journal 113, 162.CrossRefGoogle Scholar
*Calzetti, D. et al. 2000. ‘The dust content and opacity of actively star-forming galaxies’. Astrophysical Journal 533, 682.CrossRefGoogle Scholar
*Calzetti, D. 2001. ‘The dust opacity of star-forming galaxies’. Publications of the Astronomical Society of the Pacific 113, 1449.CrossRefGoogle Scholar
Cameron, A.G.W. 1957. ‘Nuclear reactions in stars and nucleogenesis’. Publications of the Astronomical Society of the Pacific 69, 201.CrossRefGoogle Scholar
*Cardelli, J.A., Clayton, G.C. and Mathis, J.S. 1989. ‘The relationship between infrared, optical, and ultraviolet extinction’. Astrophysical Journal 345, 245.CrossRefGoogle Scholar
*Carilli, C.L. and Yun, M.S. 1999. ‘The radio-to submillimetre spectral index as a redshift indicator’. Astrophysical Journal Letters 513, L13.CrossRefGoogle Scholar
Cayrel, R. and Schatzman, E. 1954. ‘Sur la polarization interstellaire par des particles de graphite’. Annales d’Astrophysique 17, 555.Google Scholar
*Cesarsky, C.J. et al. 1996. ‘ISOCAM in flight’. Astronomy and Astrophysics 316, L32.Google Scholar
*Chapman, S.C., Blain, A.W., Ivison, R.J. and Smail, I.R. 2003. ‘A median redshift of 2.4 for galaxies bright at submillimetre wavelengths’. Nature 422, 695.CrossRefGoogle Scholar
*Chapman, S.C., Blain, A.W., Smail, I. and Ivison, R.J. 2005. ‘A redshift survey of the submillimeter galaxy population’. Astrophysical Journal 622, 772.CrossRefGoogle Scholar
*Charbonneau, D. et al. 2005. ‘Detection of thermal emission from an extrasolar planet’. Astrophysical Journal 626, 523.CrossRefGoogle Scholar
*Chary, R. and Elbaz, D. 2001. ‘Interpreting the cosmic infrared background: constraints on the evolution of the dust-enshrouded star formation rate’. Astrophysical Journal 556, 562.CrossRefGoogle Scholar
Chauvin, G. et al. 2004. ‘A giant planet candidate near a young brown dwarf. Direct VLT/NACO observations using IR wavefront sensing’. Astronomy and Astrophysics 425, L29.CrossRefGoogle Scholar
Chen, C.H. et al. 2005. ‘A Spitzer study of dusty disks around nearby, young stars’. Astrophysical Journal 634, 1372.CrossRefGoogle Scholar
Cheung, A.C. et al. 1968. ‘Detection of NH3 molecules in the interstellar medium by their microwave emission’. Physical Review Letters 21, 1701.CrossRefGoogle Scholar
*Chiang, E.I. and Goldreich, P. 1997. ‘Spectral energy distributions of T Tauri stars with passive circumstellar disks’. Astrophysical Journal 490, 368.CrossRefGoogle Scholar
Chown, M. 1996. Afterglow of Creation. London: Faber & Faber.Google Scholar
Clegg, P.E., Newstead, R.A. and Bastin, J.A. 1969. ‘Millimetre and submillimetre astronomy’. Philosophical Transactions of the Royal Society of London Series A 264, 1150.CrossRefGoogle Scholar
Clegg, P.E., Ade, P.A.R. and Rowan-Robinson, M. 1974. ‘Narrow-band observations of galactic and extragalactic sources at 1 mm’. Nature 249, 530.CrossRefGoogle Scholar
*Clegg, P.E. et al. ‘The ISO long-wavelength spectrometer’. 1996. Astronomy and Astrophysics 315, L38.Google Scholar
*Clemens, D.P. and Barvainis, R. 1988. ‘A catalog of small, optically selected molecular clouds – Optical, infrared, and millimeter properties’. Astrophysical Journal Supplement Series 68, 257.CrossRefGoogle Scholar
Coblentz, W.W. 1914.’Note on the radiation from stars’. Publications of the Astronomical Society of the Pacific 26, 169.CrossRefGoogle Scholar
Coblentz, W.W. 1922. ‘New measurements of stellar radiation’. Astrophysical Journal 55, 20.CrossRefGoogle Scholar
*Cohen, J.G., Persson, S.E. and Frogel, J.A. 1978. ‘Infrared photometry, bolometric magnitudes, and effective temperatures for giants in M3, M13, M92, and M67’. Astrophysical Journal 222, 165.CrossRefGoogle Scholar
*Cohen, J.G., Persson, S.E., Elias, J.H. and Frogel, J.A. 1981. ‘Bolometric luminosities and infrared properties of carbon stars in the Magellanic Clouds and the Galaxy’. Astrophysical Journal 249, 481.CrossRefGoogle Scholar
*Cohen, M. and Kuhi, L.V. 1979. ‘Observational studies of pre-main-sequence evolution’. Astrophysical Journal Supplement Series 41, 743.CrossRefGoogle Scholar
*Cohen, M. et al. 1999. ‘Spectral irradiance calibration in the infrared. X. A self-consistent radiometric all-sky network of absolutely calibrated stellar spectra’. Astronomical Journal 117, 1864.CrossRefGoogle Scholar
*Cohen, R.S. et al. 1988. ‘A complete CO survey of the Large Magellanic Cloud’. Astrophysical Journal Letters 331, L95.CrossRefGoogle Scholar
*Cole, S. et al. 2001. ‘The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions’. Monthly Notices of the Royal Astronomical Society 326, 255.CrossRefGoogle Scholar
*Condon, J.J., Huang, Z.-P., Yin, Q.F. and Thuan, T.X. 1991. ‘Compact starbursts in ultraluminous infrared galaxies’. Astrophysical Journal 378, 65.CrossRefGoogle Scholar
Conway Morris, S. 2003. Life’s Solution: Inevitable Humans in a Lonely Universe. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cooke, J. et al. 2009. ‘Type IIn supernovae at redshift ~2 from archival data’. Nature 460, 237.CrossRefGoogle Scholar
Coppin, K. et al. 2006. ‘The SCUBA half-degree extragalactic survey (SHADES)’. Monthly Notices of the Royal Astronomical Society 372, 1621.CrossRefGoogle Scholar
*Cowie, L.L., Songaila, A., Hu, E.M. and Cohen, J.G. 1996. ‘New insight on galaxy formation and evolution from Keck spectroscopy of the Hawaii deep fields’. Astronomical Journal 112, 839.CrossRefGoogle Scholar
*Crovisier, J. et al. 1997. ‘The spectrum of Comet Hale-Bopp (C/1995 01) observed with the Infrared Space Observatory at 2.9 AU from the Sun’. Science 275, 1904.CrossRefGoogle Scholar
Cutri, R.M. et al. 1994. ‘IRAS F15307+3252: a hyperluminous infrared galaxy at z = 0.93’. Astrophysical Journal Letters 424, L65.CrossRefGoogle Scholar
*Daddi, E. et al. 2004. ‘A new photometric technique for the joint selection of star-forming and passive galaxies at 1.4 < z < 2.5’. Astrophysical Journal 617, 746.CrossRefGoogle Scholar
Daddi, E. et al. 2005. ‘Passively evolving early-type galaxies at 1.4 < z < 2.5 in the Hubble Ultra Deep Field’. Astrophysical Journal 626, 680.CrossRefGoogle Scholar
*Dahn, C.C. et al. 2002. ‘Astrometry and photometry for cool dwarfs and brown dwarfs’. Astronomical Journal 124, 1170.CrossRefGoogle Scholar
*Dale, D.A. et al. 2001. ‘The infrared spectral energy distribution of normal star-forming galaxies’. Astrophysical Journal 549, 215.CrossRefGoogle Scholar
*Dale, D.A. and Helou, G. 2002. ‘The infrared spectral energy distribution of normal star-forming galaxies: calibration at far-infrared and submillimeter wavelengths’. Astrophysical Journal 576, 159.CrossRefGoogle Scholar
*D’Alessio, P., Calvet, N. and Hartmann, L. 2001. ‘Accretion disks around young objects. III. Grain growth’. Astrophysical Journal 553, 321.CrossRefGoogle Scholar
*Dame, T.M., Elmegreen, B.G., Cohen, R.S. and Thaddeus, P. 1986. ‘The largest molecular cloud complexes in the first galactic quadrant’. Astrophysical Journal 305, 892.CrossRefGoogle Scholar
*Dame, T.M. et al. 1987. ‘A composite CO survey of the entire Milky Way’. Astrophysical Journal 322, 706.CrossRefGoogle Scholar
*Dame, T.M., Hartmann, D. and Thaddeus, P. 2001. ‘The Milky Way in molecular clouds: a new complete CO survey’. Astrophysical Journal 547, 792.CrossRefGoogle Scholar
*Danchi, W.C. et al. 1994. ‘Characteristics of dust shells around 13 late-type stars’. Astronomical Journal 107, 1469.CrossRefGoogle Scholar
Davidson, K. and Harwit, M. 1967. ‘Infrared and radio appearance of cocoon stars’. Astrophysical Journal 148, 443.CrossRefGoogle Scholar
Davies, J.K. et al. 1984. ‘The IRAS fast-moving object search’. Nature 309, 315.CrossRefGoogle Scholar
Davis, L., Jr. and Greenstein, J.L. 1951. ‘The polarization of starlight by aligned dust grains’. Astrophysical Journal 114, 206.CrossRefGoogle Scholar
de Bernadis, P. et al. 2000. ‘A flat Universe from high resolution maps of the cosmic microwave background radiation’. Nature 404, 955.CrossRefGoogle Scholar
*de Graauw, T. et al. 1996. ‘Observing with the ISO short-wavelength spectrometer’. Astronomy and Astrophysics 315, L49.Google Scholar
de Graauw, T. et al. 2009. ‘The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI)’. European Astronomical Society Publication Series 34, 3.CrossRefGoogle Scholar
de Graauw, T. et al. 2010. ‘The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI)’. Astronomy and Astrophysics 518, L6.CrossRefGoogle Scholar
*de Grijp, M.H.K., Miley, G.K., Lub, J. and de Jong, T. 1985. ‘Infrared Seyferts – a new population of active galaxies?’. Nature 314, 240.CrossRefGoogle Scholar
*de Jong, R.S. 1996a. ‘Near-infrared and optical broadband surface photometry of 86 face-on disk dominated galaxies. III. The statistics of the disk and bulge parameters’. Astronomy and Astrophysics 313, 45.Google Scholar
*de Jong, R.S. 1996b. ‘Near-infrared and optical broadband surface photometry of 86 face-on disk dominated galaxies. IV. Using color profiles to study stellar and dust content of galaxies’. Astronomy and Astrophysics 313, 377.Google Scholar
*de Jong, T. et al. 1984. ‘IRAS observations of Shapley–Ames galaxies’. Astrophysical Journal Letters 278, L67.CrossRefGoogle Scholar
*de Jong, T., Klein, U., Wielebinski, R. and Wunderlich, E. 1985. ‘Radio continuum and far-infrared emission from spiral galaxies – a close correlation’. Astronomy and Astrophysics 147, L6.Google Scholar
*Deming, D., Seagar, S., Richardson, L.J. and Harrington, J. 2005. ‘Infrared radiation from an extrasolar planet’. Nature 434, 740.CrossRefGoogle ScholarPubMed
Dermott, S.F., Nicholson, P.D., Burns, J.A. and Houck, J.R. 1984. ‘Origin of the solar system dust bands discovered by IRAS’. Nature 312, 505.CrossRefGoogle Scholar
Dermott, S.F. and Nicholson, P.D. 1989. ‘IRAS dust bands and the origin of the zodiacal cloud’. Highlights of Astronomy 8, 259.CrossRefGoogle Scholar
*Desert, F.-X., Boulanger, F. and Puget, J.L. 1990. ‘Interstellar dust models for extinction and emission’. Astronomy and Astrophysics 237, 215.Google Scholar
*D’Hendecourt, L.B., Allamandola, L.J. and Greenberg, J.M. 1985. ‘Time dependent chemistry in dense molecular clouds. I – Grain surface reactions, gas/grain interactions and infrared spectroscopy’. Astronomy and Astrophysics 152, 130.Google Scholar
Dicke, R.H., Peebles, P.J.E., Roll, P.G. and Wilkinson, D.T. 1965. ‘Cosmic black-body radiation’. Astrophysical Journal 142, 414.CrossRefGoogle Scholar
Dole, H. et al. 2006. ‘The cosmic infrared background resolved by Spitzer. Contributions of mid-infrared galaxies to the far-infrared background’. Astronomy and Astrophysics 451, 517.CrossRefGoogle Scholar
*Downes, D., Genzel, R., Becklin, E.E. and Wynn-Williams, C.G. 1981. ‘Outflow of matter in the KL Nebula – the role of IRC2’. Astrophysical Journal 244, 869.CrossRefGoogle Scholar
*Downes, D. and Solomon, P.M. 1998. ‘Rotating nuclear rings and extreme starbursts in ultraluminous galaxies’. Astrophysical Journal 597, 615.CrossRefGoogle Scholar
Doyle, D., Pilbratt, G. and Tauber, J. 2009. ‘The Herschel and Planck telescopes’. Proceedings of the Institute of Electrical and Electronics Engineers 97, 1403.CrossRefGoogle Scholar
*Draine, B.T. and Salpeter, E.E. 1979a. ‘On the physics of dust grains in hot gas’. Astrophysical Journal 231, 77.CrossRefGoogle Scholar
*Draine, B.T. and Salpeter, E.E. 1979b. ‘Destruction mechanisms for interstellar dust’. 1979b. Astrophysical Journal 231, 438.CrossRefGoogle Scholar
*Draine, B.T. and Lee, H.M. 1984. ‘Optical properties of interstellar graphite and silicate grains’. Astrophysical Journal 285, 89.CrossRefGoogle Scholar
*Draine, B.T. 1985. ‘Tabulated optical properties of graphite and silicate grains’. Astrophysical Journal Supplement Series 57, 587.CrossRefGoogle Scholar
*Draine, B.T. and Anderson, N. 1985. ‘Temperature fluctuations and infrared emission from interstellar grains’. Astrophysical Journal 292, 494.CrossRefGoogle Scholar
*Draine, B.T. 1988. ‘The discrete-dipole approximation and its application to interstellar graphite grains’. Astrophysical Journal 333, 848.CrossRefGoogle Scholar
Draine, B.T. and Lazarian, A. 1998. ‘Diffuse galactic emission from spinning dust grains’. Astrophysical Journal Letters 494, L19.CrossRefGoogle Scholar
*Draine, B.T. 2003. ‘Interstellar dust grains’. Annual Review of Astronomy and Astrophysics 41, 241.CrossRefGoogle Scholar
*Duley, W.W. and Williams, D.A. 1981. ‘The infrared spectrum of interstellar dust – surface functional groups on carbon’. Monthly Notices of the Royal Astronomical Society 161, 145.Google Scholar
*Dunne, L. et al. 2000. ‘The SCUBA local universe galaxy survey – I. First measurements of the submillimetre luminosity and dust mass functions’. Monthly Notices of the Royal Astronomical Society 315, 115.CrossRefGoogle Scholar
Dunne, L. and Eales, S. 2001. ‘The SCUBA Local Universe Galaxy Survey – II. 450-micron data: evidence for cold dust in bright IRAS galaxies’. Monthly Notices of the Royal Astronomical Society 327, 697.CrossRefGoogle Scholar
*Dwek, E. et al. 1995. ‘Morphology, near-infrared luminosity, and mass of the Galactic bulge from COBE DIRBE observations’. Astrophysical Journal 445, 716.CrossRefGoogle Scholar
*Eales, S. et al. 1999. ‘The Canada-UK deep submillimeter survey: first submillimeter images, the source counts, and resolution of the background’. Astrophysical Journal 515, 518.CrossRefGoogle Scholar
Eales, S. et al. 2000. ‘The Canada-UK Deep Submillimeter survey’. Astronomical Journal 120, 2244.CrossRefGoogle Scholar
*Eckart, A. and Genzel, R. 1997. ‘Stellar proper motions in the central 0.1 pc of the Galaxy’. Monthly Notices of the Royal Astronomical Society 284, 576.CrossRefGoogle Scholar
Eddington, A. 1925. Internal Constitution of the Stars. Cambridge: Cambridge University Press.Google Scholar
Eddy, J.A. 1972. ‘Thomas A. Edison and infra-red astronomy’. Journal of the History of Astronomy 3, 165.CrossRefGoogle Scholar
Edgeworth, K.E. 1943. ‘The evolution of our planetary system’. Journal of the British Astronomical Association 53, 181.Google Scholar
Edgeworth, K.E. 1949. ‘The origin and evolution of the Solar System’. Monthly Notices of the Royal Astronomical Society 109, 600.CrossRefGoogle Scholar
Efstathiou, A. and Rowan-Robinson, M. 1990. ‘Radiative transfer in axisymmetric dust clouds’. Monthly Notices of the Royal Astronomical Society 245, 275.Google Scholar
Efstathiou, A. and Rowan-Robinson, M. 1991. ‘Radiative transfer in axisymmetric dust clouds II – Models of rotating protostars’. Monthly Notices of the Royal Astronomical Society 252, 528.CrossRefGoogle Scholar
Efstathiou, A. and Rowan-Robinson, M. 1995. ‘Dusty discs in active galactic nuclei’. Monthly Notices of the Royal Astronomical Society 273, 649.CrossRefGoogle Scholar
Efstathiou, A., Rowan-Robinson, M. and Siebenmorgen, R. 2000. ‘Massive star formation in galaxies: radiative transfer models of the UV to millimetre emission of starburst galaxies’. Monthly Notices of the Royal Astronomical Society 313, 734.CrossRefGoogle Scholar
Egami, E. et al. 2005. ‘Spitzer and Hubble Telescope constraints on the physical properties of the z~7 galaxy strongly lensed by A2218’. Astrophysical Journal Letters 618, L5.CrossRefGoogle Scholar
*Eisenhauer, F. et al. 2005. ‘SINFONI in the Galactic Center: young stars and infrared flares in the central light-month’. Astrophysical Journal 628, 246.CrossRefGoogle Scholar
*Elbaz, D. et al. 1999. ‘Source counts from the 15 μm ISOCAM Deep Surveys’. Astronomy and Astrophysics 351, L37.Google Scholar
*Elbaz, D. et al. 2002. ‘The bulk of the cosmic infrared background resolved by ISOCAM’. Astronomy and Astrophysics 384, 848.CrossRefGoogle Scholar
*Elias, J.H. 1978a. ‘An infrared study of the Ophiuchus dark cloud’. Astrophysical Journal 224, 453.CrossRefGoogle Scholar
*Elias, J.H. 1978b. ‘A study of the Taurus dark cloud complex’. Astrophysical Journal 224, 857.CrossRefGoogle Scholar
Elias, J.H. et al. 1978. ‘1 millimeter continuum observations of extragalactic objects’. Astrophysical Journal 220, 25.CrossRefGoogle Scholar
*Elias, J.H., Frogel, J.A., Matthews, K. and Neugebauer, G. 1982. ‘Infrared standard stars’. Astronomical Journal 87, 1029.CrossRefGoogle Scholar
*Elitzur, M., Goldreich, P. and Scoville, N. 1976. ‘OH-IR stars. II. A model for the 1612 MHz masers’. Astrophysical Journal 205, 384.CrossRefGoogle Scholar
*Elmegreen, B.G. and Falgarone, E. 1996. ‘A fractal origin for the mass spectrum of interstellar clouds’. Astrophysical Journal 471, 816.CrossRefGoogle Scholar
*Elvis, M. et al. 1994. ‘Atlas of quasar energy distributions’. Astrophysical Journal Supplement Series 95, 1.CrossRefGoogle Scholar
Emerson, J.P., Jennings, R.E. and Moorwood, A.F.M. 1973. ‘Far-infrared observations of HII regions from balloon altitudes’. Astrophysical Journal 184, 401.CrossRefGoogle Scholar
*Epchtein, N. et al. 1997. ‘The deep near-infrared southern sky survey (DENIS)’. ESO Messenger 87, 27.Google Scholar
*Evans, N.J. et al. 2003. ‘From molecular cores to planet-forming disks: a SIRTF Legacy Program’. Publications of the Astronomical Society of the Pacific 115, 965.CrossRefGoogle Scholar
*Fabian, A.C. 1999. ‘The obscured growth of massive black holes’. Monthly Notices of the Royal Astronomical Society 308, L39.CrossRefGoogle Scholar
*Falgarone, E., Phillips, T.G. and Walker, C.K. 1991. ‘The edges of molecular clouds – fractal boundaries and density structure’. Astrophysical Journal 378, 186.CrossRefGoogle Scholar
Farrah, D. et al. 2002. ‘Hubble Space Telescope Wide Field Camera 2 observations of hyperluminous infrared galaxies’. Monthly Notices of the Royal Astronomical Society 329, 605.CrossRefGoogle Scholar
Fazio, G.G. et al. 1974. ‘A high-resolution map of the Orion Nebula region at far-infrared wavelengths’. Astrophysical Journal Letters 192, L23.CrossRefGoogle Scholar
*Fazio, G.G. et al. 2004. ‘The Infrared Array Camera (IRAC) for the Spitzer Space Telescope’. Astrophysical Journal Supplement Series 154, 10.CrossRefGoogle Scholar
Fellgett, P.B. 1951. ‘An exploration of infra-red stellar magnitudes using the photoconductivity of lead sulphide’. Monthly Notices of the Royal Astronomical Society 111, 537.CrossRefGoogle Scholar
*Fich, M., Blitz, L. and Stark, A.A. 1989. ‘The rotation curve of the Milky Way to 2 R(0)’. Astrophysical Journal 342, 272.CrossRefGoogle Scholar
*Figer, D.F. et al. 1999. ‘Hubble Space Telescope/NICMOS observations of massive stellar clusters near the Galactic Center’. Astrophysical Journal 525, 750.CrossRefGoogle Scholar
*Finkbeiner, D.P., Davis, M. and Schlegel, D.J. 1999. ‘Extrapolation of Galactic dust emission at 100 microns to cosmic microwave background radiation frequencies using FIRAS’. Astrophysical Journal 524, 867.CrossRefGoogle Scholar
*Fioc, M. and Rocca-Volmerange, B. 1997. ‘PEGASE: a UV to NIR spectral evolution model of galaxies. Application to the calibration of bright galaxy counts’. Astronomy and Astrophysics 326, 950.Google Scholar
*Fisher, K.B. et al. 1993. ‘The power spectrum of IRAS galaxies’. Astrophysical Journal 402, 42.CrossRefGoogle Scholar
*Fisher, K.B. et al. 1995. ‘The IRAS 1.2 Jy survey: redshift data’. Astrophysical Journal Supplement Series 100, 69.CrossRefGoogle Scholar
*Fixsen, D.J. et al. 1998. ‘The spectrum of the extragalactic far-infrared background from the COBE FIRAS observations’. Astrophysical Journal 508, 123.CrossRefGoogle Scholar
Fizeau, H. and Foucault, L. 1847. ‘Recherches sur les interférences des rayons calorifiques’. Comptes Rendus de l’Académie de Sciences 25, 447.Google Scholar
*Flores, H. et al. 1999. ‘15 micron Infrared Space Observatory observations of the 1415+52 Canada-France redshift survey field: the cosmic star formation rate as derived from deep ultraviolet, optical, mid-infrared, and radio photometry’. Astrophysical Journal 517, 148.CrossRefGoogle Scholar
Fox, M.J. et al. 2002. ‘The SCUBA 8-mJy Survey – II. Multiwavelength analysis of bright submillimetre sources’. Monthly Notices of the Royal Astronomical Society 331, 839.CrossRefGoogle Scholar
Franceschini, A. et al. 1991. ‘Galaxy counts and contributions to the background radiation from 1 micron to 1000 microns’. Astronomy and Astrophysics Supplement 89, 285.Google Scholar
Franceschini, A. et al. 2010. ‘Galaxy evolution from deep multi-wavelength infrared surveys: a prelude to Herschel’. Astronomy and Astrophysics 517, 74.CrossRefGoogle Scholar
*Franx, M. et al. 2003. ‘A significant population of red, near-infrared-selected high-redshift galaxies’. Astrophysical Journal Letters 587, L79.CrossRefGoogle Scholar
*Frogel, J.A., Persson, S.E., Matthews, K. and Aaronson, M. 1978. ‘Photometric studies of composite stellar systems. I – CO and JHK observations of E and S0 galaxies’. Astrophysical Journal 220, 75.CrossRefGoogle Scholar
*Frogel, J.A., Persson, S.E. and Cohen, J.G. 1981. ‘Infrared photometry of red giants in the globular cluster 47 Tucanae’. Astrophysical Journal 246, 842.CrossRefGoogle Scholar
*Frogel, J.A. and Whitford, A.E. 1987. ‘M giants in Baade’s window – infrared colors, luminosities, and implications for the stellar content of E and S0 galaxies’. Astrophysical Journal 320, 199.CrossRefGoogle Scholar
Furniss, I., Jennings, R.E. and Moorwood, A.F.M. 1972a. ‘Infrared astronomy – observations of M42, NGC 2024 and M1’. Nature 236, 6.Google Scholar
Furniss, I., Jennings, R.E. and Moorwood, A.F.M. 1972b. ‘Detection of far-infrared astronomical sources’. Astrophysical Journal Letters 176, L105.CrossRefGoogle Scholar
Furniss, I., Jennings, R.E. and Moorwood, A.F.M. 1975. Astrophysical Journal 202, 400.CrossRef
Gaitskell, J.N., Newstead, R.A. and Bastin, J.A. 1969. ‘Submillimetre solar radiation at sea level’. Philosophical Transactions of the Royal Society of London Series A 264, 1150.CrossRefGoogle Scholar
Gautier, T.N. et al. 1984. ‘IRAS images of the Galactic Centre’. Astrophysical Journal Letters 278, L57.CrossRefGoogle Scholar
*Geballe, T.R. et al. 2002. ‘Toward spectral classification of L and T dwarfs: infrared and optical spectroscopy and analysis’. Astrophysical Journal 564, 466.CrossRefGoogle Scholar
*Gehrz, R.D. and Woolf, N.J. 1971. ‘Mass loss from M stars’. Astrophysical Journal 165, 285.CrossRefGoogle Scholar
*Gehrz, R.D., Hackwell, J.A. and Jones, T.W. 1974. ‘Infrared observations of Be stars from 2.3 to 19.5 microns’. Astrophysical Journal 191, 675.CrossRefGoogle Scholar
*Genzel, R. and Downes, D. 1977. ‘H2O in the Galaxy: sites of newly formed OB stars’. Astronomy and Astrophysics Supplement 30, 14.Google Scholar
*Genzel, R., Reid, M.J., Moran, J.M. and Downes, D. 1981. ‘Proper motions and distances of H2O maser sources. I – The outflow in Orion-KL’. Astrophysical Journal 244, 884.CrossRefGoogle Scholar
Genzel, R., Crawford, M.K., Townes, C.H. and Watson, D.M. 1985. ‘The neutral-gas disk around the Galactic Center’. Astrophysical Journal 297, 766.CrossRefGoogle Scholar
*Genzel, R. and Townes, C.H. 1987. ‘Physical conditions, dynamics, and mass distribution in the center of the Galaxy’. Annual Review of Astronomy and Astrophysics 25, 377.CrossRefGoogle Scholar
*Genzel, R. and Stutzki, J. 1989. ‘The Orion Molecular Cloud and star-forming region’. Annual Review of Astronomy and Astrophysics 27, 41.CrossRefGoogle Scholar
*Genzel, R., Eckart, A., Ott, T. and Eisenhauer, F. 1997. ‘On the nature of the dark mass in the centre of the Milky Way’. Monthly Notices of the Royal Astronomical Society 291, 219.CrossRefGoogle Scholar
*Genzel, R. et al. 1998. ‘What powers ultraluminous IRAS galaxies?Astrophysical Journal 498, 579.CrossRefGoogle Scholar
Genzel, R. and Cesarsky, C.J. 2000. ‘Extragalactic results from the Infrared Space Observatory’. Annual Review of Astronomy and Astrophysics 38, 761.CrossRefGoogle Scholar
*Genzel, R. et al. 2003a. ‘The stellar cusp around the supermassive black hole in the Galactic Center’. Astrophysical Journal 594, 812.CrossRefGoogle Scholar
*Genzel, R. et al. 2003b. ‘Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre’. Nature 425, 934.CrossRefGoogle ScholarPubMed
Gezari, D.Y., Joyce, R.R. and Simon, M. 1973. ‘Observations of the Galactic nucleus at 350 microns’. Astrophysical Journal Letters 179, L67.CrossRefGoogle Scholar
*Ghez, A.M., Neugebauer, G. and Matthews, K. 1993. ‘The multiplicity of T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius: a 2.2 micron speckle imaging survey’. Astronomical Journal 106, 2005.CrossRefGoogle Scholar
*Ghez, A.M., Klein, B.L., Morris, M. and Becklin, E.E. 1998. ‘High proper-motion stars in the vicinity of Sagittarius A*: evidence for a supermassive black hole at the center of our galaxy’. Astrophysical Journal 509, 678.CrossRefGoogle Scholar
*Ghez, A.M. et al. 2003. ‘The first measurement of spectral lines in a short-period star bound to the galaxy’s central black hole: a paradox of youth’. Astrophysical Journal Letters 586, L127.CrossRefGoogle Scholar
*Ghez, A.M. et al. 2005. ‘Stellar orbits around the Galactic Center black hole’. Astrophysical Journal 620, 744.CrossRefGoogle Scholar
*Giavalisco, M. et al. 2004. ‘The great observatories origins deep survey: initial results from optical and near-infrared imaging’. Astrophysical Journal Letters 600, L93.CrossRefGoogle Scholar
Gillett, F.C., Low, F.J. and Stein, W.A. 1967. ‘Infrared observations of the planetary nebula NGC 7027’. Astrophysical Journal Letters 149, L97.CrossRefGoogle Scholar
Gillett, F.C., Low, F.J. and Stein, W.A. 1968a. ‘The spectrum of NML Cygnus from 2.8 to 5.6 microns’. Astrophysical Journal Letters 153, L185.CrossRefGoogle Scholar
Gillett, F.C., Low, F.J. and Stein, W.A. 1968b. ‘Stellar spectra from 2.8 to 14 microns’. Astrophysical Journal 154, 677.CrossRefGoogle Scholar
*Gillett, F.C. and Forrest, W.J. 1973. ‘Spectra of the Becklin-Neugebauer point source and the Kleinmann-Low nebula from 2.8 to 13.5 microns’. Astrophysical Journal 179, 483.CrossRefGoogle Scholar
*Gillett, F.C., Forrest, W.J. and Merrill, K.M. 1973. ‘8–13-micron spectra of NGC 7027, BD +30 3639, and NGC 6572’. Astrophysical Journal 183, 87.CrossRefGoogle Scholar
*Gillett, F.C. et al. 1975. ‘The 8–13 micron spectra of compact H II regions’. Astrophysical Journal 200, 609.CrossRefGoogle Scholar
Gilman, R.C. 1969. ‘On the composition of interstellar grains’. Astrophysical Journal Letters 155, L185.CrossRefGoogle Scholar
*Gizis, J.E. et al. 2000. ‘New neighbors from 2MASS: activity and kinematics at the bottom of the main sequence’. Astronomical Journal 120, 1085.CrossRefGoogle Scholar
*Goldreich, P. and Kwan, J. 1974. ‘Molecular clouds’. Astrophysical Journal 189, 441.CrossRefGoogle Scholar
*Goldreich, P. and Scoville, N. 1976. ‘OH-IR stars. I – Physical properties of circumstellar envelopes’. Astrophysical Journal 205, 144.CrossRefGoogle Scholar
Gomes, R., Levison, H.F., Tsiganis, K. and Morbidelli, A. 2005. ‘Origins of the cataclysmic Late Heavy Bombardment period of the terrestrial planets’. Nature 435, 466.CrossRefGoogle Scholar
Gould, R.J. and Harwit, M. 1963. ‘Expected near infrared radiation from interstellar molecular hydrogen’. Astronomical Journal 137, 694.Google Scholar
*Granato, G.L. and Danese, L. 1994. ‘Thick tori around active galactic nuclei – A comparison of model predictions with observations of the infrared continuum and silicate features. Monthly Notices of the Royal Astronomical Society 268, 235.CrossRefGoogle Scholar
Grasdalen, G.L. and Gaustad, J.E. 1971. ‘A comparison of the Two Micron Survey with the Dearborn Catalog of Faint Red Stars’. Astronomical Journal 76, 231.CrossRefGoogle Scholar
Greaves, J. 2005. ‘Disks around stars and the growth of planetary systems’. Science 307, 68.CrossRefGoogle ScholarPubMed
Greaves, J. 2006. ‘Space debris and planet detection’. Astronomy and Geophysics 47, 21.CrossRefGoogle Scholar
Greaves, J.S. et al. 1998. ‘A dust ring around Epsilon Eridani: analog to the young Solar System’. Monthly Notices of the Royal Astronomical Society 506, L133.Google Scholar
Greenberg, M. 1963. ‘Interstellar grains’. Annual Review of Astronomy and Astrophysics 1, 267.CrossRefGoogle Scholar
Greve, T.R. et al. 2005. ‘An interferometric CO survey of luminous submillimetre galaxies’. Monthly Notices of the Royal Astronomical Society 359, 1165.CrossRefGoogle Scholar
Griffin, M.J. et al. 2009. ‘The SPIRE instrument’. European Astronomical Society Publication Series 34, 33.CrossRefGoogle Scholar
Griffin, M.J. et al. 2010. ‘The Herschel-SPIRE instrument and its in-flight performance’. Astronomy and Astrophysics 518, L3.CrossRefGoogle Scholar
Grogan, K., Dermott, S.F. and Gustafson, B.A.S. 1996. ‘An estimation of the interstellar contribution to the zodiacal thermal emission’. Astrophysical Journal 472, 812.CrossRefGoogle Scholar
*Guiderdoni, B. and Rocca-Volmerange, B. 1987. ‘A model of spectrophotometric evolution for high-redshift galaxies’. Astronomy and Astrophysics 186, 1.Google Scholar
*Guiderdoni, B., Hivon, E., Bouchet, F.R. and Maffei, B. 1998. ‘Semi-analytic modelling of galaxy evolution in the IR/submm range’. Monthly Notices of the Royal Astronomical Society 295, 877.CrossRefGoogle Scholar
Gush, H.P., Halpern, M. and Wishnow, E.H. 1990. Physical Review Letters 65, 537.CrossRef
Haas, M. et al. 1998. ‘On the far-infrared emission of quasars’. Astrophysical Journal Letters 503, L109.CrossRefGoogle Scholar
Habing, H.J. et al. 1985. ‘Stars in the bulge of our Galaxy detected by IRAS’. Astronomy and Astrophysics 152, L1.Google Scholar
*Habing, H.J. 1996. ‘Circumstellar envelopes and asymptotic giant branch stars’. Astronomy and Astrophysics Review 7, 97.CrossRefGoogle Scholar
Habing, H.J. et al. 2001. ‘Incidence and survival of remnant disks around main-sequence stars’. Astronomy and Astrophysics 365, 545.CrossRefGoogle Scholar
Hacking, P. and Houck, J.R. 1987. ‘A very deep IRAS survey at l=97o, b=30o’. Astrophysical Journal Supplement Series 63, 311.CrossRefGoogle Scholar
Hacking, P., Houck, J.R. and Condon, J.J. 1987. ‘A very deep IRAS survey – Constraints on the evolution of starburst galaxies’. Astrophysical Journal Letters 316, L15.CrossRefGoogle Scholar
Hall, F.F., Jr. 1964. ‘An infrared stellar mapping program’. Memoirs of the Royal Society of Liège 9, 432.Google Scholar
Hall, J.S. 1949. Observations of the polarized light from stars’. Science 109, 166.CrossRefGoogle ScholarPubMed
*Hanel, R. et al. 1981. ‘Infrared observations of the Saturnian system from Voyager’. Science 212, 192.CrossRefGoogle ScholarPubMed
Hao, L. et al. 2005. ‘The detection of silicate emission from quasars at 10 and 18 microns’. Astrophysical Journal Letters 625, L75.CrossRefGoogle Scholar
Harper, D.A., Low, F.J., Rieke, G.H. and Armstrong, K.R. 1972. ‘Observations of planets, nebulae and galaxies at 350 microns’. Astrophysical Journal Letters 177, L21.CrossRefGoogle Scholar
Hauser, M.G. et al. 1984. ‘IRAS observations of the diffuse infrared background’. Astrophysical Journal Letters 278, L15.CrossRefGoogle Scholar
*Hauser, M.G. et al. 1998. ‘The COBE diffuse infrared background experiment search for the cosmic infrared background. I. Limits and detections’. Astrophysical Journal 508, 25.CrossRefGoogle Scholar
*Hauser, M.G. and Dwek, E. 2001. ‘The cosmic infrared background: measurements and implications’. Annual Review of Astronomy and Astrophysics 39, 249.CrossRefGoogle Scholar
*Heckman, T.M., Armus, L. and Miley, G.K. 1990. ‘On the nature and implications of starburst-driven galactic winds’. Astrophysical Journal Supplement Series 74, 833.CrossRefGoogle Scholar
*Helou, G., Soifer, B.T. and Rowan-Robinson, M. 1985. ‘Thermal infrared and nonthermal radio – Remarkable correlation in disks of galaxies’. Astrophysical Journal Letters 298, L7.CrossRefGoogle Scholar
*Helou, G. 1986. ‘The IRAS colors of normal galaxies’. Astrophysical Journal Letters 311, L33.CrossRefGoogle Scholar
*Helou, G., Khan, I.R., Malek, L. and Boehmer, L. 1988. ‘IRAS observations of galaxies in the Virgo cluster area’. Astrophysical Journal Supplement Series 68, 151.CrossRefGoogle Scholar
Helou, G. et al. 2000. ‘The mid-infrared spectra of normal galaxies’. Astrophysical Journal 532, 21.CrossRefGoogle ScholarPubMed
Herbig, G.H. 1962. ‘The properties and problems of T Tauri stars and related objects’. Advances in Astronomy and Astrophysics 1, 47.CrossRefGoogle Scholar
Herschel, J.F.W. 1840. ‘On the Chemical Action of the Rays of the solar spectrum’. Philosophical Transactions of the Royal Society of London 130, 1.CrossRef
Herschel, W. 1800a. ‘Investigation of the powers of the prismatic colours to heat and illuminate objects’. Philosophical Transactions of the Royal Society of London 90, 255.CrossRefGoogle Scholar
Herschel, W. 1800b. ‘Experiments on the refrangibility of the invisible rays of the Sun’. Philosophical Transactions of the Royal Society of London 90, 284.CrossRefGoogle Scholar
Herschel, W. 1800c. ‘Experiments on the solar, and on the terrestrial rays that occasion heat, Parts I and II’. Philosophical Transactions of the Royal Society of London 90, 293 and 437.CrossRefGoogle Scholar
*Higdon, S.J.U. et al. 2004. ‘The SMART data analysis package for the infrared spectrograph on the Spitzer Space Telescope’. Publications of the Astronomical Society of the Pacific 116, 975.CrossRefGoogle Scholar
*Hildebrand, R.H. 1983. ‘The determination of cloud masses and dust characteristics from submillimetre thermal emission’. Quarterly Journal of the Royal Astronomical Society 24, 267.Google Scholar
*Hillenbrand, L.A., Strom, S.E., Vrba, F.J. and Keene, J. 1992. ‘Herbig Ae/Be stars – Intermediate-mass stars surrounded by massive circumstellar accretion disks’. Astrophysical Journal 397, 613.CrossRefGoogle Scholar
Hiltner, W.A. 1949. ‘Polarisation of light from distant stars by interstellar medium’. Science 109, 165.CrossRefGoogle Scholar
*Ho, P.T.P. and Townes, C.H. 1983. ‘Interstellar ammonia’. Annual Review of Astronomy and Astrophysics 21, 239.CrossRefGoogle Scholar
Hoekstra, H. et al. 2006. ‘First cosmic shear results from the Canada-France-Hawaii Telescope Wide Synoptic Legacy Survey’. Astrophysical Journal 647, 116.CrossRefGoogle Scholar
Hoffmann, W.F. and Frederick, C.L. 1969. ‘Far-infrared observation of the Galactic-Center region at 100 microns’. Astrophysical Journal Letters 159, L9.CrossRefGoogle Scholar
Hoffmann, W.F., Frederick, C.L. and Emery, R.J. 1971a. ‘100-micron map of the Galactic-Center region’. Astrophysical Journal Letters 164, L23.CrossRefGoogle Scholar
Hoffmann, W., Frederick, K. and Emery, R. 1971b. ‘100-micron survey of the Galactic-Plane’. Astrophysical Journal Letters 170, L89.CrossRefGoogle Scholar
*Holland, W.S. et al. 1998. ‘Submillimetre images of dusty debris around nearby stars’. Nature 392, 788.CrossRefGoogle Scholar
*Holland, W.S. et al. 1999. ‘SCUBA: a common-user submillimetre camera operating on the James Clerk Maxwell Telescope’. Monthly Notices of the Royal Astronomical Society 303, 659.CrossRefGoogle Scholar
*Hollenbach, D.J., Werner, M.W. and Salpeter, E.E. 1971. ‘Molecular hydrogen in HI regions’. Astrophysical Journal 163, 165.CrossRefGoogle Scholar
*Hollenbach, D. and McKee, C.F. 1979. ‘Molecule formation and infrared emission in fast interstellar shocks. I. Physical processes’. Astrophysical Journal Supplement Series 41, 555.CrossRefGoogle Scholar
*Hollenbach, D. and McKee, C.F. 1989. ‘Molecule formation and infrared emission in fast interstellar shocks. III – Results for J shocks in molecular clouds’. Astrophysical Journal 342, 306.CrossRefGoogle Scholar
*Hollenbach, D.J., Takahashi, T. and Tielens, A.G.G.M. 1991. ‘Low-density photodissociation regions’. Astrophysical Journal 377, 192.CrossRefGoogle Scholar
Holmes, R. 2008. The Age of Wonder. London: Harper.Google Scholar
Hoskins, M. 1963. William Herschel and the Construction of the Heavens. London: Oldbourne.Google Scholar
Hoskins, M. 2011. Discoverers of the Universe: William and Caroline Herschel. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Houck, J.R., Soifer, B.T., Pipher, J.L. and Harwit, M. 1971. ‘Rocket-infrared four-colour photometry of the Galaxy’s central region’. Astrophysical Journal Letters 169, L31.CrossRefGoogle Scholar
Houck, J.R. et al. 1984. ‘Unidentified point-sources in the IRAS Minisurvey’. Astrophysical Journal Letters 278, L63.CrossRefGoogle Scholar
*Houck, J.R. et al. 2004. ‘The Infrared Spectrograph (IRS) on the Spitzer Space Telescope’. Astrophysical Journal Supplement Series 154, 18.CrossRefGoogle Scholar
Hoyle, F. and Wickramasinghe, N.C. 1962. ‘On graphite particles as interstellar grains’. Monthly Notices of the Royal Astronomical Society 124, 417.CrossRefGoogle Scholar
*Hu, E.M. et al. 2002. ‘A redshift z=6.56 galaxy behind the cluster Abell 370’. Astrophysical Journal Letters 568, L75.CrossRefGoogle Scholar
Huang, S.-S. 1969a. ‘Transfer of radiation in circumstellar dust envelopes. I. Extreme cases. Astrophysical Journal 157, 835.CrossRefGoogle Scholar
Huang, S.-S. 1969b. ‘Transfer of radiation in circumstellar dust envelopes. II. Intermediate case’. Astrophysical Journal 157, 843.CrossRefGoogle Scholar
Huggins, P.J. et al. 1975. ‘Detection of carbon monoxide in the Large Magellanic Cloud’. Monthly Notices of the Royal Astronomical Society 173, 69.CrossRefGoogle Scholar
Huggins, W. 1868a. ‘Further observations of some of the stars and nebulae’. Philosophical Transactions of the Royal Society of London 158, 529.CrossRefGoogle Scholar
Huggins, W. 1868b. ‘Note on the heat of the stars’. Proceedings of the Royal Society of London 17, 309.CrossRefGoogle Scholar
*Hughes, D.H. et al. 1998. ‘High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey’. Nature 394, 241.CrossRefGoogle Scholar
*Impey, C.D. and Neugebauer, G. 1988. ‘Energy distributions of blazars’. Astronomical Journal 95, 307.CrossRefGoogle Scholar
*Indebetouw, R. et al. 2005. ‘The wavelength dependence of interstellar extinction from 1.25 to 8.0 μm using GLIMPSE data’. Astrophysical Journal 619, 931.CrossRefGoogle Scholar
*Ivison, R.J. et al. 1998. ‘A hyperluminous galaxy at z=2.8 found in a deep submillimetre survey’. Monthly Notices of the Royal Astronomical Society 298, 583.CrossRefGoogle Scholar
Ivison, R.J. et al. 2000. ‘The diversity of SCUBA-selected galaxies’. Monthly Notices of the Royal Astronomical Society 315, 209.CrossRefGoogle Scholar
*Ivison, R.J. et al. 2002. ‘Deep radio imaging of the SCUBA 8-mJy survey fields: submillimetre source identifications and redshift distribution’. Monthly Notices of the Royal Astronomical Society 337, 11.CrossRefGoogle Scholar
*Jarrett, T.H. et al. 2000. ‘2MASS extended source catalog: overview and algorithms’. Astronomical Journal 119, 2498.CrossRefGoogle Scholar
*Jarrett, T.H. et al. 2003. ‘The 2MASS large galaxy atlas’. Astronomical Journal 125, 525.CrossRefGoogle Scholar
Jennings, R.E. and Moorwood, A.F.M. 1971. ‘Atmospheric emission measurements with a balloon-borne Michelson interferometer’. Applied Optics 10, 231.CrossRefGoogle ScholarPubMed
Jennings, R.E. 1986. ‘History of British infrared astronomy since the Second World War’. Quarterly Journal of the Royal Astronomical Society27, 4.Google Scholar
Johnson, H.L. 1962. ‘Infrared stellar photometry’. Astrophysical Journal 135, 69.CrossRefGoogle Scholar
*Johnson, H.L. 1965. ‘Interstellar extinction in the Galaxy’. Astrophysical Journal 141, 923.CrossRefGoogle Scholar
Johnson, H.L. 1966a. ‘Infrared photometry of galaxies’. Astrophysical Journal 143, 187.CrossRefGoogle Scholar
*Johnson, H.L. 1966b. ‘Astronomical measurements in the infrared’. Annual Review of Astronomy and Astrophysics 4, 193.CrossRefGoogle Scholar
*Johnson, H.L., Iriarte, B., Mitchell, R.I. and Wisniewskj, W.Z. 1966. ‘UBVRIJKL photometry of the bright stars’. Communications of the Lunar and Planetary Laboratory 4, 99.Google Scholar
Jones, M.H. and Rowan-Robinson, M. 1993. ‘A physical model of the IRAS zodiacal bands’. Monthly Notices of the Royal Astronomical Society 264, 237.CrossRefGoogle Scholar
Joseph, R.D., Wade, R. and Wright, G.S. 1984. ‘Detection of molecular hydrogen in two merging galaxies’. Nature 311, 132.CrossRefGoogle Scholar
Joseph, R.D., Meikle, W.P.S., Robertson, N.A. and Wright, G.S. 1984. ‘Recent star formation in interacting galaxies. I – Evidence from JHKL photometry’. Monthly Notices of the Royal Astronomical Society 209, 111.CrossRefGoogle Scholar
Joseph, R.D. and Wright, G.S. 1985. ‘Recent star formation in interacting galaxies. II – Super starburst in merging galaxies’. Monthly Notices of the Royal Astronomical Society 214, 87.CrossRefGoogle Scholar
Joyce, R.R., Gezari, D.Y. and Simon, M. 1972. ‘345-micron ground-based observations of M17, M82 and Venus’. Astrophysical Journal Letters 171, L67.CrossRefGoogle Scholar
Kalas, P. et al. 2008. ‘Optical images of an extrasolar planet 25 light-years from Earth’. Science 322, 1345.CrossRefGoogle Scholar
*Kauffmann, G. and Charlot, S. 1999. ‘K-band luminosity function at z=1: a powerful constraint on galaxy formation theory’. Monthly Notices of the Royal Astronomical Society 297, L23.CrossRefGoogle Scholar
*Kaufman, M.J., Wolfire, M.G., Hollenbach, D.J. and Luhman, M.L. 1999. ‘Far-infrared and submillimeter emission from Galactic and extragalactic photodissociation regions’. Astrophysical Journal 527, 795.CrossRefGoogle Scholar
Kelsall, T. et al. 1998. ‘The COBE diffuse background experiment search for the cosmic infrared background II: model of the interplanetary dust cloud’. Astrophysical Journal 508, 44.CrossRefGoogle Scholar
*Kennicutt, R.C., Jr., et al. 2003. ‘SINGS: the SIRTF nearby galaxies survey’. Publications of the Astronomical Society of the Pacific 115, 928.CrossRefGoogle Scholar
*Kent, S.M., Dame, T.M. and Fazio, G. 1991. ‘Galactic structure from the Spacelab infrared telescope. II – Luminosity models of the Milky Way’. Astrophysical Journal 378, 131.CrossRefGoogle Scholar
*Kenyon, S.J. and Hartmann, L. 1987. ‘Spectral energy distributions of T Tauri stars – Disk flaring and limits on accretion’. Astrophysical Journal 323, 714.CrossRefGoogle Scholar
*Kenyon, S.J. and Hartmann, L. 1995. ‘Pre-main-sequence evolution in the Taurus-Auriga molecular cloud’. Astrophysical Journal Supplement Series 101, 117.CrossRefGoogle Scholar
*Kessler, M.F. et al. 1996. ‘The Infrared Space Observatory (ISO) mission’. Astronomy and Astrophysics 315, L27.Google Scholar
*Kinney, A.L. et al. 1996. ‘Template ultraviolet to near-infrared spectra of star-forming galaxies and their application to K-corrections’. Astrophysical Journal 467, 38.CrossRefGoogle Scholar
*Kirkpatrick, J.D., Henry, T.J. and McCarthy, D.W., Jr. 1991. ‘A standard stellar spectral sequence in the red/near-infrared – Classes K5 to M9’. Astrophysical Journal Supplement Series 77, 417.CrossRefGoogle Scholar
*Kirkpatrick, J.D. et al. 1999. ‘Dwarfs cooler than “M’’: the definition of spectral type “L’’ using discoveries from the 2 Micron All-Sky Survey (2MASS)’. Astrophysical Journal 519, 802.CrossRefGoogle Scholar
*Kirkpatrick, J.D. et al. 2000. ‘67 additional L dwarfs discovered by the Two Micron All Sky Survey’. Astronomical Journal 120, 447.CrossRefGoogle Scholar
Kitamura, Y. et al. 2002. ‘Investigation of the physical properties of protoplanetary disks around T Tauri stars by a 1 arcsecond imaging survey: evolution and diversity of the disks in their accretion stage’. Astrophysical Journal 581, 357.CrossRefGoogle Scholar
Kleinmann, D.E. and Low, F.J. 1967. ‘Discovery of an infrared nebula in Orion’. Astrophysical Journal Letters 149, L1.CrossRefGoogle Scholar
Kleinmann, D.E. and Low, F.J. 1970a. ‘Observations of infrared galaxies’. Astrophysical Journal Letters 159, L165.CrossRefGoogle Scholar
Kleinmann, D.E. and Low, F.J. 1970b. ‘Infrared observations of galaxies and the extended nucleus of M82’. Astrophysical Journal Letters 161, L203.CrossRefGoogle Scholar
Kleinmann, S.G., Gillett, F.C. and Joyce, R.R. 1981. ‘Preliminary results of the Air Force infrared sky survey’. Annual Review of Astronomy and Astrophysics 19, 411.CrossRefGoogle Scholar
*Kleinmann, S.G. and Hall, D.N.B. 1986. ‘Spectra of late-type standard stars in the region 2.0–2.5 microns’. Astrophysical Journal Supplement Series 62, 501.CrossRefGoogle Scholar
*Knapp, G.R. et al. 1982. ‘Mass loss from evolved stars. I – Observations of 17 stars in the CO(2–1) line’. Astrophysical Journal 252, 616.CrossRefGoogle Scholar
Knapp, G.R. 1985. ‘Mass-loss from evolved stars. IV – The dust-to-gas ratio in the envelopes of Mira variables and carbon stars’. Astrophysical Journal 293, 273.CrossRefGoogle Scholar
*Knapp, G.R. and Morris, M. 1985. ‘Mass loss from evolved stars. III – Mass loss rates for fifty stars from CO J = 1–0 observations’. Astrophysical Journal 292, 640.CrossRefGoogle Scholar
*Knapp, G.R., Guhathakurta, P., Kim, D.-W. and Jura, M.A. 1989. ‘Interstellar matter in early-type galaxies. I – IRAS flux densities’. Astrophysical Journal Supplement Series 70, 329.CrossRefGoogle Scholar
*Kochanek, C.S. et al. 2001. ‘The K-band galaxy luminosity function’. Astrophysical Journal 560, 566.CrossRefGoogle Scholar
*Koorneef, J. 1983. ‘Near-infrared photometry. II – Intrinsic colours and the absolute calibration from one to five microns’. Astronomy and Astrophysics 128, 84.Google Scholar
Kovacs, A. et al. 2006. ‘SHARC-2 350 micron observations of distant submillimeter galaxies’. Astrophysical Journal 650, 592.CrossRefGoogle Scholar
*Krabbe, A. et al. 1995. ‘The nuclear cluster of the Milky Way: star formation and velocity dispersion in the central 0.5 parsec’. Astrophysical Journal Letters 447, L95.CrossRefGoogle Scholar
Kuiper, G.P., Wilson, W. and Cashman, R.J. 1947. ‘An infrared stellar spectrometer’. Astrophysical Journal 106, 243.CrossRefGoogle Scholar
Kuiper, G.P. 1951. ‘On the origin of the Solar System’. Proceedings of the National Academy of Sciences of the United States of America 37, 1.CrossRefGoogle ScholarPubMed
*Kulkarni, S.R. et al. 1999. ‘The afterglow, redshift and extreme energetics of the γ-ray burst of 23 January 1999’. Nature 398, 389.CrossRefGoogle Scholar
Lacey, J.H., Baas, F., Townes, C.H. and Beballe, T.R. 1979. ‘Observations of the motion and distribution of the ionized gas in the central parsec of the Galaxy’. Astrophysical Journal Letters 227, L17.CrossRefGoogle Scholar
Lacey, J.H., Townes, C.H. and Hollenbach, D.J. 1982. ‘The nature of the central parsec of the Galaxy’. Astrophysical Journal 262, 120.CrossRefGoogle Scholar
Lacy, M. et al. 2004. ‘Obscured and unobscured active galactic nuclei in the Spitzer Space Telescope First Look SurveyAstrophysical Journal Supplement Series 154, 166.CrossRefGoogle Scholar
*Lada, C.J. and Wilking, B.A. 1984. ‘The nature of the embedded population in the Rho Ophiuchi dark cloud – Mid-infrared observations’. Astrophysical Journal 287, 610.CrossRefGoogle Scholar
*Lada, C.J. and Adams, F.C. 1992. ‘Interpreting infrared color-color diagrams – Circumstellar disks around low- and intermediate-mass young stellar objects’. Astrophysical Journal 393, 278.CrossRefGoogle Scholar
*Lada, C.J., Lada, E.A., Clemens, D.P. and Bally, J. 1994. ‘Dust extinction and molecular gas in the dark cloud IC 5146’. Astrophysical Journal 429, 694.CrossRefGoogle Scholar
*Lada, C.J. and Lada, E.A. 2003. ‘Embedded clusters in molecular clouds’. Annual Review of Astronomy and Astrophysics 41, 57.CrossRefGoogle Scholar
Lada, C.J. 2005. ‘Star formation in the Galaxy: an observational overview’. Progress of Theoretical Physics Supplement 158, 1.CrossRefGoogle Scholar
Lagache, G. et al. 2004. ‘Polycyclic aromatic hydrocarbon to the infrared output energy of the universe at z~2’. Astrophysical Journal Supplement Series 154, 112.CrossRefGoogle Scholar
Lamarre, J.-M. et al. 2010. ‘Planck pre-launch status: The HFI instrument, from specification to actual performance’. Astronomy and Astrophysics 520, A9.CrossRefGoogle Scholar
*Langer, W.D. and Penzias, A.A. 1990. ‘C-12/C-13 isotope ratio across the Galaxy from observations of C-13/O-18 in molecular clouds’. Astrophysical Journal 357, 477.CrossRefGoogle Scholar
Langley, S. 1886. ‘On hitherto unrecognized wave-lengths’. American Journal of Science 32, 83.CrossRefGoogle Scholar
Langley, S., 1900. ‘The absorption lines in the infra-red spectrum of the Sun’. Annals of the Smithsonian Astrophysical Observatory 1, 5.Google Scholar
*Laor, A. and Draine, B.T. 1993. ‘Spectroscopic constraints on the properties of dust in active galactic nuclei’. Astrophysical Journal 402, 441.CrossRefGoogle Scholar
*Lawrence, A. and Elvis, M. 1982. ‘Obscuration and the various kinds of Seyfert galaxies’. Astrophysical Journal 256, 410.CrossRefGoogle Scholar
Lawrence, A. et al. 1986. ‘Studies of IRAS sources at high Galactic latitudes. II – Results from a redshift survey at b > 60o’. Monthly Notices of the Royal Astronomical Society 219, 687.CrossRefGoogle Scholar
*Lawrence, A. et al. 2007. ‘The UKIRT Infrared Deep Sky Survey (UKIDSS)’. Monthly Notices of the Royal Astronomical Society 379, 1599.CrossRefGoogle Scholar
Lay, O.P., Carlstrom, J.E., Hills, R.E. and Phillips, T.G. 1994. ‘Protostellar accretion disks resolved with the JCMT-CSO interferometer’. Astrophysical Journal Letters 434, L75.CrossRefGoogle Scholar
Lecar, M., Franklin, F.A., Holman, M.J. and Murray, N.J. 2001. ‘Chaos in the Solar System’. Annual Review of Astronomy and Astrophysics 39, 581.CrossRefGoogle Scholar
*Le Floc’h, E. et al. 2005. ‘Infrared luminosity functions from the Chandra deep field-south: the Spitzer view on the history of dusty star formation at 0 <~ z <~ 1’. Astrophysical Journal 632, 169.CrossRefGoogle Scholar
*Leger, A. and Puget, J.L. 1984. ‘Identification of the “unidentified” IR emission features of interstellar dust?Astronomy and Astrophysics 137, L5.Google Scholar
*Leggett, S.K. 1992. ‘Infrared colors of low-mass stars’. Astrophysical Journal Supplement Series 82, 351.CrossRefGoogle Scholar
Lehnert, M.D. et al. 2010. ‘Spectroscopic confirmation of a galaxy at redshift z = 8.6’. Nature 467, 940.CrossRefGoogle Scholar
*Leinert, Ch. et al. 1993. ‘A systematic approach for young binaries in Taurus’. Astronomy and Astrophysics 278, 129.Google Scholar
*Leitherer, C. and Heckman, T.M. 1995. ‘Synthetic properties of starburst galaxies’. Astrophysical Journal Supplement Series 96, 9.CrossRefGoogle Scholar
*Leitherer, C. et al. 1999. ‘Starburst99: synthesis models for galaxies with active star formation’. Astrophysical Journal Supplement Series 123, 3.CrossRefGoogle Scholar
*Lemke, D. et al. 1996. ‘ISOPHOT – Capabilities and performance’. Astronomy and Astrophysics 315, L64.Google Scholar
Leonard, F.C. 1930. ‘The new planet Pluto’. Astronomical Society of the Pacific Leaflets 1, 121.Google Scholar
*Leung, C.M. 1975. ‘Radiation transport in dense interstellar dust clouds. I – Grain temperature’. Astrophysical Journal 199, 340.CrossRefGoogle Scholar
Leung, C.M. 1976. ‘Radiation transport in dense interstellar dust clouds. II – Infrared emission from molecular clouds associated with HII regions’. Astrophysical Journal 209, 75.CrossRefGoogle Scholar
*Li, A. and Greenberg, J.M. 1997. ‘A unified model of interstellar dust’. Astronomy and Astrophysics 323, 566.Google Scholar
*Li, A. and Draine, B.T. 2001. ‘Infrared emission from interstellar dust. II. The diffuse interstellar medium’. Astrophysical Journal 554, 778.CrossRefGoogle Scholar
*Lilly, S.J. and Longair, M.S. 1984. ‘Stellar populations in distant radio galaxies’. Monthly Notices of the Royal Astronomical Society 211, 833.CrossRefGoogle Scholar
*Lilly, S.J., Cowie, L.L. and Gardner, J.P. 1991. ‘A deep imaging and spectroscopic survey of faint galaxies’. Astrophysical Journal 360, 79.CrossRefGoogle Scholar
*Lilly, S.J. et al. 1995a.‘The Canada–France redshift survey. I. Introduction to the survey, photometric catalogs, and surface brightness selection effects’. Astrophysical Journal 455, 50.CrossRefGoogle Scholar
*Lilly, S.J. et al. 1995b.‘The Canada-France redshift survey. VI. Evolution of the galaxy luminosity function to z ~ 1’. Astrophysical Journal 455, 108.CrossRefGoogle Scholar
*Lilly, S.J., Le Fevre, O., Hammer, F. and Crampton, D. 1996. ‘The Canada-France redshift survey: the luminosity density and star formation history of the universe to z ~ 1’. Astrophysical Journal Letters 460, L1.CrossRefGoogle Scholar
*Lilly, S.J. et al. 1999. ‘The Canada-United Kingdom deep submillimeter survey. II. First identifications, redshifts, and implications for galaxy evolution’. Astrophysical Journal 518, 641.CrossRefGoogle Scholar
Lindblad, B. 1935. ‘A condensation theory of meteoric matter and its cosmological significance’. Nature 135, 133.CrossRefGoogle Scholar
*Lizano, S. and Shu, F.H. 1989. ‘Molecular cloud cores and bimodal star formation’. Astrophysical Journal 342, 834.CrossRefGoogle Scholar
Longair, M. 2006. The Cosmic Century. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
*Lonsdale, C.J. and Helou, G. 1985. Cataloged Galaxies and Quasars Observed in the IRAS Survey. Pasadena, CA: Jet Propulsion Laboratory.Google Scholar
Lonsdale, C.J. et al. 1990. ‘Galaxy evolution and large-scale structure in the far-infrared. II – The IRAS faint source survey’. Astrophysical Journal 358, 60.CrossRefGoogle Scholar
*Lonsdale, C.J. et al. 2003. ‘SWIRE: the SIRTF wide-area infrared extragalactic survey’. Publications of the Astronomical Society of the Pacific 115, 897.CrossRefGoogle Scholar
Low, F.J. 1961a. ‘Gallium-doped germanium resistance thermometers’. Advances in Cryogenic Engineering 7, 514.Google Scholar
Low, F.J. 1961b. ‘Low-temperature germanium bolometers’. Journal of the Optical Society of America 51, 1300.CrossRefGoogle Scholar
Low, F.J. and Johnson, H.L. 1964. ‘Stellar photometry at 10 microns’. Astrophysical Journal 139, 1130.CrossRef
Low, F.J. 1965. ‘The performance of thermal detection radiometers at 1.2 mm’. Proceedings of the IEEE 53, 516.CrossRefGoogle Scholar
Low, F.J. and Johnson, H.L. 1965. ‘The spectrum of 3C 273’. Astrophysical Journal 141, 336.CrossRefGoogle Scholar
Low, F.J. and Tucker, W.H. 1968. ‘Contribution of infrared galaxies to the cosmic background’. Physical Review Letters 21, 1538.CrossRefGoogle Scholar
Low, F.J. 1970. ‘The infrared-galaxy phenomenon’. Astrophysical Journal Letters 159, L173.CrossRefGoogle Scholar
Low, F.J. and Aumann, H.H. 1970. ‘Observations of Galactic and extragalactic sources between 50 and 300 microns’. Astrophysical Journal Letters 162, L79.CrossRefGoogle Scholar
Low, F.J. and Krishna Swamy, K.S. 1970. ‘Narrow-band infrared photometry of α Ori’. Nature 227, 1333.CrossRefGoogle Scholar
*Low, F.J. et al. 1984. ‘Infrared cirrus – New components of the extended infrared emission’. Astrophysical Journal Letters 278, L19.CrossRefGoogle Scholar
Low, F.J., Rieke, G.H. and Gehrz, R.D. 2007. ‘The beginning of modern infrared astronomy’. Annual Review of Astronomy and Astrophysics 45, 43.CrossRefGoogle Scholar
Lunel, M.L. 1960. ‘Recherches de photometrie stellaire dans l’infrarouge au moyen d’une cellule au sulfure de plomb’. Annales d’Astrophysique 23, 1.Google Scholar
*Lutz, D. et al. 1998. ‘The nature and evolution of ultraluminous infrared galaxies: a mid-infrared spectroscopic survey’. Astrophysical Journal Letters 505, L103.CrossRefGoogle Scholar
Luu, J.X. and Jewitt, D.C. 2002. ‘Kuiper belt objects: relics from the accretion disk of the Sun’. Annual Review of Astronomy and Astrophysics 40, 63.CrossRefGoogle Scholar
Lynds, B.T. and Wickramasinghe, N.C. 1968. ‘Interstellar dust’. Annual Review of Astronomy and Astrophysics 6, 215.CrossRefGoogle Scholar
*Madau, P. et al. 1996. ‘High-redshift galaxies in the Hubble Deep Field: colour selection and star formation history to z~4’. Monthly Notices of the Royal Astronomical Society 283, 1388.CrossRefGoogle Scholar
*Madau, P., Pozzetti, L. and Dickinson, M. 1998. ‘The star formation history of galaxies’. Astrophysical Journal 498, 106.CrossRefGoogle Scholar
*Maddalena, R.J., Morris, M., Moscowitz, J. and Thaddeus, P. 1986. ‘The large system of molecular clouds in Orion and Monoceros’. Astrophysical Journal 303, 375.CrossRefGoogle Scholar
*Magnani, L., Blitz, L. and Mundy, L. 1985. ‘Molecular gas at high Galactic latitudes’. Astrophysical Journal 95, 402.CrossRefGoogle Scholar
*Maiolino, R. and Rieke, G.H. 1995. ‘Low-luminosity and obscured Seyfert nuclei in nearby galaxies’. Astrophysical Journal 454, 95.CrossRefGoogle Scholar
*Majewski, S.R., Skrutskie, M.F., Weinberg, M.D. and Ostheimer, J.C. 2003. ‘A two micron all sky survey view of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius core and tidal arms’. Astrophysical Journal 599, 1082.CrossRefGoogle Scholar
*Malfait, K. et al. 1998. ‘The spectrum of the young star HD 100546 observed with the Infrared Space Observatory’. Astronomy and Astrophysics 332, L25.Google Scholar
Mandolesi, N. et al. 2010. ‘Planck pre-launch status: The Planck - LFI programme’. Astronomy and Astrophysics 520, A3.CrossRefGoogle Scholar
*Maraston, C. 2005. ‘Evolutionary population synthesis: models, analysis of the ingredients and application to high-z galaxies’. Monthly Notices of the Royal Astronomical Society 362, 799.CrossRefGoogle Scholar
*Marconi, A. and Hunt, L.K. 2003. ‘The relation between black hole mass, bulge mass, and infrared luminosity’. Astrophysical Journal Letters 589, L21.CrossRefGoogle Scholar
*Marigo, P. et al. 2008. ‘Evolution of asymptotic giant branch stars II. Optical to far-infrared isochrones with improved TP-AGB models’. Astronomy and Astrophysics 482, 883.CrossRefGoogle Scholar
Marois, C. et al. 2008. ‘Direct imaging of multiple planets orbiting the star HR 8799’. Science 322, 1348.CrossRefGoogle ScholarPubMed
*Marscher, A.P. and Gear, W.K. 1985. ‘Models for high-frequency radio outbursts in extragalactic sources, with application to the early 1983 millimeter-to-infrared flare of 3C 273’. Astrophysical Journal 298, 114.CrossRefGoogle Scholar
Martin, N.F. et al. 2004. ‘A dwarf galaxy remnant in Canis Major: the fossil of an in-plane accretion onto the Milky Way’. Monthly Notices of the Royal Astronomical Society 348, 12.CrossRefGoogle Scholar
*Mather, J.C. et al. 1994. ‘Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument’. Astrophysical Journal 420, 439.CrossRefGoogle Scholar
*Mather, J.C. et al. 1999. ‘Calibrator design for the COBE Far-Infrared Absolute Spectrophotometer (FIRAS)’. Astrophysical Journal 512, 511.CrossRefGoogle Scholar
Mather, J. and Boslough, J. 1996. The Very First Light. New York: Basic Books.Google Scholar
*Mathis, J.S., Rumpl, W. and Nordsieck, K.H. 1977. ‘The size distribution of interstellar grains’. Astrophysical Journal 217, 425.CrossRefGoogle Scholar
*Mathis, J.S., Mezger, P.G. and Panagia, N. 1983. ‘Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds’. Astronomy and Astrophysics 128, 212.Google Scholar
*Mathis, J.S. and Whiffen, G. 1989. ‘Composite interstellar grains’. Astrophysical Journal 341, 808.CrossRefGoogle Scholar
*Mathis, J.S. 1990. ‘Interstellar dust and extinction’. Annual Review of Astronomy and Astrophysics 28, 37.CrossRefGoogle Scholar
Matsumoto, T. et al. 1988. ‘The submillimeter spectrum of the cosmic background radiation’. Astrophysical Journal 329, 567.CrossRefGoogle Scholar
Maxwell, J.C. 1864. ‘A dynamical theory of the electromagnetic field’. Philosophical Transactions of the Royal Society of London 155, 459.CrossRefGoogle Scholar
Mayor, M. and Queloz, D. 1995. ‘A Jupiter-mass companion to a solar-type star’. Nature 378, 355.CrossRefGoogle Scholar
Mayor, M. et al. 2009. ‘The HARPS search for southern extra-solar planets. XIII. A system with 3 super-Earths (4.2, 6.9 and 9.2 Earth masses)’. Astronomy and Astrophysics 493, 639.CrossRefGoogle Scholar
*McCaughrean, M.J. and Stauffer, J.R. 1994. ‘High resolution near-infrared imaging of the trapezium: a stellar census’. Astronomical Journal 108, 1382.CrossRefGoogle Scholar
McKellar, A. 1940. ‘Evidence for the molecular origin of some hitherto unidentified interstellar lines’. Publications of the Astronomical Society of the Pacific 52, 187.CrossRefGoogle Scholar
McLean, I.S., Chuter, D.C., McCaughrean, M.J. and Rayner, J.T. 1986. ‘System design of a 1–5 micron IR camera for astronomy’. Society of Photo-optical Instrumentation Engineers Journal 627, 430.Google Scholar
McLean, I.S. (ed.). 1994. Infrared Astronomy with Arrays: The Next Generation. Dordrecht: Kluwer.CrossRef
McLean, I.S. 1997. Electronic Imaging in Astronomy. New York: Springer (reprinted 2008).Google Scholar
*McLean, I.S. et al. 1998. ‘Design and development of NIRSPEC: a near-infrared echelle spectrograph for the Keck II telescope’. Proceedings of the Society of Photo-optical Instrumentation Engineers 3354, 566.Google Scholar
*Meeus, G. et al. 2001. ‘ISO spectroscopy of circumstellar dust in 14 Herbig Ae/Be systems: towards an understanding of dust processing’. Astronomy and Astrophysics 365, 476.CrossRefGoogle Scholar
Mendoza, E.E. 1966. ‘Infrared photometry of T Tauri stars and related objects’. Astrophysical Journal 143, 1010.Google Scholar
Mendoza, E.E. 1968. ‘Infrared excesses in T Tauri stars and related objects’. Astrophysical Journal 151, 977.Google Scholar
Menzel, D.H., Coblentz, W.W. and Lampland, C.O. 1926. ‘Planetary temperatures derived from water-cell transmissions’. Astrophysical Journal 63, 177.CrossRefGoogle Scholar
*Meurer, G.R. et al. 1997. ‘The panchromatic starburst intensity limits at low and high redshift’. Astronomical Journal 114, 54.CrossRefGoogle Scholar
*Meurer, G.R., Heckman, T.M. and Calzetti, D. 1999. ‘Dust absorption and the ultraviolet luminosity density at z~3 as calibrated by local starburst galaxies’. Astrophysical Journal 521, 64.CrossRefGoogle Scholar
*Meyer, M.R., Calvet, N. and Hillenbrand, L.A. 1997. ‘Intrinsic near-infrared excess of T Tauri stars: understanding the classical T Tauri star locus’. Astronomical Journal 114, 288.CrossRefGoogle Scholar
Mezger, P.G. and Smith, L. 1977. ‘Radio observations related to star formation’. In Star Formation, IAU Symposium 75, ed. de Jong, T. and Maeder, A., p.133. Dordrecht: Reidel.Google Scholar
*Mezger, P.G., Mathis, J.S. and Panagia, N. 1982. ‘The origin of the diffuse galactic far infrared and sub-millimeter emission’. Astronomy and Astrophysics 105, 372.Google Scholar
Miley, G. et al. 1984. ‘A 25-micron component in 3C 390.3’. Astrophysical Journal Letters 278, L79.CrossRefGoogle Scholar
Mirabel, I.F. et al. 1998. ‘The dark side of star formation in the Antennae galaxies’. Astronomy and Astrophysics 333, L1.Google Scholar
Morbidelli, A., Levison, H.F., Tsiganis, K. and Gomes, R. 2005. ‘Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System’. Nature 435, 462.CrossRefGoogle ScholarPubMed
Moroz, V. 1961. ‘An attempt to measure the infrared radiation of the Galactic nucleus’. Astronomicheskii Zhurnal 38, 487.Google Scholar
Moroz, V. 1963. ‘Radiation emission from the Orion Nebula in the 0.85–1.7 micron wavelength region’. Astronomicheskii Zhurnal 40, 788.Google Scholar
Morris, M. and Rickard, L.J. 1982. ‘Molecular clouds in galaxies’. Annual Review of Astronomy and Astrophysics 20, 517.CrossRefGoogle Scholar
*Morris, M. 1987. ‘Mechanisms for mass loss from cool stars’. Publications of the Astronomical Society of the Pacific 99, 1115.CrossRefGoogle Scholar
*Morris, M. and Serabyn, E. 1996. ‘The Galactic Center environment’. Annual Review of Astronomy and Astrophysics 34, 645.CrossRefGoogle Scholar
Mortlock, D.J. et al. 2011. ‘A luminous quasar at a redshift of z = 7.085’. Nature 474, 616.CrossRefGoogle Scholar
*Motte, F., André, P. and Neri, R. 1998. ‘The initial conditions of star formation in the Rho Ophiuchi main cloud: wide-field millimeter continuum mapping’. Astronomy and Astrophysics 336, 150.Google Scholar
Muelner, K. and Weiss, D. 1973. ‘Balloon measurements of the far-infrared background radiation’. Physical Review D 7, 326.Google Scholar
Murakami, H. et al. 2007. ‘The infrared astronomical mission AKARI’. Publications of the Astronomical Society of Japan 59, S369.CrossRefGoogle Scholar
Murdock, T.L. and Price, S.D. 1985. ‘Infrared measurements of zodiacal light’. Astronomical Journal 90, 375.CrossRefGoogle Scholar
*Myers, P.C. et al. 1987. ‘Near-infrared and optical observations of IRAS sources in and near dense cores’. Astrophysical Journal 319, 340.CrossRefGoogle Scholar
*Nakajima, T. et al. 1995. ‘Discovery of a cool brown dwarf’. Nature 378, 463.CrossRefGoogle Scholar
Naylor, D.A. et al. 2000. ‘Atmospheric transmission at submillimetre wavelengths from Mauna Kea’. Monthly Notices of the Royal Astronomical Society 315, 622.CrossRefGoogle Scholar
Neugebauer, G., Martz, D.E. and Leighton, R.B. 1965. ‘Observations of extremely cool stars’. Astrophysical Journal 142, 399.CrossRefGoogle Scholar
*Neugebauer, G. and Leighton, R.B. 1969. The Two Micron Survey: A Preliminary Catalogue, NASA SP-3047. Washington, DC: NASA.Google Scholar
Neugebauer, G., Becklin, E.E. and Hyland, A.R. 1971. ‘Infrared sources of radiation’. Annual Review of Astronomy and Astrophysics 9, 67.CrossRefGoogle Scholar
*Neugebauer, G., Oke, J.B., Becklin, E.E. and Matthews, K. 1979. ‘Absolute spectral energy distribution of quasi-stellar objects from 0.3 to 10 microns’. Astrophysical Journal 230, 79.CrossRefGoogle Scholar
*Neugebauer, G. et al. 1984. ‘The Infrared Astronomical Satellite (IRAS) mission’. Astrophysical Journal Letters 278, L1.CrossRefGoogle Scholar
Neugebauer, G., Miley, G.K., Soifer, B.T. and Clegg, P.A. 1986. ‘Quasars observed by the Infrared Astronomical Satellite’. Astrophysical Journal 308, 815.CrossRefGoogle Scholar
*Neugebauer, G. et al. 1987. ‘Continuum energy distributions of quasars in the Palomar–Green Survey’. Astrophysical Journal Supplement Series 63, 615.CrossRefGoogle Scholar
Ney, E.P. and Allen, D.A. 1969. ‘The infrared sources in the Trapezium region of M42’. Astrophysical Journal 155, 193.CrossRefGoogle Scholar
Nichols, E.F. 1901. ‘On the heat radiation of Arcturus, Vega, Jupiter, and Saturn’. Astrophysical Journal 13, 101.CrossRefGoogle Scholar
*Norman, C. and Scoville, N. 1988. ‘The evolution of starburst galaxies to active galactic nuclei’. Astrophysical Journal 332, 124.CrossRefGoogle Scholar
Ohashi, N., Kawabe, R., Ishiguro, M. and Hayashi, M. 1991. ‘Molecular cloud cores in the Orion A cloud I’. Astronomical Journal 102, 2054.CrossRefGoogle Scholar
Oke, J.B., Neugebauer, G., and Becklin, E.E. 1970. ‘Absolute spectral energy distribution of quasi-stellar objects from 0.3 to 2.2 microns’. Astrophysical Journal 159, 341.CrossRefGoogle Scholar
*Olnon, F.M. et al. 1986. ‘IRAS catalogues and atlases – Atlas of low-resolution spectra’. Astronomy and Astrophysics Supplement 65, 607.Google Scholar
Olthof, H. and van Duinen, R. 1973. ‘Two colour far infrared photometry of some Galactic HII regions’. Astronomy and Astrophysics 29, 315.Google Scholar
Oort, J.H., and van der Hulst, H.C. 1946. ‘Gas and smoke in interstellar space’. Bulletin of the Astronomical Institutes of the Netherlands 10, 187.Google Scholar
*Ossenkopf, V. and Henning, Th. 1994. ‘Dust opacities for protostellar cores’. Astronomy and Astrophysics 291, 943.Google Scholar
*Osterbrock, D.E. 1974. Astrophysics of Gaseous Nebulae. San Francisco: W.H. Freeman.Google Scholar
*Osterloh, M. and Beckwith, S.V.W. 1995. ‘Millimetre-wave continuum measurements of young stars’. Astrophysical Journal 439, 288.CrossRefGoogle Scholar
Ouchi, M. et al. 2009. ‘Large area survey for z = 7 galaxies in SDF and GOODS-N: implications for galaxy formation and cosmic reionization’. Astrophysical Journal 696, 1164.CrossRefGoogle Scholar
Papovich, C. et al. 2006. ‘Spitzer observations of massive, red galaxies at high redshift’. Astrophysical Journal 640, 92.CrossRefGoogle Scholar
Park, W.M., Vickers, D.G. and Clegg, P.E. 1970. ‘Submillimeter radiation from the Orion Nebula’. Astronomy and Astrophysics 5, 325.Google Scholar
Parsons, L., Rosse, 4th Earl of. 1873. ‘On the radiation of heat from the moon, the law of its absorption by our atmosphere, and of its variation in amount with her phases’. Proceedings of the Royal Society of London 21, 241.Google Scholar
Peebles, P.J.E., Page, L.A., Jr. and Partridge, R.B. 2010. Finding the Big Bang. Cambridge: Cambridge University Press.Google Scholar
*Pei, Y.C., Fall, S.M. and Hauser, M.G. 1999. ‘Cosmic histories of stars, gas, heavy elements, and dust in galaxies’. Astrophysical Journal 522, 604.CrossRefGoogle Scholar
*Pendleton, Y.J. et al. 1994. ‘Near-infrared absorption spectroscopy of interstellar hydrocarbon grains’. Astrophysical Journal 437, 683.CrossRefGoogle Scholar
*Penzias, A.A. and Wilson, R.W. 1965a. ‘A measurement of excess antenna temperature at 4080 Mc/s’. Astrophysical Journal 142, 419.CrossRefGoogle Scholar
Penzias, A.A. and Wilson, R.W. 1965b. ‘Measurement of the flux density of Cas A at 4080 Mc/c’. Astrophysical Journal 142, 1149.CrossRefGoogle Scholar
Penzias, A.A., Jefferts, K.B. and Wilson, R.W. 1971. ‘Interstellar 12C16O, 13C16O and 12C18O’. Astrophysical Journal 165, 229.CrossRefGoogle Scholar
Penzias, A.A., Solomon, P.M., Wilson, R.W. and Jefferts, K.B. 1971. ‘Interstellar carbon monosulfide’. Astrophysical Journal Letters 168, L53.CrossRefGoogle Scholar
*Pérez-González, P.G. et al. 2005. ‘Spitzer view on the evolution of star-forming galaxies from z = 0 to z ~ 3’. Astrophysical Journal 630, 82.CrossRefGoogle Scholar
Perlmutter, S. et al. 1999. ‘Measurements of Ω and Λ from 42 high-redshift supernovae’. Astrophysical Journal 517, 565.CrossRefGoogle Scholar
*Persson, S.E. et al. 1998. ‘A new system of faint near-infrared standard stars’. Astronomical Journal 116, 2475.CrossRefGoogle Scholar
*Pettini, M. et al. 1998. ‘Infrared observations of nebular emission lines from galaxies at z ~= 3’. Astrophysical Journal 508, 539.CrossRefGoogle Scholar
Pettit, E. and Nicholson, S.B. 1928. ‘Stellar radiation measurements’. Astrophysical Journal 68, 279.CrossRefGoogle Scholar
Pettit, E. and Nicholson, S.B. 1930. ‘Lunar radiation and temperature’. Astrophysical Journal 71, 102.CrossRefGoogle Scholar
Pettit, E. and Nicholson, S.B. 1933. ‘Measurements of the radiation from variable stars’. Astrophysical Journal 78, 320.CrossRefGoogle Scholar
Pettit, E. and Nicholson, S.B. 1935. ‘Lunar radiation as related to phase’. Astrophysical Journal 81, 17.CrossRefGoogle Scholar
Pettit, E. and Nicholson, S.B. 1936. ‘Radiation from the planet Mercury’. Astrophysical Journal 83, 84.CrossRefGoogle Scholar
Pettit, E. and Nicholson, S.B. 1940. ‘Radiation measurements on the eclipsed Moon’. Astrophysical Journal 91, 408.CrossRefGoogle Scholar
Phillips, T.G. and Jefferts, K.B. 1973. ‘A low temperature heterodyne receiver for millimeter wave astronomy’. Review of Scientific Instruments 44, 1009.CrossRefGoogle Scholar
Phillips, T.G., Jefferts, K.B., and Wannier, P.G. 1973. ‘Observation of the J=2 to J=1 transition of interstellar CO at 1.3 millimeters’. Astrophysical Journal Letters 186, L19.CrossRefGoogle Scholar
Phillips, T. and Rowan-Robinson, M. 1978. New Scientist 69, 170.
Phillips, T.G. and Huggins, P.J. 1981. ‘Abundance of atomic carbon (CI) in dense interstellar clouds’. Astrophysical Journal 251, 533.CrossRefGoogle Scholar
*Pickett, H.M. et al. 1998. ‘Submillimeter, millimeter and microwave spectral line catalog’. Journal of Quantitative Spectroscopy and Radiative Transfer 60, 883.CrossRefGoogle Scholar
*Pier, E.A. and Krolik, J.H. 1992. ‘Infrared spectra of obscuring dust tori around active galactic nuclei I: Calculational method and basic trends’. Astrophysical Journal 401, 99.CrossRefGoogle Scholar
*Pier, E.A. and Krolik, J.H. 1993. ‘Infrared spectra of obscuring dust tori around active galactic nuclei II: Comparison with observations’. Astrophysical Journal 418, 673.CrossRefGoogle Scholar
Pilbratt, G.L. 2008. ‘Herschel mission overview and key programmes’. Proceedings of the Society of Photo-optical Instrumentation Engineers 7010, 1.Google Scholar
Pilbratt, G.L. et al. 2010. ‘Hershel space observatory. An ESA facility for far-infrared and submillimetre astronomy’. Astronomy and Astrophysics 518, L1.CrossRefGoogle Scholar
Pipher, J. 1971. ‘Rocket submillimeter observations of the Galaxy and background’. PhD thesis, Cornell University.
Platt, J.R. 1956. ‘On the optical properties of interstellar dust’. Astrophysical Journal 123, 486.CrossRefGoogle Scholar
*Poggianti, B.M. 1997. ‘K and evolutionary corrections from UV to IR’. Astronomy and Astrophysics Supplement 122, 399.CrossRefGoogle Scholar
Poglitsch, A. et al. 2009. ‘The PACS instrument’. European Astronomical Society Publication Series 34, 43.CrossRefGoogle Scholar
Poglitsch, A. et al. 2010. ‘The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory’. Astronomy and Astrophysics 518, L2.CrossRefGoogle Scholar
*Pollack, J.B. et al. 1994. ‘Composition and radiative properties of grains in molecular clouds and accretion disks’. Astrophysical Journal 421, 615.CrossRefGoogle Scholar
*Pottasch, S.R. 1984. ‘Planetary nebulae – A study of late stages of stellar evolution’. Astrophyscs and Space Science Library 107, 335.Google Scholar
Pouillet, C.-S. 1838. ‘Mémoire sur le chaleur solaire’. Comptes Rendus de l’Académie des Sciences 7, 24.Google Scholar
*Price, S.D. and Walker, R.G. 1976. ‘The AFGL four colour infrared sky survey: catalog of observations at 3.2, 11.0, 19.8 and 27.4 microns’. Environmental Research Papers, Hanscomb AFB, AFGL.Google Scholar
*Price, S.D. et al. 2001. ‘Midcourse space experiment survey of the Galactic Plane’. Astronomical Journal121, 2819.Google Scholar
Price, S.D. 2009. ‘Infrared sky surveys’. Space Science Reviews 142, 233.CrossRefGoogle Scholar
Puget, J.-L., Leger, A. and Boulanger, F. 1985. ‘Contribution of large polycyclic aromatic molecules to the infrared emission of the interstellar medium’. Astronomy and Astrophysics 142, L19.Google Scholar
*Puget, J. L. and Leger, A. 1989. ‘A new component of the interstellar matter – Small grains and large aromatic molecules’. Annual Review of Astronomy and Astrophysics 27, 161.CrossRefGoogle Scholar
*Puget, J.-L. et al. 1996. ‘Tentative detection of a cosmic far-infrared background with COBE’. Astronomy and Astrophysics 308, L5.Google Scholar
*Rayner, J.T. et al. 2003. ‘SpeX: a medium-resolution 0.8–5.5 micron spectrograph and imager for the NASA Infrared Telescope Facility’. Publications of the Astronomical Society of the Pacific 115, 362.CrossRefGoogle Scholar
*Reach, W.T. et al. 2005. ‘Absolute calibration of the Infrared Array Camera on the Spitzer Space Telescope’. Publications of the Astronomical Society of the Pacific 117, 978.CrossRefGoogle Scholar
Reddy, N.A. et al. 2005. ‘A census of optical and near-infrared selected star-forming and passively evolving galaxies at redshift z~2’. Astrophysical Journal 633, 748.CrossRefGoogle Scholar
Rees, M.J., Silk, J.I., Werner, M.W. and Wickramasinghe, N.C. 1969. ‘Infrared radiation from dust in Seyfert galaxies’. Nature 223, 788.CrossRefGoogle Scholar
Reid, I.N. et al. 1999. ‘L dwarfs and the substellar mass function’. Astrophysical Journal 521, 613.CrossRefGoogle Scholar
*Reipurth, B. and Bally, J. 2001. Herbig-Haro flows: probes of early stellar evolution’. Annual Review of Astronomy and Astrophysics 39, 403.CrossRefGoogle Scholar
*Rice, W. et al. 1988. ‘A catalog of IRAS observations of large optical galaxies’. Astrophysical Journal Supplement 68, 91.CrossRefGoogle Scholar
Rickard, L.J. et al. 1975. ‘Detection of extragalactic carbon monoxide at millimeter wavelengths’. Astrophysical Journal 199, 175.CrossRefGoogle Scholar
*Ridgway, S.T., Joyce, R.R., White, N.M. and Wing, R.F. 1980. ‘Effective temperatures of late-type stars – The field giants from K0 to M6’. Astrophysical Journal 235, 126.CrossRefGoogle Scholar
*Rieke, G.H. and Low, F.J. 1972. ‘Infrared photometry of extragalactic sources’. Astrophysical Journal Letters 176, L95.CrossRefGoogle Scholar
Rieke, G.H. and Low, F.J. 1975. ‘Measurements of galactic nuclei at 34 microns’. Astrophysical Journal Letters 200, L67.CrossRefGoogle Scholar
*Rieke, G.H. 1978. ‘The infrared emission of Seyfert galaxies’. Astrophysical Journal 226, 550.CrossRefGoogle Scholar
Rieke, G.H. and Lebofsky, M.J. 1979. ‘Infrared emission of extragalactic sources’. Annual Review of Astronomy and Astrophysics 17, 477.CrossRefGoogle Scholar
*Rieke, G.H. et al. 1980. ‘The nature of the nuclear sources in M82 and NGC 253’. Astrophysical Journal 238, 24.CrossRefGoogle Scholar
*Rieke, G.H. and Lebofsky, M.J. 1985. ‘The interstellar extinction law from 1 to 13 microns’. Astrophysical Journal 288, 618.CrossRefGoogle Scholar
*Rieke, G.H. et al. 1985. ‘1012 solar luminosity starbursts and shocked molecular hydrogen in the colliding galaxies ARP 220 (= IC 4553) and NGC 6240’. Astrophysical Journal 290, 116.CrossRefGoogle Scholar
*Rieke, G.H., Loken, K., Rieke, M.J. and Tamblyn, P. 1993. ‘Starburst modeling of M82 – Test case for a biased initial mass function’. Astrophysical Journal 412, 99.CrossRefGoogle Scholar
*Rieke, G.H. et al. 2004. ‘The Multiband Imaging Photometer for Spitzer (MIPS)’. Astrophysical Journal Supplement Series 154, 25.CrossRefGoogle Scholar
Rieke, G.H. 2009. ‘History of infrared telescopes and astronomy’. Experimental Astronomy 25, 125.CrossRefGoogle Scholar
Riess, A. et al. 1998. ‘Observational evidence from supernovae for an accelerating universe and a cosmological constant’. Astronomical Journal 116, 1009.CrossRefGoogle Scholar
*Riess, A. et al. 2001. ‘The farthest known supernova: support for an accelerating universe and a glimpse of the epoch of deceleration’. Astrophysical Journal 560, 49.CrossRefGoogle Scholar
Rigopoulou, D., Lawrence, A. and Rowan-Robinson, M. 1996. ‘Multiwavelength energy distributions of ultraluminous infrared galaxies – I. Submillimetre and x-ray observations’. Monthly Notices of the Royal Astronomical Society 278, 1049.CrossRefGoogle Scholar
*Rigopoulou, D. et al. 1999. ‘A large mid-infrared spectroscopic and near-infrared imaging survey of ultraluminous infrared galaxies: their nature and evolution’. Astronomical Journal 118, 2625.CrossRefGoogle Scholar
Ring, J. 1969. ‘Infra-red and microwave astronomy’. Journal of Optics Technology 1, 275.CrossRefGoogle Scholar
Robson, E.I. et al. 1974. ‘Spectrum of the cosmic background radiation between 3 mm and 800 microns’. Nature 251, 591.CrossRefGoogle Scholar
*Roche, P.F., Aitken, D.K., Smith, C.H. and Ward, M.J. 1991. ‘An atlas of mid-infrared spectra of galaxy nuclei’. Monthly Notices of the Royal Astronomical Society 248, 606.CrossRefGoogle Scholar
Roll, P.G. and Wilkinson, D.T. 1966. ‘Cosmic background radiation at 3.2 cm – support for cosmic black-body radiation’. Physical Review Letters 16, 405.CrossRefGoogle Scholar
Rowan-Robinson, M. 1980. ‘Radiative transfer in dust clouds. I – Hot-centred clouds associated with regions of massive star formation’. Astrophysical Journal Supplement Series 44, 403.CrossRefGoogle Scholar
Rowan-Robinson, M. and Harris, S. 1983. ‘Radiative transfer in dust clouds. III – Circumstellar dust shells around late M giants and supergiants’. Monthly Notices of the Royal Astronomical Society 202, 767.CrossRefGoogle Scholar
Rowan-Robinson, M. et al. 1984. ‘The IRAS Minisurvey’. Astrophysical Journal Letters 278, L7.CrossRefGoogle Scholar
*Rowan-Robinson, M. and Crawford, J. 1989. ‘Models for infrared emission from IRAS galaxies’. Monthly Notices of the Royal Astronomical Society 238, 523.CrossRefGoogle Scholar
Rowan-Robinson, M. et al. 1990. ‘A sparse-sampled redshift survey of IRAS galaxies. I – The convergence of the IRAS dipole and the origin of our motion with respect to the microwave background’. Monthly Notices of the Royal Astronomical Society 247, 1.Google Scholar
*Rowan-Robinson, M. et al. 1991. ‘A high-redshift IRAS galaxy with huge luminosity – Hidden quasar or protogalaxy?Nature 351, 719.CrossRefGoogle Scholar
*Rowan-Robinson, M. et al. 1997. ‘Observations of the Hubble Deep Field with the Infrared Space Observatory – V. Spectral energy distributions, starburst models and star formation history’. Monthly Notices of the Royal Astronomical Society289, 490.Google Scholar
Rowan-Robinson, M. 2000. ‘Hyperluminous infrared galaxies’. Monthly Notices of the Royal Astronomical Society 316, 885.CrossRefGoogle Scholar
Rowan-Robinson, M. et al. 2004. ‘The European Large-Area ISO Survey (ELAIS): the final band-merged catalogue’. Monthly Notices of the Royal Astronomical Society 351, 1290.CrossRefGoogle Scholar
Rowan-Robinson, M. et al. 2008. ‘Photometric redshifts in the SWIRE survey’. Monthly Notices of the Royal Astronomical Society 386, 697.CrossRefGoogle Scholar
Sakamoto, K., Okumura, S.K., Ishizuki, S. and Scoville, N.Z. 1999. ‘CO images of the central regions of 20 nearby spiral galaxies’. Astrophysical Journal Supplement Series 124, 403.CrossRefGoogle Scholar
Sandage, A.R., Becklin, E.E. and Neugebauer, G. 1969. ‘UBVRIHKL photometry of the central region of M31’. Astrophysical Journal 157, 55.CrossRefGoogle Scholar
*Sanders, D.B., Solomon, P.M. and Scoville, N.Z. 1984. ‘Giant molecular clouds in the Galaxy. I – The axisymmetric distribution of H2’. Astrophysical Journal 276, 182.CrossRefGoogle Scholar
*Sanders, D.B. and Mirabel, I.F. 1985. ‘CO detections and IRAS observations of bright radio spiral galaxies at cz equal or less than 9000 kilometers per second’. Astrophysical Journal Letters 298, L31.CrossRefGoogle Scholar
*Sanders, D.B., Scoville, N.Z. and Solomon, P.M. 1985. ‘Giant molecular clouds in the Galaxy. II – Characteristics of discrete features’. Astrophysical Journal 289, 373.CrossRefGoogle Scholar
*Sanders, D.B. et al. 1988a. ‘Ultraluminous infrared galaxies and the origin of quasars’. Astrophysical Journal 325, 74.CrossRefGoogle Scholar
*Sanders, D.B. et al. 1988b. ‘Warm ultraluminous galaxies in the IRAS survey – The transition from galaxy to quasar?Astrophysical Journal Letters 328, L35.CrossRefGoogle Scholar
*Sanders, D.B. et al. 1989. ‘Continuum energy distribution of quasars – Shapes and origins’. Astrophysical Journal 347, 29.CrossRefGoogle Scholar
*Sanders, D.B., Scoville, N.Z. and Soifer, B.T. 1991. ‘Molecular gas in luminous infrared galaxies’. Astrophysical Journal 370, 158.CrossRefGoogle Scholar
*Sanders, D.B. and Mirabel, I.F. 1996. ‘Luminous infrared galaxies’. Annual Review of Astronomy and Astrophysics 34, 749.CrossRefGoogle Scholar
*Saunders, W. et al. 1990. ‘The 60-micron and far-infrared luminosity functions of IRAS galaxies’. Monthly Notices of the Royal Astronomical Society 242, 318.CrossRefGoogle Scholar
*Saunders, W. et al. 1991. ‘The density field of the local universe’. Nature 349, 32.CrossRefGoogle Scholar
*Saunders, W. et al. 2000.‘The PSCz catalogue’. Monthly Notices of the Royal Astronomical Society 317, 55.CrossRefGoogle Scholar
*Savage, B.D. and Mathis, J.S. 1979. ‘Observed properties of interstellar dust’. Annual Review of Astronomy and Astrophysics 17, 73.CrossRefGoogle Scholar
*Schlegel, D.J., Finkbeiner, D.P. and Davis, M. 1998. ‘Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds’. Astrophysical Journal 500, 525.CrossRefGoogle Scholar
*Schödel, R. et al. 2002. ‘A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way’. Nature 419, 694.CrossRefGoogle Scholar
*Schödel, R. et al. 2003. ‘Stellar dynamics in the central arcsecond of our galaxy’. Astrophysical Journal 596, 1015.CrossRefGoogle Scholar
*Scott, S.E. et al. 2002. ‘The SCUBA 8-mJy survey – I. Submillimetre maps, sources and number counts’. Monthly Notices of the Royal Astronomical Society 331, 817. 250CrossRefGoogle Scholar
*Scoville, N.Z. and Solomon, P.M. 1974. ‘Radiative transfer, excitation, and cooling of molecular emission lines (CO and CS)’. Astrophysical Journal Letters 187, L67.CrossRefGoogle Scholar
Scoville, N.Z., Solomon, P.M. and Penzias, A.A. 1975. ‘The molecular cloud Sagittarius B2’. Astrophysical Journal 201, 352.CrossRefGoogle Scholar
*Scoville, N.Z. and Kwan, J. 1976. ‘Infrared sources in molecular clouds’. Astrophysical Journal 206, 718.CrossRefGoogle Scholar
*Scoville, N. and Young, J.S. 1983. ‘The molecular gas distribution in M51’. Astrophysical Journal 265, 148.CrossRefGoogle Scholar
*Scoville, N.Z. et al. 1987. ‘Molecular clouds and cloud cores in the inner Galaxy’. Astrophysical Journal Supplement Series 63, 821.CrossRefGoogle Scholar
*Scoville, N.Z., Sargent, A.I., Sanders, D.B. and Soifer, B.T. 1991. ‘Dust and gas in the core of ARP 220 (IC 4553)’. Astrophysical Journal Letters 366, L5.CrossRefGoogle Scholar
*Scoville, N.Z. et al. 2000. ‘NICMOS imaging of infrared-luminous galaxies’. Astronomical Journal 119, 991.CrossRefGoogle Scholar
Scoville, N. et al. 2007. ‘The Cosmic Evolution Survey (COSMOS): overview’. Astrophysical Journal Supplement Series 172, 1.CrossRefGoogle Scholar
Seebeck, T.J. 1826. ‘Uber die magnetishe Polarisation der Metalle und Erze durch Temperatur-Differenz’. Annalen der Physik 82, 133.CrossRefGoogle Scholar
*Sellgren, K. 1984. ‘The near-infrared continuum emission of visual reflection nebulae’. Astrophysical Journal 277, 623.CrossRefGoogle Scholar
Seyfert, K. 1943. ‘Nuclear emission in spiral galaxies’. Astrophysical Journal 97, 28.CrossRefGoogle Scholar
Shklovsky, I.S. 1952. ‘The possibility of observing monochromatic radio emission from interstellar molecules’. Astronomicheskii Zhurnal 29, 144.Google Scholar
*Shu, F.H., Adams, F.C. and Lizano, S. 1987. ‘Star formation in molecular clouds – Observation and theory’. Annual Review of Astronomy and Astrophysics 25, 23.CrossRefGoogle Scholar
*Shull, J.M. and Beckwith, S. 1982. ‘Interstellar molecular hydrogen’. Annual Review of Astronomy and Astrophysics 20, 163.CrossRefGoogle Scholar
*Silva, L., Granato, G.L., Bressan, A. and Danese, L. 1998. ‘Modeling the effects of dust on Galactic spectral energy distributions from the ultraviolet to the millimeter band’. Astrophysical Journal 509, 103.CrossRefGoogle Scholar
*Simon, M. et al. 1983. ‘Infrared line and radio continuum emission of circumstellar ionized regions’. Astrophysical Journal 266, 623.CrossRefGoogle Scholar
*Simon, M. et al. 1995. ‘A lunar occultation and direct imaging survey of multiplicity in the Ophiuchus and Taurus star-forming regions’. Astrophysical Journal 443, 625.CrossRefGoogle Scholar
*Skillman, E.D. and Kennicutt, R.C., Jr. 1993. ‘Spatially resolved optical and near-infrared spectroscopy of I ZW 18’. Astrophysical Journal 411, 655.CrossRefGoogle Scholar
*Skrutskie, M.F. et al. 2006. ‘The Two Micron All Sky Survey (2MASS)’. Astronomical Journal 131, 1163.CrossRefGoogle Scholar
*Smail, I., Ivison, R.J. and Blain, A.W. 1997. ‘A deep sub-millimeter survey of lensing clusters: a new window on galaxy formation and evolution’. Astrophysical Journal Letters 490, L5.CrossRefGoogle Scholar
*Smail, I., Ivison, R.J., Blain, A.W. and Kneib, J.-P. 2002. ‘The nature of faint submillimetre-selected galaxies’. Monthly Notices of the Royal Astronomical Society 331, 495.CrossRefGoogle Scholar
*Smith, B.A. and Terrile, R.J. 1984. ‘A circumstellar disk around Beta Pictoris’. Science 226, 1421.CrossRefGoogle ScholarPubMed
Smith, G.M. and Squibb, G.F. 1984. ‘Development of the first infrared satellite observatory’. NASA Document 19840035078.
Smoot, G.F., Gorenstein, M.V. and Muller, R.A. 1977. ‘Detection of anisotropy in the cosmic blackbody radiation’. Physical Review Letters 39, 898.CrossRefGoogle Scholar
Smoot, G.F. et al. 1992. ‘Structure on the COBE differential microwave radiometer first-year maps’. Astrophysical Journal Letters 396, L1.CrossRefGoogle Scholar
Smoot, G. and Davidson, K. 1993. Wrinkles in Time. New York: William Morrow.Google Scholar
*Snell, R.L., Scoville, N.Z., Sanders, D.B. and Erickson, N.R. 1984. ‘High-velocity molecular jets’. Astrophysical Journal 284, 176.CrossRefGoogle Scholar
Snyder, L.E., Buhl, D., Zuckerman, B. and Palmer, P. 1969. ‘Microwave detection of interstellar formaldehyde’. Physical Review Letters 22, 679.CrossRefGoogle Scholar
Snyder, L.E. and Buhl, D. 1971. ‘Observations of radio emission from interstellar hydrogen cyanide’. Astrophysical Journal Letters 163, L47.CrossRefGoogle Scholar
Soifer, B.T., Houck, J.R. and Harwit, M. 1971. ‘Rocket-infrared observations of the interplanetary medium’. Astrophysical Journal Letters 168, 73.CrossRefGoogle Scholar
*Soifer, B.T. et al. 1984a. ‘Infrared galaxies in the IRAS minisurvey’. Astrophysical Journal Letters 278, L71.CrossRefGoogle Scholar
Soifer, B.T. et al. 1984b. ‘The remarkable infrared galaxy Arp 220 = IC 4553’. Astrophysical Journal Letters 283, L1.CrossRefGoogle Scholar
Soifer, B.T. et al. 1986. ‘The luminosity function and space density of the most luminous galaxies in the IRAS survey’. Astrophysical Journal Letters 303, L41.CrossRefGoogle Scholar
*Soifer, B.T. et al. 1987. ‘The IRAS bright galaxy sample. II – The sample and luminosity function’. Astrophysical Journal 320, 238.CrossRefGoogle Scholar
*Soifer, B.T., Neugebauer, G. and Houck, J.R. 1987. ‘The IRAS view of the extragalactic sky’. Annual Review of Astronomy and Astrophysics 25, 187.CrossRefGoogle Scholar
*Soifer, B.T., Boehmer, L., Neugebauer, G. and Sanders, D.B. 1989. ‘The IRAS bright galaxy sample. IV – Complete IRAS observations’. Astronomical Journal 98, 766.CrossRefGoogle Scholar
Soifer, B.T., Helou, G. and Werner, M. 2008. ‘The Spitzer view of the extragalactic universe’. Annual Review of Astronomy and Astrophysics 46, 201.CrossRefGoogle Scholar
*Solomon, P.M., Rivolo, A.R., Barrett, J. and Yahil, A. 1987. ‘Mass, luminosity, and line width relations of Galactic molecular clouds’. Astrophysical Journal 319, 730.CrossRefGoogle Scholar
*Solomon, P.M. and Sage, L.J. 1988. ‘Star-formation rates, molecular clouds, and the origin of the far-infrared luminosity of isolated and interacting galaxies’. Astrophysical Journal 334, 613.CrossRefGoogle Scholar
*Solomon, P.M., Downes, D. and Radford, S.J.E. 1992a. ‘Dense molecular gas and starbursts in ultraluminous galaxies’. Astrophysical Journal Letters 387, L55.CrossRefGoogle Scholar
Solomon, P.M., Downes, D. and Radford, S.J.E. 1992b. ‘Warm molecular gas in the primeval galaxy IRAS F10214+4724’. Astrophysical Journal Letters 398, L29.CrossRefGoogle Scholar
*Solomon, P.M., Downes, D., Radford, S.J.E. and Barrett, J.W. 1997. ‘The molecular interstellar medium in ultraluminous infrared galaxies’. Astrophysical Journal 478, 144.CrossRefGoogle Scholar
Solomon, P.M. and Vanden Bout, P.A. 2005. ‘Molecular gas at high redshift’. Annual Review of Astronomy and Astrophysics 43, 677.CrossRefGoogle Scholar
*Sopka, R.J. et al. 1985. ‘Submillimeter observations of evolved stars’. Astrophysical Journal 294, 242.CrossRefGoogle Scholar
Spergel, D.N. et al. 2003. ‘First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters’. Astrophysical Journal Supplement Series 148, 175.CrossRefGoogle Scholar
Spergel, D.N. et al. 2007. ‘Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for cosmology’. Astrophysical Journal Supplement Series 170, 377.CrossRefGoogle Scholar
*Spitzer, L. 1978. Physical Processes in the Interstellar Medium. New York: Wiley.Google Scholar
Spoon, H.W.W. et al. 2006. ‘The detection of crystalline silicates in ultraluminous infrared galaxies’. Astrophysical Journal 638, 759.CrossRefGoogle Scholar
*Stahler, S.W., Shu, F.H. and Taam, R.E. 1980. ‘The evolution of protostars. I – Global formulation and results’. Astrophysical Journal 241, 148.CrossRefGoogle Scholar
Stebbins, J., Huffer, C.M. and Whitford, A.E., 1939. ‘The mean coefficient of selective absorption in the Galaxy’. Astrophysical Journal 92, 193.CrossRefGoogle Scholar
*Stecker, F.W., de Jager, O.C. and Salamon, M.H. 1992. ‘TeV gamma rays from 3C 279 – A possible probe of origin and intergalactic infrared radiation fields’. Astrophysical Journal Letters 390, L49.CrossRefGoogle Scholar
Stein, W.A. 1966a. ‘Infrared emission from interstellar grains’. Astrophysical Journal 144, 318.CrossRefGoogle Scholar
Stein, W.A. 1966b. ‘Infrared emission by circumstellar dust’. Astrophysical Journal 145, 101.CrossRefGoogle Scholar
Stein, W.A. 1967. ‘Infrared continuum for HII regions’. Astrophysical Journal 148, 295.CrossRefGoogle Scholar
*Stern, D. et al. 2005. ‘Mid-infrared selection of active galaxies’. Astrophysical Journal 631, 163.CrossRefGoogle Scholar
*Sternberg, A. and Dalgarno, A. 1989. ‘The infrared response of molecular hydrogen to ultraviolet radiation – High-density regions’. Astrophysical Journal 338, 197.CrossRefGoogle Scholar
Stone, E.F. 1870. ‘Approximate determinations of the heating powers of Arcturus and Alpha Lyrae’. Proceedings of the Royal Society of London 18, 159.CrossRefGoogle Scholar
Storey, J.W.V. 2000. ‘Infrared astronomy: In the heat of the night. The 1999 Ellery Lecture’. Publications of the Astronomical Society of Australia 17, 270.CrossRefGoogle Scholar
*Strauss, M.A. et al. 1992. ‘A redshift survey of IRAS galaxies. VII – The infrared and redshift data for the 1.936 Jansky sample’. Astrophysical Journal Supplement Series 83, 29.CrossRefGoogle Scholar
Strecker, D.W., Ney, E.P. and Murdock, T.L. 1973. ‘Cygnids and Taurids – Two classes of infrared objects’. Astrophysical Journal Letters 183, L13.CrossRefGoogle Scholar
*Strom, K.M. et al. 1989. ‘Circumstellar material associated with solar-type pre-main-sequence stars – A possible constraint on the timescale for planet building’. Astronomical Journal 97, 1451.CrossRefGoogle Scholar
Strom, R.G. et al. 2005. ‘The origin of planetary impactors in the inner Solar System’. Science 309, 1847.CrossRefGoogle ScholarPubMed
*Strom, S.E., Grasdalen, G.L. and Strom, K.M. 1974. ‘Infrared and optical observations of Herbig–Haro objects’. Astrophysical Journal 191, 111.CrossRefGoogle Scholar
*Stutzki, J. et al. 1988. ‘Submillimeter and far-infrared line observations of M17 SW – A clumpy molecular cloud penetrated by ultraviolet radiation’. Astrophysical Journal 332, 379.CrossRefGoogle Scholar
Swain, M.R., Vasisht, G. and Tinetti, G. 2008. ‘The presence of methane in the atmosphere of an extrasolar planet’. Nature 452, 329.CrossRefGoogle ScholarPubMed
Sykes, M.V., Lebofsky, L.A., Hunten, D.M. and Low, F. 1986. ‘The discovery of dust trails in the orbits of periodic comets’. Science 232, 1115.CrossRefGoogle ScholarPubMed
Sykes, M.V. and Walker, R.G. 1992. ‘Cometary dust trails. I – Survey’. Icarus 95, 180.CrossRefGoogle Scholar
Tacconi, L.J. et al. 2006. ‘High-resolution millimetre imaging of submillimeter galaxies’. Astrophysical Journal 640, 228.CrossRefGoogle Scholar
Tatematus, K. et al. 1993. ‘Nobeyama CS(1–0) Survey’. Astrophysical Journal404, 643.Google Scholar
Tauber, J.A. et al. 2010. ‘Planck pre-launch status: The Planck mission’. Astronomy and Astrophysics 520, A1.CrossRefGoogle Scholar
Tedesco, E.F., Noah, P.V., Noah, M. and Price, S.D. 2002. ‘The Supplemental IRAS Minor Planet Survey’. Astronomical Journal 123, 1056.CrossRefGoogle Scholar
Telesco, C.M., Harper, D.A. and Loewenstein, R.F. 1976. ‘Far-infrared photometry of NGC 1068’. Astrophysical Journal Letters 203, L53.CrossRefGoogle Scholar
*Telesco, C.M. and Harper, D.A. 1980. ‘Galaxies and far-infrared emission’. Astrophysical Journal 235, 392.CrossRefGoogle Scholar
Thompson, R.I. et al. 1998. ‘Initial on-orbit performance of NICMOS’. Astrophysical Journal Letters 492, L95.CrossRefGoogle Scholar
*Tielens, A.G.G.M. and Hagen, W. 1982. ‘Model calculations of the molecular composition of interstellar grain mantles’. Astronomy and Astrophysics 114, 245.Google Scholar
*Tielens, A.G.G.M. and Hollenbach, D. 1985. ‘Photodissociation regions. I – Basic model. II – A model for the Orion photodissociation region’. Astrophysical Journal 291, 722.CrossRefGoogle Scholar
*Tielens, A.G.G.M., Tokunaga, A.T., Geballe, T.R. and Baas, F. 1991. ‘Interstellar solid CO – Polar and nonpolar interstellar ices’. Astrophysical Journal 381, 181.CrossRefGoogle ScholarPubMed
Tinetti, G. et al. 2007. ‘Water vapour in the atmosphere of a transiting extrasolar planet’. Nature 448, 169.CrossRefGoogle ScholarPubMed
*Tonry, J.L. et al. 2003. ‘Cosmological results from high-z supernovae’. Astrophysical Journal 594, 1.CrossRefGoogle Scholar
*Townes, C.H. and Schawlow, A.L. 1955. Microwave Spectroscopy. New York: McGraw-Hill.Google Scholar
*Trumpler, R.J. 1930. ‘Preliminary results on the distances, dimensions and space distribution of open star clusters’. Lick Observatory Bulletin 14, 154.CrossRefGoogle Scholar
Tsiganis, K., Gomes, R., Morbidelli, A. and Levison, H.F. 2005. ‘Origin of the orbital architecture of the giant planets in the Solar System’. Nature 435, 459.CrossRefGoogle ScholarPubMed
Ulrich, B.T. et al. 1966. ‘Further observations of extremely cool stars’. Astrophysical Journal 146, 288.CrossRefGoogle Scholar
*Ungerechts, H. and Thaddeus, P. 1987. ‘A CO survey of the dark nebulae in Perseus, Taurus, and Auriga’. Astrophysical Journal Supplement Series 63, 645.CrossRefGoogle Scholar
*van der Veen, W.E.C.J. and Habing, H.J. 1988. ‘The IRAS two-colour diagram as a tool for studying late stages of stellar evolution’. Astronomy and Astrophysics 194, 125.Google Scholar
*van Dishoeck, E.F. and Black, J.H. 1986. ‘Comprehensive models of diffuse interstellar clouds – Physical conditions and molecular abundances’. Astrophysical Journal Supplement Series 62, 109.CrossRefGoogle Scholar
*van Dishoeck, E.F. and Blake, G.A. 1998. ‘Chemical evolution of star-forming regions’. Annual Review of Astronomy and Astrophysics 36, 317.CrossRefGoogle ScholarPubMed
van Dishoeck, E.F. 2004. ‘ISO spectroscopy of gas and dust: from molecular clouds to protoplanetary disks’. Annual Review of Astronomy and Astrophysics 42, 119.CrossRefGoogle Scholar
*Veeder, G.J. 1974. ‘Luminosities and temperatures of M dwarf stars from infrared photometry’. Astronomical Journal 79, 1056.CrossRefGoogle Scholar
*Veilleux, S. et al. 1995. ‘Optical spectroscopy of luminous infrared galaxies. II. Analysis of the nuclear and long-slit data’. Astrophysical Journal Supplement Series 98, 171.CrossRefGoogle Scholar
Wagoner, R.V., Fowler, W.A. and Hoyle, F. 1967. ‘On the synthesis of elements at very high temperatures’. Astrophysical Journal 148, 3.CrossRefGoogle Scholar
*Wainscoat, R.J. et al. 1992. ‘A model of the 8–25 micron point source infrared sky’. Astrophysical Journal Supplement Series 83, 111.CrossRefGoogle Scholar
*Wainscoat, R.J. and Cowie, L.L. 1992. ‘A filter for deep near-infrared imaging’. Astronomical Journal 103, 332.CrossRefGoogle Scholar
Walker, R.G. and Price, S.D. 1975. AFCRL Infrared Sky Survey. Cambridge, MA: Air Force Cambridge Research Laboratory (AFCRL-TR-75–0373).Google Scholar
Walker, R.G. et al. 1984. ‘Observations of Comet IRAS-Iraki-Alcock 1983d’. Astrophysical Journal Letters 278, L11.CrossRefGoogle Scholar
Walker, R.G. and Rowan-Robinson, M. 1984. ‘The peculiar infrared tail of Comet Bowell’. Bulletin of the American Astronomical Society 16, 443.Google Scholar
*Ward-Thompson, D., Scott, P.F., Hills, R.E. and André, P. 1994. ‘A submillimetre continuum survey of pre-protostellar cores’. Monthly Notices of the Royal Astronomical Society 268, 276.CrossRefGoogle Scholar
Ward-Thompson, D., Motte, F. and Andre, P. 1999. ‘Mapping of pre-stellar cores’. Monthly Notices of the Royal Astronomical Society 305, 143.CrossRefGoogle Scholar
*Warren, S.G. 1984. ‘Optical constants of ice from the ultraviolet to the microwave’. Applied Optics 23, 1206.CrossRefGoogle ScholarPubMed
Warren, S.J. et al. 2007a. ‘The UKIRT Deep Sky Survey first data release’. Monthly Notices of the Royal Astronomical Society 375, 213.CrossRefGoogle Scholar
Warren, S.J. et al. 2007b. ‘A very cool brown dwarf in UKIDSS DR1’. Monthly Notices of the Royal Astronomical Society 381, 1400.CrossRefGoogle Scholar
*Waters, L.B.F.M. et al. 1996. ‘Mineralogy of oxygen-rich dust shells’. Astronomy and Astrophysics 315, L361.Google Scholar
*Webb, R.A. et al. 1999. ‘Discovery of seven T Tauri stars and a brown dwarf candidate in the nearby TW Hydrae Association’. Astrophysical Journal Letters 512, L63.CrossRefGoogle Scholar
Weinreb, S., Barrett, A.H., Meeks, M.L., Henry, J.C. 1963. ‘Radio observations of OH in the interstellar medium’. Nature 200, 829.CrossRefGoogle Scholar
*Weingartner, J.C. and Draine, B.T. 2001. ‘Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud’. Astrophysical Journal 548, 296.CrossRefGoogle Scholar
Weliachew, L. 1971. ‘Detection of interstellar OH in two external galaxies’. Astrophysical Journal Letters 147, L47.CrossRef
Werner, M.W., Elias, J.H., Gezari, D.Y., Hauser, M.G. and Westbrook, W.E. 1975. ‘Observations of 1-millimeter continuum radiation from the DR 21 region’. Astrophysical Journal Letters 199, L185.CrossRefGoogle Scholar
*Werner, M.W. et al. 2004. ‘The Spitzer Space Telescope mission’. Astrophysical Journal Supplement Series 154, 1.CrossRefGoogle Scholar
Werner, M. 2006. ‘A short and personal history of the Spitzer Space Telescope’. Astronomical Society of the Pacific Conference Series 357, 7Google Scholar
Werner, M. et al. 2006. ‘First fruits of the Spitzer Space Telescope: Galactic and Solar System studies’. Annual Review of Astronomy and Astrophysics 44, 269.CrossRefGoogle Scholar
Wesselink, A.H. 1948. ‘Heat conductivity and nature of the lunar surface material’. Bulletin of the Astronomical Institutes of the Netherlands 10, 351.Google Scholar
*Whitford, A.E. 1958. ‘The law of interstellar reddening’. Astronomical Journal 63, 201.CrossRefGoogle Scholar
*Whittet, D.C.B. et al. 1988. ‘Infrared spectroscopy of dust in the Taurus dark clouds – Ice and silicates’. Monthly Notices of the Royal Astronomical Society 233, 321.CrossRefGoogle Scholar
*Wilking, B.A. and Lada, C.J. 1983. ‘The discovery of new embedded sources in the centrally condensed core of the Rho Ophiuchi dark cloud – The formation of a bound cluster’. Astrophysical Journal 274, 698.CrossRefGoogle Scholar
*Wilking, B.A., Lada, C.J. and Young, E.T. 1989. ‘IRAS observations of the Rho Ophiuchi infrared cluster – Spectral energy distributions and luminosity function’. Astrophysical Journal 340, 823.CrossRefGoogle Scholar
*Williams, J.P., de Geus, E.J. and Blitz, L. 1994. ‘Determining structure in molecular clouds’. Astrophysical Journal 428, 693.CrossRefGoogle Scholar
*Williams, P.M. et al. 1990. ‘Multi-frequency variations of the Wolf–Rayet system HD 193793. I – Infrared, X-ray and radio observations’. Monthly Notices of the Royal Astronomical Society 243, 662.Google Scholar
*Willner, S.P. et al. 1982. ‘Infrared spectra of protostars – Composition of the dust shells’. Astrophysical Journal 253, 174.CrossRefGoogle Scholar
Wilson, R.W., Jefferts, K.B. and Penzias, A.A. 1970. ‘Carbon monoxide in the Orion Nebula’. Astrophysical Journal Letters 161, L43.CrossRefGoogle Scholar
Wilson, R.W., Solomon, P.M., Penzias, A.A. and Jefferts, K.B. 1971. ‘Millimeter observations of CO, CN, and CS emission from IRC+10216’. Astrophysical Journal Letters 169, L35.CrossRefGoogle Scholar
*Wilson, W.J. et al. 1972. ‘Infrared stars with strong 1665/1667-MHz OH microwave emission’. Astrophysical Journal 177, 523.CrossRefGoogle Scholar
Wooden, D.H. et al. 1999. ‘Silicate mineralogy of the dust in the inner coma of comet C/1995 01 (Hale-Bopp) pre- and postperihelion’. Astrophysical Journal 517, 1034.CrossRefGoogle Scholar
Woody, D.P., Mather, J.C., Nishioka, N.S. and Richards, P.L. 1975. ‘Measurement of the spectrum of the submillimeter cosmic background’. Physical Review Letters 34, 1036.CrossRefGoogle Scholar
Woody, D.P. and Richards, P.L. 1979. ‘Spectrum of the cosmic background radiation’. Physical Review Letters 42, 925.CrossRefGoogle Scholar
*Woolf, N. and Ney, E. 1969. ‘Circumstellar emission from cool stars’. Astrophysical Journal Letters 155, L181.CrossRefGoogle Scholar
*Wright, A.E. and Barlow, M.J. 1975. ‘The radio and infrared spectrum of early-type stars undergoing mass-loss’. Monthly Notices of the Royal Astronomical Society 170, 41.CrossRefGoogle Scholar
*Wright, E.L. et al. 1991. ‘Preliminary spectral observations of the Galaxy with a 7 deg beam by the Cosmic Background Explorer (COBE)’. Astrophysical Journal 381, 200.CrossRefGoogle Scholar
Wright, G.S., Joseph, R.D. and Meikle, W.P.S. 1984. ‘The ultraluminous interacting galaxy NGC 6240’. Nature 309, 430.CrossRefGoogle Scholar
Wyatt, M.C. 2008. ‘Evolution of debris disks’. Annual Review of Astronomy and Astrophysics 46, 339.CrossRefGoogle Scholar
*Wynn-Williams, C.G., Becklin, E.E. and Neugebauer, G. 1972. ‘Infra-red sources in the H II region W3’. Monthly Notices of the Royal Astronomical Society 160, 1.CrossRefGoogle Scholar
*Wynn-Williams, C.G., Becklin, E.E. and Neugebauer, G. 1974. ‘Infrared studies of H II regions and OH sources’. Astrophysical Journal 187, 473.CrossRefGoogle Scholar
Wynn-Williams, C.G. and Becklin, E.E. (eds.). 1987. Astronomy with Infrared Arrays. Honolulu: University of Hawaii.
Yahil, A., Walker, D. and Rowan-Robinson, M. 1986. ‘The dipole anisotropies of the IRAS galaxies and the microwave background radiation’. Astrophysical Journal Letters 301, L1.CrossRefGoogle Scholar
Yorke, H. 1977. ‘Calculated infrared spectra of cocoon stars’. ‘Astronomy and Astrophysics 58, 423.Google Scholar
*Young, J.S. and Scoville, N. 1982. ‘Extragalactic CO – Gas distributions which follow the light in IC 342 and NGC 6946’. Astrophysical Journal 258, 467.CrossRefGoogle Scholar
*Young, J.S., Xie, S., Kenney, J.D.P. and Rice, W.L. 1989. ‘Global properties of infrared bright galaxies’. Astrophysical Journal Supplement Series 70, 699.CrossRefGoogle Scholar
*Young, J.S. and Scoville, N.Z. 1991. ‘Molecular gas in galaxies’. Annual Review of Astronomy and Astrophysics 29, 581.CrossRefGoogle Scholar
*Young, J.S. et al. 1995. ‘The FCRAO extragalactic CO survey. I. The data’. Astrophysical Journal Supplement Series 98, 219.CrossRefGoogle Scholar
*Yun, M.S., Reddy, N.A. and Condon, J.J. 2001. ‘Radio properties of infrared-selected galaxies in the IRAS 2 Jy sample’. Astrophysical Journal 554, 803.CrossRefGoogle Scholar
*Zuckerman, B. 1973. ‘A model of the Orion Nebula’. Astrophysical Journal 183, 863.CrossRefGoogle Scholar
*Zuckerman, B. and Palmer, P. 1974. ‘Radio radiation from interstellar molecules’. Annual Review of Astronomy and Astrophysics 12, 279.CrossRefGoogle Scholar
*Zuckerman, B. and Aller, L.H. 1986. ‘Origin of planetary nebulae – Morphology, carbon-to-oxygen abundance ratios, and central star multiplicity’. Astrophysical Journal 301, 772.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Michael Rowan-Robinson, Imperial College London
  • Book: Night Vision
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139176019.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Michael Rowan-Robinson, Imperial College London
  • Book: Night Vision
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139176019.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Michael Rowan-Robinson, Imperial College London
  • Book: Night Vision
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139176019.019
Available formats
×