Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-01T11:29:33.919Z Has data issue: false hasContentIssue false

Chapter 4 - Geothermal Energy

Published online by Cambridge University Press:  05 December 2011

Ottmar Edenhofer
Affiliation:
Potsdam Institute for Climate Impact Research
Ramón Pichs-Madruga
Affiliation:
Centro de Investigaciones de la Economía Mundial (CIEM)
Youba Sokona
Affiliation:
The Sahara and Sahel Observatory
Kristin Seyboth
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Susanne Kadner
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Timm Zwickel
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Patrick Eickemeier
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Gerrit Hansen
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Steffen Schlömer
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Christoph von Stechow
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Patrick Matschoss
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Get access

Summary

Executive Summary

Geothermal energy has the potential to provide long-term, secure base-load energy and greenhouse gas (GHG) emissions reductions. Accessible geothermal energy from the Earth's interior supplies heat for direct use and to generate electric energy. Climate change is not expected to have any major impacts on the effectiveness of geothermal energy utilization, but the widespread deployment of geothermal energy could play a meaningful role in mitigating climate change. In electricity applications, the commercialization and use of engineered (or enhanced) geothermal systems (EGS) may play a central role in establishing the size of the contribution of geothermal energy to long-term GHG emissions reductions.

The natural replenishment of heat from earth processes and modern reservoir management techniques enable the sustainable use of geothermal energy as a low-emission, renewable resource. With appropriate resource management, the tapped heat from an active reservoir is continuously restored by natural heat production, conduction and convection from surrounding hotter regions, and the extracted geothermal fluids are replenished by natural recharge and by injection of the depleted (cooled) fluids.

Global geothermal technical potential is comparable to global primary energy supply in 2008. For electricity generation, the technical potential of geothermal energy is estimated to be between 118 EJ/yr (to 3 km depth) and 1,109 EJ/yr (to 10 km depth). For direct thermal uses, the technical potential is estimated to range from 10 to 312 EJ/yr. The heat extracted to achieve these technical potentials can be fully or partially replenished over the long term by the continental terrestrial heat flow of 315 EJ/yr at an average flux of 65 mW/m2.

Type
Chapter
Information
Renewable Energy Sources and Climate Change Mitigation
Special Report of the Intergovernmental Panel on Climate Change
, pp. 401 - 436
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AL-AGEA (2009). Geothermal Energy in Australia. Prepared by Activated Logic Pty Ltd. for the Australian Geothermal Energy Association (AGEA), Unley, South Australia, 53 pp. Available at: www.agea.org.au.
Armstead, H.C.H., and Tester, J.W. (1987). Heat Mining. E&FN Spon Ltd, London, UK and New York, NY, USA, 478 pp (ISBN 0-419-12230-3).Google Scholar
Arpasi, M. (2005). Geothermal update of Hungary 2000-2004. In: Proceedings World Geothermal Congress 2005, Antalya, Turkey, 24-29 April 2005 (ISBN 9759833204). Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/0127.pdf.Google Scholar
Axelsson, G., Stefánsson, V., Björnsson, G., and Liu, J. (2005). Sustainable management of geothermal resources and utilisation for 100 – 300 years. In: Proceedings World Geothermal Congress 2005, Antalya, Turkey, 24-29 April 2005 (ISBN 9759833204). Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/0507.pdf.Google Scholar
Axelsson, G.V., Bromley, C.J., Mongillo, M.A., and Rybach, L. (2010). Sustainability task of the International Energy Agency's Geothermal Implementing Agreement. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25-30 April 2010. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/0512.pdf.Google Scholar
Balcer, M. (2000). Infrastruktura techniczna zakladu geotermalnego w Mszczonowie (in Polish). In: Symposium on the Role of Geothermal Energy in the Sustainable Development of the Mazovian and Lodz Regions (Rola energii geotermalnej w zrównowazonym rozwoju regionów Mazowieckiego i Lodzkiego), Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Cracow, Poland, 4-6 October 2000, pp. 107–114 (ISBN 83-87854-62-X).Google Scholar
Barnett, P., and Quinlivan, P. (2009). Assessment of Current Costs of Geothermal Power Generation in New Zealand (2007 Basis). Report by SKM for New Zealand Geothermal Association, Wellington, New Zealand. Available at: www.nzgeothermal.org.nz\industry_papers.html.Google Scholar
Bertani, R. (2010). Geothermal power generation in the world - 2005–2010 update report. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–30 April 2010. Available at: www.geothermal-energy.org/pdf/IGAstandard/ WGC/2010/0008.pdf.Google Scholar
Bertani, R., and Thain, I. (2002). Geothermal power generating plant CO2 emission survey. International Geothermal Association (IGA) News, 49, pp. 1–3 (ISSN: 0160-7782). Available at: www.geothermal-energy.org/308,iga_newsletter.html.Google Scholar
Bloomquist, R.G., Nimmons, J., and Spurr, M. (2001). Combined Heat and Power – Legal, Institutional, Regulatory. No. WSUCEEP 01-013, Washington State University, Cooperative Extension, Energy Program, Olympia, Washington, 122 pp.Google Scholar
Bromley, C.J., and Mongillo, M.A. (2008). Geothermal energy from fractured reservoirs: dealing with induced seismicity. IEA OPEN Energy Technology Bulletin Feb. 2008, 48, 7 pp. Available at: www.iea.org/impagr/cip/pdf/Issue48Geothermal.pdf.Google Scholar
Bromley, C.J., Rybach, L., Mongillo, M.A., and Matsunaga, I. (2006). Geothermal resources – utilization strategies to promote beneficial environmental effects and to optimize sustainability. In: Proceedings RE 2006, Chiba, Japan, 9–13 October 2006, pp. 1637–1640. In: Science and Technology in Japan, 25(100), 2007.
Bromley, C.J., Mongillo, M.A., Goldstein, B., Hiriart, G., Bertani, R., Huenges, E., Muraoka, H., Ragnarsson, A., Tester, J., and Zui, V. (2010). Contribution of geothermal energy to climate change mitigation: the IPCC renewable energy report. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–30 April 2010. Available at: www.geothermal-energy.org/pdf/IGAstandard/ WGC/2010/0225.pdf.Google Scholar
Burgassi, P.D. (1999). Historical outline of geothermal technology in the Larderello region to the middle of the 20th century. In: Stories from a Heated Earth. Cataldi, R., Hodgson, S. and Lund, J.W. (eds.), Geothermal Resources Council and International Geothermal Association, Sacramento, CA, USA, pp. 195–219 (ISBN: 0934412197).Google Scholar
Cataldi, R. (1999). The year zero of geothermics. In: Stories from a Heated Earth. Cataldi, R., Hodgson, S. and Lund, J.W. (eds.), Geothermal Resources Council and International Geothermal Association, Sacramento, CA, USA, pp. 7–17 (ISBN: 0934412197).Google Scholar
Cloetingh, S., Wees, J.D.v., Ziegler, P.A., Lenkey, L., Beekman, F., Tesauro, M., Förster, A., Norden, B., Kaban, M., Hardebol, N., Bonté, D., Genter, A., Guillou-Frottier, L., Voorde, M.T., Sokoutis, D., Willingshofer, E., Cornu, T., and Worum, G. (2010). Lithosphere tectonics and thermo-mechanical properties: An integrated modelling approach for Enhanced Geothermal Systems exploration in Europe. Earth-Science Reviews, 102(3-4), pp. 159–206.CrossRefGoogle Scholar
Cooper, G.T., Beardsmore, G.R., Waining, B.S., Pollington, N., and Driscoll, J.P. (2010). The relative cost of Engineered Geothermal Systems exploration and development in Australia. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–29 April, 2010. Available at: www.geothermal-energy.org/pdf/ IGAstandard/WGC/2010/3115.pdf.Google Scholar
Cross, J., and Freeman, J. (2009). 2008 Geothermal Technologies Market Report. Geothermal Technologies Program of the US Department of Energy, Washington, DC, USA, 46 pp. Available at: www1.eere.energy.gov/geothermal/pdfs/2008_market_report.pdf.CrossRefGoogle Scholar
Darma, S., Harsoprayitno, S., Setiawan, B., Hadyanto, , Sukhyar, R., Soedibjo, A.W., Ganefianto, N., and Stimac, J. (2010). Geothermal energy update: Geothermal energy development and utilization in Indonesia. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–29 April, 2010. Available at: www.geothermalenergy. org/pdf/IGAstandard/WGC/2010/0128.pdf.Google Scholar
Jesus, A.C. (2005). Social issues raised and measures adopted in Philippine geothermal projects. In: Proceedings World Geothermal Congress 2005, Antalya, Turkey, 24–29 April, 2005 (ISBN 9759833204). Available at: www.geothermalenergy.org/pdf/IGAstandard/WGC/2005/0219.pdf.Google Scholar
Dickson, M.H., and Fanelli, M. (2003). Geothermal energy: Utilization and technology. Renewable Energy Series, United Nations Educational, Scientific and Cultural Organization, Paris, France, 205 pp. (ISBN: 92-3-103915-6).Google Scholar
DiPippo, R. (1991). Geothermal energy: Electricity generation and environmental impact. Energy Policy, 19, pp. 798–807.CrossRefGoogle Scholar
DiPippo, R. (2008). Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact. Elsevier, London, UK, 493 pp. (ISBN: 9780750686204).Google Scholar
DRET, 2008: Australian Geothermal Industry Development Framework. Department of Resources, Energy and Tourism, Commonwealth of Australia, Canberra, Australia. (ISBN 978-1-921516-11-5 [paperback], ISBN 978-1-921516-15-3 [pdf]). Available at: www.ret.gov.au/energy/clean_energy_technologies/energy_technology_framework_and_roadmaps/hydrogen_technology_roadmap/ Documents/GEOTHERMAL%20FRAMEWORK.pdf.
ENGINE (2008). Propositions for the definition of research areas on Enhanced Geothermal Systems. ENGINE Newsletter No. 11 – June 2008, Enhanced Geothermal Innovative Network for Europe, Orléans, France, pp. 4–7. Available at: engine.brgm.fr/bulletins/ENGINE_Newsletter11_062008.pdf.
Entingh, D.J., and Mines, G. (2006). A framework for evaluating research to improve U.S. geothermal power systems. Transactions of the Geothermal Resources Council, 30, pp. 741–746.Google Scholar
EPRI (1978). Geothermal Energy Prospects for the Next 50 Years – ER-611-SR, Special Report for the World Energy Conference. Electric Power Research Institute, Palo Alto, CA, USA.
Frick, S., Schröder, G., and Kaltschmitt, M. (2010). Life cycle analysis of geothermal binary power plants using enhanced low temperature reservoirs. Energy, 35(5), pp. 2281–2294.CrossRefGoogle Scholar
Fridleifsson, I.B., and Ragnarsson, A. (2007). Geothermal energy. In: 2007 Survey of Energy Resources. World Energy Council, London, UK, pp. 427–437 (ISBN: 0946121 265). Available at: www.worldenergy.org/documents/ser2007_final_online_version_1.pdf.Google Scholar
Fridleifsson, I.B., Bertani, R., Huenges, E., Lund, J.W., Ragnarsson, A., and Rybach, L. (2008). The possible role and contribution of geothermal energy to the mitigation of climate change. In: IPCC Scoping Meeting on Renewable Energy Sources, Luebeck, Germany, 21-25 January 2008, pp. 36. Available at: www.ipcc.ch/pdf/ supporting-material/proc-renewables-lubeck.pdf.Google Scholar
Fridleifsson, G.O., Pálsson, B., Stefánsson, B., Albertsson, A., Gunnlaugsson, E., Ketilsson, J., Lamarche, R., and Andersen, P.E. (2010). Iceland Deep Drilling Project. The first IDDP drill hole drilled and completed in 2009. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25-29 April, 2010. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/3902.pdf.Google Scholar
Gawell, K., and Greenberg, G.. (2007). 2007 Interim Report. Update on World Geothermal Development. Geothermal Energy Association, Washington, DC, USA. Available at: www.geo-energy.org/reports/GEA%20World%20Update%20 2007.pdf.Google Scholar
German, C.R., Klinkhammer, G.P., and Rudnicki, M.D. (1996). The Rainbow Hydrothermal Plume, 36°15'N, MAR. Geophysical Research Letters, 23(21), pp. 2979–2982.CrossRefGoogle Scholar
Goldstein, B.A., Hill, A.J., Long, A., Budd, A.R., Ayling, B., and Malavazos, M. (2009). Hot rocks down under – Evolution of a new energy industry. Transactions of the Geothermal Resources Council, 33, pp. 185–198.Google Scholar
Goldstein, B.A., Hiriart, G., Tester, J.W., Bertani, R., Bromley, C.J., Gutiérrez-Negrín, L.C., Huenges, E., Ragnarsson, A., Mongillo, M.A., Muraoka, H., and Zui, V.I. (2011). Great expectations for geothermal energy to 2100. In: Proceedings of the Thirty-Sixth Workshop of Geothermal Reservoir Engineering, Stanford University, Stanford, CA, 31 January – 2 February 2011, SGP-TR-191, pp. 5–12.Google Scholar
Grant, M.A., Donaldson, I.G., and Bixley, P.F. (1982). Geothermal Reservoir Engineering. Academic Press, New York, NY, USA.Google Scholar
GTP (2008). Geothermal Tomorrow 2008. DOE-GO-102008-2633, Geothermal Technologies Program of the US Department of Energy, Washington, DC, USA, 36 pp.
Gutiérrez-Negrin, L.C.A., Maya-González, R., and Quijano-León, J.L. (2010). Current status of geothermics in Mexico. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010. Available at: www.geothermalenergy. org/pdf/IGAstandard/WGC/2010/0101.pdf.Google Scholar
Hamza, V.M., Cardoso, R.R., and Neto, C.F.P. (2008). Spherical harmonic analysis of Earth's conductive heat flow. International Journal of Earth Sciences, 97(2), pp. 205–226.CrossRefGoogle Scholar
Hance, C.N. (2005). Factors Affecting Costs of Geothermal Power Development. Geothermal Energy Association, for the U.S. Department of Energy, Washington, DC, USA, 64 pp. Available at: www.geo-energy.org/reports/Factors%20 Affecting%20Cost%20of%20Geothermal%20Power%20Development%20-%20August%202005.pdf.
Hettkamp, T., Baumgärtner, J., Teza, D., Hauffe, P., and Rogulic, B. (2010). Erfahrungen aus dem Geothermieprojekt in Landau (Experience from the geothermal project in Landau). Institute for Geotechnik at TU Bergakademie, Freiberg, Publisher: H. Konietzky, S., pp. 43–54 (ISSN 1611-1605).Google Scholar
Hiriart, G. (2007). Impacto del cambio climático sobre la generación eléctrica con fuente de energía geotérmica (Impact of climate change on power generation from geothermal energy source). In: Escenarios de energías renovables en México bajo cambio climático. Tejeda-Martínez, A., Gay-García, C., Cuevas-Guillaumín, G. and Rivera-Blanco, C.O. (eds.), pp. 83–105. Available at: www.ine.gob.mx/descargas/ cclimatico/e2007q.pdf.Google Scholar
Hiriart, G., and Espíndola, S. (2005). Aprovechamiento de las ventilas hidrotermales para generar electricidad. In: Memorias de la VIII Conferencia Anual de la AMEE, Colegio de México, 28-29 November 2005, pp. 153–159. Available at: http://www.iie.org.mx/economia-energetica/MemoriasVIIIConfAnualAMEE.pdf.Google Scholar
Hiriart, G., Prol-Ledesma, R.M., Alcocer, S., and Espíndola, S. (2010). Submarine geothermics: Hydrothermal vents and electricity generation. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–29 April, 2010. Available at: http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/3704.pdf.Google Scholar
Hjartarson, A., and Einarsson, J.G. (2010). Geothermal resources and properties of HS Orka, Reyjanes Peninsula, Iceland. Independent Technical Report prepared by Mannvit Engineering for Magma Energy Corporation, Vancouver, Canada, 151 pp. Available upon request at: www.mannvit.com.Google Scholar
Holm, A., Blodgett, L., Jennejohn, D., and Gawell, K. (2010). Geothermal Energy: International Market Update. The Geothermal Energy Association, Washington, DC, USA, 77 pp. Available at: www.geo-energy.org/pdf/reports/GEA_International_Market_Report_Final_May_2010.pdf.Google Scholar
Huenges, E., and Frick, S. (2010). Costs of CO2 mitigation by deployment of Enhanced Geothermal Systems plants. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–30 April 2010. Available at: www.geothermal-energy.org/pdf/ IGAstandard/WGC/2010/0238.pdf.Google Scholar
Huenges, E., Erbas, K., Moeck, I., Blöcher, G., Brandt, W., Schulte, T., Saadat, A., Kwiatek, G., and Zimmermann, G. (2009). The EGS project Groß Schönebeck – Current status of the large scale research project in Germany. Transactions of the Geothermal Resources Council, 39, pp. 403–408.Google Scholar
IEA (2009). World Energy Outlook 2009. International Energy Agency, Paris, France, 696 pp.
IEA (2010). Key World Energy Statistics 2010. International Energy Agency, Paris, France.
IEA-GIA (2009). IEA Geothermal Energy 12th Annual Report 2008. International Energy Agency – Geothermal Implementing Agreement, Paris, France, 257 pp.
Imolauer, K., Richter, B., and Berger, A. (2010). Non-technical barriers of geothermal projects. In: Proceedings World Geothermal Congress, Bali, Indonesia, 25-30 April 2010. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/0314.pdf.Google Scholar
Kagel, A. (2006). A Handbook on the Externalities, Employment, and Economics of Geothermal Energy. Geothermal Energy Association, Washington, DC, USA, 65 pp. Available at: www.geo-energy.org/reports/Socioeconomics%20Guide.pdf.Google Scholar
Kaltschmitt, M. (2000). Environmental effects of heat provision from geothermal energy in comparison to other resources of energy. In: Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan, 28 May - 10 June 2000 (ISBN: 0473068117). Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2000/R0908.PDF.Google Scholar
Koorey, K.J., and Fernando, A.D. (2010). Concurrent land use in geothermal steamfield developments. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/0207.pdf.Google Scholar
Krewitt, W., Nienhaus, K., Kleßmann, C., Capone, C., Stricker, E., Graus, W., Hoogwijk, M., Supersberger, N., Winterfeld, U., and Samadi, S. (2009). Role and Potential of Renewable Energy and Energy Efficiency for Global Energy Supply. Climate Change 18/2009, ISSN 1862-4359, Federal Environment Agency, Dessau-Roßlau, Germany, 336 pp.Google Scholar
Krey, V., and Clarke, L. (2011). Role of renewable energy in climate change mitigation: a synthesis of recent scenarios. Climate Policy, in press.CrossRef
Kutscher, C. (2000). The Status and Future of Geothermal Electric Power. NREL/CP-550-28204, National Renewable Energy Laboratory, Golden, CO, USA, 9 pp. Available at: www.nrel.gov/docs/fy00osti/28204.pdf.CrossRefGoogle Scholar
Laplaige, P., Lemale, J., Decottegnie, S., Desplan, A., Goyeneche, O., and Delobelle, G. (2005). Geothermal resources in France – current situation and prospects. In: Proceedings World Geothermal Congress 2005, Antalya, Turkey, 24–29 April 2005 (ISBN 9759833204).Google Scholar
Lippmann, M.J. (2002). Geothermal and the electricity market in Central America. Transactions of the Geothermal Resources Council, 26, pp. 37–42.Google Scholar
Lovekin, J. (2000). The economics of sustainable geothermal development. In: Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan, 28 May – 10 June 2000 (ISBN: 0473068117). Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2000/R0123.PDF.Google Scholar
Lund, J.W. (1995). Onion dehydration. Transactions of the Geothermal Resources Council, 19, pp. 69–74.Google Scholar
Lund, J.W., and Boyd, T.L. (2009). Geothermal utilization on the Oregon Institute of Technology campus, Klamath Falls, Oregon. In: Proceedings of the 34th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 9–11 February, 2009 (ISBN: 9781615673186).Google Scholar
Lund, J.W., Sanner, B., Rybach, L., Curtis, R., and Hellström, G. (2003). Groundsource heat pumps – A world overview. Renewable Energy World, 6(14), pp. 218–227.Google Scholar
Lund, J.W., Freeston, D.H., and Boyd, T.L. (2005). Direct application of geothermal energy: 2005 worldwide review. Geothermics, 24, pp. 691–727.CrossRefGoogle Scholar
Lund, J.W., Freeston, D.H., and Boyd, T.L. (2010a). Direct utilization of geothermal energy 2010 worldwide review. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–30 April 2010. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/0007.pdf.Google Scholar
Lund, J.W., Gawell, K., Boyd, T.L., and Jennejohn, D. (2010b). The United States of America country update 2010. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–30 April 2010. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/0102.pdf.Google Scholar
Lupton, J. (1995). Hydrothermal plumes: Near and far field. In: Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Humphris, S., Zierenberg, R., Mullineaux, L. and Thomson, R. (eds.), Geophysical Monograph 91, American Geophysical Union, Washington, DC, USA, pp. 317–346 (ISBN 0875900488).Google Scholar
Majer, E., Bayer, E., and Baria, R. (2008). Protocol for induced seismicity associated with enhanced geothermal systems. International Energy Agency – Geothermal Implementing Agreement (incorporating comments by Bromley, C.Cumming., W., Jelacic, A. and Rybach, L.), Paris, France. Available at: www.iea-gia.org/documents/Protocol for Induced Seismicity EGS-GIADoc25Feb09.pdf.Google Scholar
Mansure, A.J., and Blankenship, D.A. (2008). Geothermal well cost analyses. Transactions of the Geothermal Resources Council, 32, pp. 43–48.Google Scholar
Megel, T., and Rybach, L. (2000). Production capacity and sustainability of geothermal doublets. In: Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan, 28 May – 10 June 2000 (ISBN: 0473068117). Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2000/R0102.PDF.Google Scholar
Mock, J.E., Tester, J.W., and Wright, P.M. (1997). Geothermal energy from the Earth: Its potential impact as an environmentally sustainable resource. Annual Review of Energy and the Environment, 22, pp. 305–356 (ISBN: 978-0-8243-2322-6).CrossRefGoogle Scholar
Newell, D., and Mingst, A. (2009). Power from the Earth. Trading Carbon, 2(10), p. 24.Google Scholar
O'Sullivan, M., and Mannington, W. (2005). Renewability of the Wairakei-Tauhara geothermal resource. In: Proceedings World Geothermal Congress 2005, Antalya, Turkey, 24-29 April 2005 (ISBN 9759833204). Available at: http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/0508.pdf.Google Scholar
Owens, B. (2002). An Economic Valuation of a Geothermal Production Tax Credit. NREL/TP-620-31969, National Renewable Energy Laboratory, Golden, CO, USA, 24 pp. Available at: www.nrel.gov/docs/fy02osti/31969.pdf.CrossRefGoogle Scholar
Pritchett, R. (1998). Modeling post-abandonment electrical capacity recovery for a two-phase geothermal reservoir. Transactions of the Geothermal Resources Council, 22, pp. 521–528.Google Scholar
Pruess, K. (2006). Enhanced geothermal systems (EGS) using CO2 as a working fluid - A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics, 35, pp. 351–367.CrossRefGoogle Scholar
Pruess, K., and Spycher, N. (2010). Enhanced Geothermal Systems (EGS) with CO2 as heat transmission fluid – A scheme for combining recovery or renewable energy with geologic storage of CO2. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25-30 April 2010. Available at: www.geothermal-energy. org/pdf/IGAstandard/WGC/2010/3107.pdf.
Radeckas, B., and Lukosevicius, V. (2000). Klaipeda Geothermal demonstration project. In: Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan, 28 May – 10 June 2000, pp. 3547–3550 (ISBN: 0473068117). Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2000/R0237.PDF.Google Scholar
Reif, T. (2008). Profitability analysis and risk management of geothermal projects. Geo-Heat Center Quarterly Bulletin, 28(4), pp. 1–4. Available at: geoheat.oit.edu/ bulletin/bull28-4/bull28-4-all.pdf.Google Scholar
REN21 (2010). Renewables 2010: Global Status Report. Renewable Energy Policy Network for the 21st Century (REN21) Secretariat, Paris, France. Available at: www.ren21.net/Portals/97/documents/GSR/REN21_GSR_2010_full_revised%20 Sept2010.pdf.
Rowley, J.C. (1982). Worldwide geothermal resources. In: Handbook of Geothermal Energy. Gulf Publishing, Houston, TX, USA, pp. 44–176 (ISBN 0-87201-322-7).Google Scholar
Rybach, L. (2005). The advance of geothermal heat pumps world-wide. International Energy Agency (IEA) Heat Pump Centre Newsletter, 23, pp. 13–18.Google Scholar
Rybach, L. (2010). Legal and regulatory environment favourable for geothermal development investors. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25-30 April 2010. Available at: www.geothermal-energy.org/pdf/ IGAstandard/WGC/2010/0303.pdf.Google Scholar
Saadat, A., Frick, S.Kranz, S., and Regenspurg, S. (2010). Energy use of EGS reservoirs. In: Geothermal Energy Systems: Exploration, Development and Utilization. Huenges, E. and Ledru, P. (eds.), Wiley-VCH, Berlin, Germany, pp. 303–372 (ISBN: 978-3527408313).CrossRefGoogle Scholar
Sánchez-Velasco, R., López-Diaz, M., Mendoza, H., and Tello-Hinojosa, R. (2003). Magic at Maguarichic. Geothermal Resources Council Bulletin (March-April 2003), pp. 67–70.Google Scholar
Sanyal, S.K. (2010). On minimizing the levelized cost of electric power from Enhanced Geothermal Systems. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–30 April 2010. Available at: www.geothermal-energy. org/pdf/IGAstandard/WGC/2010/3154.pdf.Google Scholar
Sanyal, S.K., and Butler, S.J. (2010). Geothermal power capacity from petroleum wells – Some case histories and assessment. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–30 April 2010. Available at: www.geothermalenergy. org/pdf/IGAstandard/WGC/2010/3713.pdf.Google Scholar
Sanyal, S.K., Morrow, J.W., Butler, S.J., and Robertson-Tait, A. (2007). Is EGS commercially feasible? Transactions of the Geothermal Resources Council, 31, pp. 313–322.Google Scholar
Sims, R.E.H., Schock, R.N., Adegbululgbe, A., Fenhann, J., Konstantinaviciute, I., Moomaw, W., Nimir, H.B., Schlamadinger, B., Torres-Martínez, J., Turner, C., Uchiyama, Y., Vuori, S.J.V., Wamukonya, N., and Zhang, X. (2007). Energy supply. In: Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Metz, B., Davidson, O.R., Bosch, P.R., Dave, R. and Meyer, L.A. (eds.), Cambridge University Press, pp. 251–322.Google Scholar
Stefansson, V. (2002). Investment cost for geothermal power plants. Geothermics, 31, pp. 263–272.CrossRefGoogle Scholar
Stefansson, V. (2005). World geothermal assessment. In: Proceedings World Geothermal Congress 2005, Antalya, Turkey, 24–29 April 2005 (ISBN: 9759833204). Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/0001.pdf.Google Scholar
Teske, S., Pregger, T., Simon, S., Naegler, T., Graus, W., and Lins, C. (2010). Energy [R]evolution 2010–a sustainable world energy outlook. Energy Efficiency, doi:10.1007/s12053-010-9098-y.CrossRef
Tester, J.W., Drake, E.M., Golay, M.W., Driscoll, M.J., and Peters, W.A. (2005). Sustainable Energy – Choosing Among Options. MIT Press, Cambridge, Massachusetts, USA, 850 pp (ISBN 0-262-20153-4).Google Scholar
Tester, J.W., Anderson, B.J., Batchelor, A.S., Blackwell, D.D., DiPippo, R., Drake, E.M., Garnish, J., Livesay, B., Moore, M.C., Nichols, K., Petty, S., Töksoks, M. N, and Veatch, R.W. Jr. (2006). The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems on the United States in the 21st Century. Prepared by the Massachusetts Institute of Technology, under Idaho National Laboratory Subcontract No. 63 00019 for the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Geothermal Technologies, Washington, DC, USA, 358 pp (ISBN-10: 0486477711, ISBN-13: 978-0486477718). Available at: geothermal.inel.gov/publications/future_of_ geothermal_energy.pdf.Google Scholar
Wonstolen, K. (1980). Geothermal legislative policy concerns. In: Proceedings Geothermal Symposium: Potential, Legal Issues, Economics, Financing, R.G., Bloomquist and Wonstolen, K. (eds.), Seattle, WA, 2 June 1980. Available at: www.osti.gov/bridge/product.biblio.jsp?query_id=0&page=0&osti_id=6238884.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×