Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T11:21:01.201Z Has data issue: false hasContentIssue false

10 - Communications in the turbulence channel

Published online by Cambridge University Press:  05 February 2013

Get access

Summary

Introduction

Since lasers were invented in 1964, optical communications has been investigated for both military and commercial application because of its wavelength and spectrum availability advantages over radio frequency (RF) communications. Unfortunately, only fiber optic communications (FOC) systems have achieved wide implementation since then because of their ability to maximize power transfer from point to point while also minimizing negative channel effects. Recently, free-space optical communications (FSOC) has reemerged after three decades of dormancy due to the availability of new FOC technologies to the FSOC community, such as low-cost sensitive receivers and more power-efficient laser sources. Applications of FSOC, however, have been limited to local area (short range) networking because optical systems have been unable to effectively compensate for two atmospheric phenomena; cloud obscuration and atmospheric turbulence. Making a hybrid FSOC/RF communications system will compensate for cloud obscuration by using the RF capability when “clouds get in the way”. For this chapter, we will discuss how to mitigate the atmospheric turbulence for incoherent communications systems. In particular, we will discuss a new statistical link budget approach for characterizing FSOC link performance, and compare experimental results with statistical predictions. We also will comment at the end of the chapter on progress in coherent communications through turbulence. For those readers interested in science and modeling of laser propagation through atmospheric turbulence, we refer them to several excellent books on the topics for the details [1–5].

Type
Chapter
Information
Fundamentals of Electro-Optic Systems Design
Communications, Lidar, and Imaging
, pp. 179 - 248
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Majumdar, A. and Ricklin, J.. Free Space Laser Communications: Principles and Advances, Optical and Fiber Communications Series. Springer Science+Business Media, New York (2008).CrossRefGoogle Scholar
Andrews, L. C. and Phillips, R. L.. Laser Beam Propagation through Random Media, 2nd edn. SPIE Press (2005).CrossRefGoogle Scholar
Andrews, L. C.. Field Guide to Atmospheric Optics. SPIE Press (2004).CrossRefGoogle Scholar
Beland, R. R.. Propagation Through Atmospheric Optical Turbulence, Ch. 2 in Vol. 2 of Infrared and Electro-Optical Systems Handbook. Environmental Research Institute of Michigan (1996).Google Scholar
Karp, S., Gagliardi, R. M., Moran, S. E. and Stotts, L. B.. Optical Channels: Fiber, Atmosphere, Water and Clouds. Plenum, New York (1988), Ch. 5.CrossRefGoogle Scholar
Wolfe, W. L. and Zissis, G. J.. The Infrared Handbook. IRIA Center, ERIM (1993).Google Scholar
Fried, D.. For a coherent laser radar: the power spectral density of the detected signal’s phase error due to turbulence effects, expressed in terms of an equivalent laser’s frequency jitter power spectral density. Report No. TN 220R (March 2007).
Andrews, L. C., Phillips, R. L., Crabbs, R., Wayne, D., Leclerc, T. and Sauer, P.. Atmospheric channel characterization for ORCA testing at NTTR. Atmospheric and oceanic propagation of electromagnetic waves IV. Proceedings of SPIE, 7588 (2010).CrossRefGoogle Scholar
Walters, D. L. and Kunkel, K. E.. Atmospheric modulation transfer function for desert and mountain locations: the atmospheric effects on r0. Journal of the Optical Society of America, 71 (1981), pp. 397–405.CrossRefGoogle Scholar
Andrews, L. C., Phillips, R. L., Wayne, D. et al. Near-ground vertical profile of refractive-index fluctuations. Proceedings of SPIE, 7324 (2009).CrossRefGoogle Scholar
Born, M. and Wolf, E.. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, London (1999).CrossRefGoogle Scholar
Strehl, K.. Zeitschrift fűr Instrumentkunde, 22 (1902), p. 213.
Mahajan, V. N.. Strehl ratio for primary aberrations: some analytical results for circular and annular pupils. Journal of the Optical Society of America, 72 (1982), pp. 1258–1266.CrossRefGoogle Scholar
Mahajan, V. N.. Strehl ratio for primary aberrations: some analytical results for circular and annular pupils. Journal of the Optical Society of America, 72 (1982), pp. 1258–1266. Strehl ratio for primary aberrations in terms of their aberration variance. Journal of the Optical Society of America, 73 (1983), pp. 860–861.CrossRefGoogle Scholar
Fried, D. L.. Optical heterodyne detection of an atmospherically distorted signal wavefront. Proceedings of the IEEE, 55 (1967), pp. 57–67.CrossRefGoogle Scholar
Tyson, R. K.. Field Guide to Adaptive Optics. SPIE Field Guides, Volume FG03, Greivenkamp, John E., Ed. SPIE Press, Bellingham, WA (2004).CrossRefGoogle Scholar
Tyson, R. K.. Introduction to Adaptive Optics, Tutorial Texts in Optical Engineering, Vol. TT41, Weeks, Jr Arthur R., Ed. SPIE Press, Bellingham, WA (2000).CrossRefGoogle Scholar
Michael, C. Roggemann and Welsh, ByronImaging through Turbulence. CRC Press, Boca Raton, FL (1996).Google Scholar
Hardy, J. W.. Adaptive optics. Scientific American, 260(6) (June 1994), pp. 60–65.CrossRefGoogle Scholar
Tyson, R. K.. Principles of Adaptive Optics, 2nd edn. Academic Press (1991).Google Scholar
Hardy, J. W.. Adaptive Optics – a new technology for the control of light. Proceedings of the IEEE, 66 (1978), pp. 651–697.CrossRefGoogle Scholar
Stotts, L. B., Stadler, B., Graves, B. et al. Optical RF Communications Adjunct. Proceedings of the SPIE Conference on Free-Space Laser Communications VIII, Majumdar, Arun K. and Davis, Christopher, Eds. Volume 7091, 10–12 August 2008.
Anthony Seward, M Z A, from .
Andrews, L. C. and Phillips, R. L.. University of Central Florida, private communications.
Pike, H. Alan. private communication. See Lord Rayleigh. Scientific Papers, Vol I, p. 491. Cambridge University Press, London (1899–1920).Google Scholar
Stotts, L. B., Foshee, J., Stadler, B. et al. Hybrid optical RF communications. Proceedings of IEEE Conference, 97(6) (2009), pp. 1109–1127.Google Scholar
ATP Section 4. Image Processing, Tracking Algorithms and. Presentation Summary: IV-1, Class IV. Spring 2009: .
Roddier, F.. Maximum gain and efficiency of adaptive optics systems. Publications of the Astronomical Society of the Pacific, 109 (1998), pp. 815–820.CrossRefGoogle Scholar
Stotts, L. B.. Optical RF communications adjunct. AFCEA/IEEE Military Communications (MILCOM) 2008: Lasercom as an enabling technology for high bandwidth communications. San Diego, CA, 17 November 2008.
Stotts, L. B., Stadler, B., Hughes, D. et al. Optical communications in atmospheric turbulence. SPIE Free Space Laser Communications Conference (2009).
Noll, R. J.. Zernike polynomials and atmospheric turbulence. Journal of the Optical Society of America, 66(3) (1976), pp. 207–211.CrossRefGoogle Scholar
Andrews, L. C.. University of Central Florida, private communications.
Juarez, J. C., Young, D. W. , Venkat, R. A. et al. Analysis of link performance for the FOENEX laser communications system. Defense Sensing & Security Symposium 2012, Laser Sensors and Systems, Conference: Atmospheric Propagation IX, Baltimore, MD, 25–26 April 2012. Proceedings of the SPIE, 8380, Linda M. Wasiczko Thomas, U.S. Naval Research Lab.; Earl J. Spillar, US Air Force (2012).
Friis, H. T.. Proceedings of the IRE, 34 (1946), p. 254.CrossRef
Pike, H. A., Stotts, L. B., Kolodzy, P. and Northcott, M.. Parameter estimates for free space optical communication. Application of lasers for sensing & free space communication (LS&C). Optical Society of America, Toronto, Ontario, Canada, 10–14 July 2011.
Stotts, L. B., Kolodzy, P., Pike, H. A. et al. Free space optical communications link budget estimation. Applied Optics, 49(28) (2010), pp. 5333–5343.CrossRefGoogle ScholarPubMed
Kennedy, R. S. and Karp, S., eds. Optical Space Communications, NASA SP-217, Appendix G (D. Fried) (1969), pp. 135–138.
Shapiro, J. H.. Reciprocity of the turbulent atmosphere. Journal of the Optical Society of America, 61 (1971), pp. 492–495.CrossRefGoogle Scholar
Walther, R. G.. Diversity in air-to-ground lasercom: the FOCAL Demonstration. Technical Panel, Session DoD-2: Freespace Optical Communications. 2011 Military Communications Conference (MILCOM 2011), Baltimore, MD, 7–10 November 2011.
Parenti, R. R., Roth, J. M., Shapiro, J. H. and Walther, F. G.. Observations of channel reciprocity in optical free-space communications experiments. OSA Conference on Applications of Lasers for Sensing & Free Space Communications (2011).
Walther, F. G., Michael, S., Parenti, R. R. and Taylor, J. A.. Air-to-ground lasercom system demonstration design overview and results summary. Proceedings of SPIE, 7814, Free-Space Laser Communications X (2010).CrossRefGoogle Scholar
Michael, S., Walther, F. G. and Parenti, R. R.. Performance evaluation of an air-to-ground optical communications demonstration. OSA LS&C meeting, February 2010.
Parenti, R. R., Michael, S., Roth, J. M. and Yarnall, T. M.. Comparisons of Cn2 measurements and power-in-fiber data from two long-path free-space optical communications experiments. Proceedings of SPIE, 7814, Free-Space Laser Communications X (2010).CrossRefGoogle Scholar
Greco, J. A.. Design of the high-speed framing, FEC, and interleaving hardware used in a 5.4km free-space laser communications experiment. Proceedings of SPIE, 7464, Free-Space Laser Communications IX (2009).CrossRefGoogle Scholar
Michael, S. et al. The use of statistical channel models, full-field propagation codes, and field data to predict link availability. Proceedings of SPIE, 7464, Free-Space Laser Communications IX (2009).CrossRefGoogle Scholar
Moores, J.Walther, F. G.Greco, J. A. et al. Architecture overview and data summary of a 5.4km free-space laser communications experiment. Proceedings of SPIE, 7464, Free-Space Laser Communications IX (2009).CrossRefGoogle Scholar
Murphy, R. J. et al. A conical scan free space optical tracking system for fading channels. Proceedings of SPIE, 7464, Free-Space Laser Communications IX (2009).CrossRefGoogle Scholar
Walther, F. G. et al. A process for free-space laser communications system design. Proceedings of SPIE, 7464, Free-Space Laser Communications IX (2009).CrossRefGoogle Scholar
Williams, T. et al. A free-space optical terminal for fading channels. Proceedings of SPIE, 7464, Free-Space Laser Communications IX (2009).CrossRefGoogle Scholar
Michael, S. et al. Comparison of scintillation measurements from a 5 km communications link to standard statistical models. Atmospheric Propagation VI, Thomas, Linda M. Wasiczko & Gilbreath, G. Charmaine, eds. SPIE, Orlando, FL (2009).Google Scholar
Walther, F. G., Nowak, G. A., Michael, S. et al. Air to ground lasercom systems demonstration. Proceeding of the 2010 Military Communications Conference (MILCOM 2010), San Jose, California, USA, 31 October–3 November 2010.
Fletcher, M., Cunningham, J., Baber, D. et al. Observations of atmospheric effects for FALCON laser communication system Flight test. Atmospheric Propagation VIII. Proceedings of SPIE, 8038 (2011), Paper F.CrossRefGoogle Scholar
Cunningham, J., Foulke, D., Goode, T. et al. Long range field testing of free space optical communications terminals on mobile platforms, radio and optical communications (U112). MILCOM 2009, paper 901469, 20 October 2009.
Young, D., Sluz, J., Juarez, J. et al. Demonstration of high data rate wavelength division multiplexed transmission over a 150 km free space optical link. MILCOM 2007, Advanced Communications Technologies 4.2, Directional Hybrid Optical/RF Networks (2007).
Juarez, J. C., Young, D. W. and Sluz, J. E.. Optical automatic gain controller for high-bandwidth free-space optical communication links. Application of Lasers for Sensing & Free Space Communication (LS&C), Optical Society of America, Toronto, Ontario, Canada, 10–14 July 2011.
Juarez, J. C., Young, D. W., Sluz, J. E. and Stotts, L. B.. High-sensitivity DPSK receiver for high-bandwidth free-space optical communication links. Optics Express, 19(11) (2011), pp. 10789–10796.CrossRefGoogle ScholarPubMed
Stotts, L. B., Plasson, N. D., Martin, T. W., Young, D. W. and Juarez, J. C.. Progress towards reliable free-space optical network. MILCOM 2011, Baltimore, MD, 7–10 November 2011.
Vilnrotter, V. and Srinviasan, M.. Adaptive detector arrays for optical communications receivers. IEEE Transactions on Communications, 50 (2002), pp. 1091–1097.CrossRefGoogle Scholar
Kim, I., Goldfarb, G. and Li, G.. Electronic wavefront correction for PSK free-space optical communications. Electronic Letters, 43(20) (27 September 2007).CrossRefGoogle Scholar
Fernandez, M. and Vilnrotter, V.. Coherent optical receiver for PPM signals received through atmospheric turbulence: performance analysis and preliminary experimental results. Proceedings of SPIE, 5338 (2004), pp. 151–162.CrossRefGoogle Scholar
Kikuchi, K.. Coherent detection of phase-shift keying signals using digital carrier-phase estimation. OFC, OTuI4, Anaheim, CA, 2006.
Kim, I., Kim, C. and Li, G.. Requirements for the sampling source in coherent linear sampling. Optics Express, 12(12) (2004), pp. 2723–2730.CrossRefGoogle ScholarPubMed
Lange, R., Smutny, B., Wandernoth, B., Czichy, R. and Giggenbach, D.. 142 km, 5.625 Gpbs free-space optical link based on homodyne BPSK modulation. Free-Space Optical Communication Technologies XVIII, edited by Mecherle, G. Stephen. Proceedings Of SPIE, 6105A (2006), pp. 1–9.Google Scholar
Li, G.. Coherent optical technologies for free-space optical communication and sensing. Application of Lasers for Sensing & Free Space Communication (LS&C), Optical Society of America, Toronto, Ontario, Canada, 10–14 July 2011.
Belmonte, A. and Kahn, J. M.. Efficiency of complex modulation methods in coherent free-space optical links. Optics Express, 18(4) (2010), pp. 3928–3837.CrossRefGoogle ScholarPubMed
Belmonte, A. and Khan, J.. Performance of synchronous optical receivers using atmospheric compensation techniques. Optics Express, 16(18) (2008), pp. 14151–14162.CrossRefGoogle ScholarPubMed
Belmonte, A. and Kahn, J. M.. Capacity of coherent free-space optical links using diversity-combining techniques. Optics Express, 17(15) (2009), pp. 12601–12611.CrossRefGoogle ScholarPubMed
Goodman, J. W.. Speckle Phenomena in Optics. Theory and Applications. Ben Roberts & Company, New York (2007).Google Scholar
Parsons, J. D.. Diversity techniques in communications receivers. In , Creasey, D. A., ed., Advanced Signal Processing. Peregrines (1985), Ch. 6.
Heine, F., Kämpfner, H., Lange, R. et al. Laser communication applied for EDRS, the European data relay system. CEAS Space Journal, 2 (2011), pp. 85–90.CrossRefGoogle Scholar
Lange, R.. Private communications.
Courtesy of Abelson, David and colleagues, AOptix
Courtesy of Wayne, David, University of Central Florida.
Stotts, L. B., Winter, E. M., Hoff, L. E., and Reed, I. S.. Clutter rejection using multi-spectral processing. Proceedings of SPIE, 1305 (1990).CrossRefGoogle Scholar
Reed, I. S., Stotts, L. B. and Gagliardi, R. M.. A recursive moving target indication algorithm. IEEE Transactions on Aerospace and Electronic Systems, 26(3) (1990), p. 434.CrossRefGoogle Scholar
Reed, I. S., Stotts, L. B. and Gagliardi, R. M.. Optical moving target detection with three-dimensional matched filtering. IEEE Transactions on Aerospace and Electronic Systems, 24(4) (1988), p. 327.CrossRefGoogle Scholar
Martin, T., Science and Technology Associates. Private communications.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×