Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T17:18:24.826Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2016

James C. Robinson
Affiliation:
University of Warwick
José L. Rodrigo
Affiliation:
University of Warwick
Witold Sadowski
Affiliation:
Uniwersytet Warszawski, Poland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Three-Dimensional Navier–Stokes Equations
Classical Theory
, pp. 457 - 466
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R.A. & Fournier, J.J.F. (2003) Sobolev spaces. Academic Press, Kidlington, Oxford.
Agmon, S., Douglis, A., & Nirenberg, L. (1964) Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Comm. Pure Appl. Math. 17, 35–92.Google Scholar
Aubin, J.P. (1963) Un theoreme de compacite. C. R. Acad. Sci. Pari. 256, 5042–5044.Google Scholar
Bahouri, H., Chemin, J.-Y.,& Danchin, R. (2011) Fourier analysis and nonlinear partial differential equations. Springer, Heidelberg.
Bardos, C., Lopes Filho, M., Niu, D., Nussenzveig Lopes, H., & Titi, E.S. (2013) Stability of viscous, and instability of non-viscous, 2D weak solutions of incompressible fluids under 3D perturbations. SIAM J. Math. Anal. 45, 1871–1885.Google Scholar
Batchelor, G.K. (1999) An introduction to fluid dynamics. Cambridge University Press, Cambridge.
Beale, J.T.,Kato, T.,& Majda, A. (1984) Remarks on the breakdown of smooth solutions for the 3-D Euler equation. Comm. Math. Phys. 94, 61–66.Google Scholar
Beirão da Veiga, H. (1985a) On the suitable weak solutions to the Navier–Stokes equations in the whole space. J. Math. Pures Appl. 64, 77–86.Google Scholar
Beirão da Veiga, H. (1985b) On the construction of suitable weak solutions to the Navier–Stokes equations via a general approximation theorem. J. Math. Pures Appl. 64, 321–334.Google Scholar
Beirão da Veiga, H. (1987) Existence and asymptotic behavior for strong solutions of the Navier–Stokes equations in the whole space. Indiana Univ. Math. J. 36, 149–166.Google Scholar
Beirão da Veiga, H. (1995) A new regularity class for the Navier–Stokes equations in ℝ n . Chinese Ann. Math. Ser. B. 4, 407–412.Google Scholar
Beirão da Veiga, H. (2000) On the smoothness of a class of weak solutions to theNavier– Stokes equations. J. Math. Fluid Mech. 2, 315–323.Google Scholar
Beirão da Veiga, H. & Secchi, P. (1987) L p -stability for the strong solutions of the Navier–Stokes equations in the whole space. Arch. Ration. Mech. Anal. 98, 65–69.Google Scholar
Benedek, A., Calderón, A.P., & Panzone, R. (1962) Convolution operators on Banach space valued functions. Proc. Nat. Acad. Sci. U.S.A. 48, 356–365.Google Scholar
Bergh, J. & Löfström, J. (1976). Interpolation spaces. Springer-Verlag, Berlin.
Berselli, L.C. (2002) On a regularity criterion for the solutions to the 3D Navier–Stokes equations. Differential Integral Equation. 15, 1129–1137.Google Scholar
Berselli, L.C. & Galdi, G.P. (2002) Regularity criteria involving the pressure for the weak solutions to the Navier–Stokes equations. Proc. Amer.Math. Soc. 130, 3585–3595.Google Scholar
Berselli, L.C. & Spirito, S. (2016a) On the construction of suitable weak solutions to the 3D Navier–Stokes equations in a bounded domain by an artificial compressibility method. Commun. Contemp. Math., to appear.
Berselli, L.C. & Spirito, S. (2016b)Weak solutions to the Navier–Stokes equations constructed by semi-discretization are suitable. Contemp. Math., to appear.
Biot, J.-B. & Savart, F. (1820) Note sure le magnétisme de la pile de Volta. Annales Chim. Phys. 15, 222–223.Google Scholar
Biryuk, A., Craig, W., & Ibrahim, S. (2007) Construction of suitable weak solutions of the Navier–Stokes equations. In “Stochastic analysis and partial differential equations”. Contemp. Math. 49, 1–18.Google Scholar
Bogovskii, M.E. (1986) Decomposition of L p (Ω,ℝ n .) into the direct sum of subspaces of solenoidal and potential vector fields. Soviet Math. Dokl. 33, 161–165.Google Scholar
Bourbaki, N. (2004) Integration. Springer-Verlag, Berlin.
Caffarelli, L., Kohn, R., & Nirenberg, L. (1982) Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure. Appl. Math. 35, 771–931.Google Scholar
Calderón, C.P. (1990) Existence of weak solutions for the Navier–Stokes equations with initial data in L p . Trans. Amer. Math. Soc. 318, 179–200.Google Scholar
Cannone, M. (1995) Ondelettes, paraproduits et Navier–Stokes. Diderot Editeur, Paris.
Cannone, M. (2003) Harmonic analysis tools for solving the incompressible Navier– Stokes equations. In Friedlander, S. & Serre, D. (eds.) Handbook of mathematical fluid dynamics, Vol. 3. Elsevier, Kidlington.
Cao, C. & Titi, E.S. (2008) Regularity criteria for the three-dimensional Navier–Stokes Equations. Indiana Univ. Math. J. 57, 2643–2661.Google Scholar
Castaing, C. (1967) Sur les multi-applications measurables. Rev. France Inform. Rech. Oper. 1, 91–126.Google Scholar
Chemin, J.-Y. (1992) Remarques sur l'existence globale pour le systeme de Navier– Stokes incompressible. SIAM J. Math. Anal. 23, 20–28.Google Scholar
Chemin, J.-Y. & Lerner, N. (1995) Flot de champs de vecteurs non lipschitziens et equations de Navier–Stokes. J. Differential Equation. 121, 314–328.Google Scholar
Chemin, J.-Y., Desjardins, B., Gallagher, I., & Grenier, E. (2006) Mathematical geophysics. Oxford University Press, Oxford.
Chen, C.-C., Strain, R.M., Yau, H.-T., & Tsai, T.-P. (2008) Lower bound on the blow-up rate of the axisymmetric Navier–Stokes equations. Int. Math. Res. Not. article ID rnn016.
Chernyshenko, S.I., Constantin, P., Robinson, J.C., & Titi, E.S. (2007) A posteriori regularity of the three-dimensional Navier–Stokes equations from numerical computations. J. Math. Phys. 48, 065204.Google Scholar
Chorin, A.J. & Marsden, J.E. (1993) A mathematical introduction to fluid mechanics. Third edition. Springer-Verlag, New York.
Chung, S.-Y. (1999) Uniqueness in the Cauchy problem for the heat equation. Proc. Edinburgh Math. Soc. 42, 455–468.Google Scholar
Constantin, P. (1986) Note on loss of regularity for solutions of the 3-D incompressible Euler and related equations. Comm. Math. Phys. 104, 311–326.Google Scholar
Constantin, P. & Foias, C. (1988) Navier–Stokes equations. University of Chicago Press, Chicago, IL.
Dacorogna, B. (2004) Introduction to the calculus of variations. Imperial College Press, London.
Danchin, R. (2000) Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 41, 579–614.Google Scholar
Dashti, M. & Robinson, J.C. (2008) An a posteriori condition on the numerical approximations of theNavier–Stokes equations for the existence of a strong solution. SIAM J. Numer. Anal. 46, 3136–3150.Google Scholar
Dashti, M. & Robinson, J.C. (2009) A simple proof of uniqueness of the particle trajectories for solutions of the Navier–Stokes equations. Nonlinearit. 22, 735–746.Google Scholar
De Giorgi, E. (1957) Sulla differenziabilita e lanaliticita delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3, 25–43.Google Scholar
De Lellis, C. & Székelyhidi Jr., L. (2010) On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195, 225–260.Google Scholar
DiPerna, R.J. & Lions, P.-L. (1989) Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547.Google Scholar
Doering, C.R. & Gibbon, J.D. (1995) Applied analysis of the Navier–Stokes equations. Cambridge University Press, Cambridge.
Duoandikoetxea, J. (2001) Fourier analysis. Graduate Studies in Mathematics 29. American Mathematical Society, Providence, RI.
Escauriaza, L., Seregin, G., & Šverák, V. (2003) L 3,∞-solutions of Navier–Stokes equations and backward uniqueness. Russian Math. Survey. 58, 211–250.Google Scholar
Evans, L.C. (1998) Partial differential equations. American Mathematical Society, Providence, RI.
Evans, L.C. & Gariepy, R.F. (1992) Measure theory and fine properties of functions. CRC Press, Boca Raton, FL.
Fabes, E.B., Jones, B.F., & Riviere, N.M. (1972) The initial value problem for the Navier–Stokes equations with data in Lp . Arch. Ration. Mech. Anal. 45, 222–240.Google Scholar
Fabes, E.B., Lewis, J.E., & Riviere, N.M. (1977) Singular integrals and hydrodynamic potentials. Amer. J. Math. 99, 601–625.Google Scholar
Falconer, K.J. (1985) The geometry of fractal sets. Cambridge University Press, Cambridge.
Falconer, K.J. (1990) Fractal geometry. Wiley, Chichester.
Farwig, R. & Sohr, H. (1996) Helmholtz decomposition and Stokes resolvent system for aperture domains in Lq -spaces. Analysis. 16, 1–26.Google Scholar
Farwig, R. & Sohr, H. (1996) Helmholtz decomposition and Stokes resolvent system for aperture domains in Lq -spaces. Analysi. 16, 1–26.Google Scholar
Farwig, R., Kozono, H., & Sohr, H. (2005) A Lq . approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195, 21–53.Google Scholar
Fefferman, C.L. (1971) The multiplier problem for the ball. Ann. of Math. 94, 330–336.Google Scholar
Fefferman, C.L. (2000) Existence and smoothness of the Navier–Stokes equation. In The millennium prize problems, 57–67. Clay Math. Inst., Cambridge, MA.
Feynman, R.P., Leighton, R.B., & Sands, M. (1970) The Feynman lectures on physics, Volume II. Addison Wesley Publishing Co., Reading, MA, London.
Foias, C., Guillopé, C., & Temam, R. (1981) New a priori estimates for Navier– Stokes equations in dimension 3. Comm. Partial Differential Equation. 6, 329–359.Google Scholar
Foias, C., Guillopé, C., & Temam, R. (1985) Lagrangian representation of a flow. J. Differential Equation. 57, 440–449.Google Scholar
Foias, C. & Temam, R. (1989) Gevrey class regularity for the solutions of the Navier– Stokes equations. J. Funct. Anal. 87, 359–369.Google Scholar
Foias, C., Manley, O., Rosa, R., & Temam, R. (2001) Navier–Stokes equations and turbulence. Cambridge University Press, Cambridge.
Folland, G.B. (1999) Real analysis. Modern techniques and their applications. Second edition. John Wiley & Sons, Inc., New York, NY.
Friedlander, F.G. & Joshi, M. (1999) Introduction to the theory of distributions. Cambridge University Press, Cambridge.
Fujita, H. & Kato, T. (1964) On the Navier–Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16, 269–315.Google Scholar
Fujiwara, D. & Morimoto, H. (1977) A Lr -theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 685–700.Google Scholar
Galdi, G.P. (2000) An introduction to the Navier–Stokes initial-boundary value problem. In Galdi, G.P., Heywood, J.G., & Rannacher, R. (eds.) Fundamental directions in mathematical fluid dynamics, 1–70. Birkhauser, Basel.
Galdi, G.P. (2011) An introduction to the mathematical theory of Navier–Stokes equations. Steady state problems. Second edition. Springer, New York, NY.
Galdi, G.P. & Maremonti, P. (1986) Monotonic decreasing and asymptotic behaviour of the kinetic energy for weak solutions of the Navier–Stokes equations in exterior domains. Arch. Ration. Mech. Anal. 94, 253–266.Google Scholar
Gallagher, I. (1997) The tridimensional Navier–Stokes equations with almost bidimensional data: stability, uniqueness, and life span. Int. Math. Res. Notice. 18, 919–935.Google Scholar
Giga, Y. (1983) Time and spatial analyticity of solutions of the Navier–Stokes equations. Comm. Partial Differential Equation. 8, 929–948.Google Scholar
Giga, Y. (1986) Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier–Stokes system. J. Differential Equation. 62, 186–212.Google Scholar
Gilbarg, D. & Trudinger, N.S. (1983) Elliptic partial differential equations of second order. Springer, Berlin.
Grafakos, L. (2008) Classical Fourier analysis. Graduate text in mathematics 249. Springer, New York, NY.
Grafakos, L. (2009) Modern Fourier analysis. Graduate text in mathematics 250. Springer, New York, NY.
Guermond, J.-L. (2006) Finite-element-based Faedo–Galerkin weak solutions to the Navier–Stokes equations in the three-dimensional torus are suitable. J.Math. Pures Appl. 85, 451–464.Google Scholar
Guermond, J.-L. (2007) Faedo–Galerkin weak solutions of the Navier–Stokes equations with Dirichlet boundary conditions are suitable. J. Math. Pures Appl. 88, 87–106.Google Scholar
Hale, J.K. (1980) Ordinary differential equations. Kreiger, Malabar, FL.
Hardy, G.H. (1932) A note on two inequalities. J. London Math. Soc. 11, 167–170.Google Scholar
Hartman, P. (1973) Ordinary differential equations. Wiley, Baltimore.
Helmholtz, H. (1858) Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen. J. Reine Angew. Math. 55, 25–55.Google Scholar
Heywood, J. (1976) On uniqueness questions in the theory of viscous flow. Acta Math. 136, 61–102.Google Scholar
Heywood, J. (1988) Epochs of regularity for weak solutions of the Navier–Stokes equations in unbounded domains. Tohoku Math. J. 40, 293–313.Google Scholar
Hopf, E. (1951) Über die Aufgangswertaufgave fur die hydrodynamischen Grundliechungen. Math. Nachr. 4, 213–231.Google Scholar
Hörmander, L. (1960) Estimates for translation invariant operators in Lp spaces. Acta Math. 104, 93–139.Google Scholar
Iftimie, D., Karch, G., & Lacave, C. (2014) Asymptotics of solutions to the Navier– Stokes system in exterior domains. J. London Math. Soc. 90, 785–806.Google Scholar
James, R.C. (1964) Weakly Compact Sets. Trans. Amer. Math. Soc. 113, 129–140.Google Scholar
Kahane, C. (1969) On the spatial analyticity of solutions of theNavier–Stokes equations. Arch. Ration. Mech. Anal. 33, 386–405.Google Scholar
Kato, T. (1984) Strong Lp -solutions of the Navier–Stokes equations in ℝ m with applications to weak solutions. Math. Zeit. 187, 471–480.Google Scholar
Kiselev, A.A. & Ladyzhenskaya, O.A. (1957) On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid. Izv. Akad. Nauk SSSR. Ser. Mat. 21, 655–680.Google Scholar
Koch, H. & Tataru, D. (2001) Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35.Google Scholar
Kohn, R.V. (1982) Partial regularity and the Navier–Stokes equations. Lecture Notes in Num. Appl. Anal. 5, 101–118. (Nonlinear PDE in Applied Science U.S.–Japan Seminar, Tokyo, 1982.)Google Scholar
Komatsu, G. (1979) Analyticity up to the boundary of solutions of nonlinear parabolic equations. Comm. Pure Appl. Math. 32, 669–720.Google Scholar
Kozono, H. (1998) Uniqueness and regularity of weak solutions to the Navier–Stokes equations. In Recent topics on mathematical theory of viscous incompressible fluid (Tsukuba, 1996). Lecture Notes Numer. Appl. Anal.. 16, 161–208. Kinokuniya, Tokyo.
Kozono, H. & Sohr, H. (1996) Remark on uniqueness of weak solutions to the Navier– Stokes equations. Analysi. 16, 255–271.Google Scholar
Kozono, H. & Taniuchi, T. (2000) Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Comm. Math. Phys. 214, 191–200.Google Scholar
Kozono, H., Ogawa, T., & Taniuchi, T. (2002) The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242, 251–278.Google Scholar
Krylov, N.V. (1996) Lectures on elliptic and parabolic equations in Holder spaces. American Mathematical Society, Providence, RI.
Krylov, N.V. (2001) The heat equation in Lq ((0,T); Lp )-space with weights. SIAM J. Math. Anal. 32, 1117–1141.Google Scholar
Krylov, N.V. (2008) Lectures on elliptic and parabolic equations in Sobolev spaces. American Mathematical Society, Providence, RI.
Kukavica, I. (2008) Regularity for the Navier–Stokes equations with a solution in a Morrey space. Indiana Univ. Math. J. 57, 2843–2860.Google Scholar
Kukavica, I. (2009a) Partial regularity results for solutions of the Navier–Stokes system. In Robinson, J.C. & Rodrigo, J.L. (eds.) Partial differential equations and fluid mechanics, 121–145. Cambridge University Press, Cambridge.
Kukavica, I. (2009b) The fractal dimension of the singular set for solutions of the Navier–Stokes system. Nonlinearit. 22, 2889–2900.
Kukavica, I. & Pei, Y. (2012) An estimate on the parabolic fractal dimension of the singular set for solutions of the Navier–Stokes system. Nonlinearit. 25, 2775–2783.Google Scholar
Ladyzhenskaya, O.A. (1959) Solution “in the large” of the nonstationary boundary value problem for the Navier–Stokes system in two space variables. Comm. Pure Appl. Math. 12, 427–433.Google Scholar
Ladyzhenskaya, O.A. (1967) On uniqueness and smoothness of generalized solutions to the Navier–Stokes equations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 5, 169–185; English transl. Sem. Math. V.A. Steklov Math. Inst. Leningra. 5(1969), 60–66.Google Scholar
Ladyzhenskaya, O.A. (1969) The mathematical theory of viscous incompressible flow. Gordon and Breach, New York, NY.
Ladyzhenskaya, O.A. (1970) Unique solvability in the large of three-dimensional Cauchy problem for the Navier–Stokes equations in the presence of axial symmetry. Seminar in Mathematics, V.A. Steklov Mathematical Institute, Leningrad, 7, Boundary value problems of mathematical physics and related aspects of function theory, Part 2, Edited by O.A., Ladyzhenskaya, 70–79.
Ladyzhenskaya, O.A. & Seregin, G.A. (1999) On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations. J. Math. Fluid Mech. 1, 356–387.Google Scholar
Ladyzhenskaya, O.A., Solonnikov, V.A., & Uraltseva, N.N. (1967) Linear and quasilinear equations of parabolic type. American Mathematical Society, Providence, RI.
Lemarié-Rieusset, P.G. (2002) Recent developments in the Navier–Stokes problem. Chapman & Hall/CRC, Boca Raton, FL.
Leray, J. (1934) Essai sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63, 193–248.Google Scholar
Lieberman, G.M. (1996) Second order parabolic differential equations.World Scientific Publishing Co., Inc., River Edge, NJ.
Lin, F. (1998) A new proof of the Caffarelli–Kohn–Nirenberg theorem. Comm. Pure Appl. Math. 51, 241–257.Google Scholar
Lions, J.-L. (1969) Quelques methodes de resolution des problemes aux limites non lineaires. Dunod Gauthier-Villars, Paris.
Lions, J.-L. & Prodi, G. (1959) Un theoreme d'existence et unicite dans les equations de Navier–Stokes en dimension 2. C. R. Acad. Sci. Pari. 248, 3519–3521.Google Scholar
Lions, P.-L. (1994) Mathematical topics in fluid mechanics, Volume 1: Incompressible models. Oxford University Press, Oxford.
Lunardi, A. (2009) Interpolation theory. 2nd edition. Edizioni della Normale, Pisa.
Mahalov, A., Titi, E.S., & Leibovich, S. (1990) Invariant helical subspaces for the Navier–Stokes equations. Arch. Ration. Mech. Anal. 112, 193–222.Google Scholar
Majda, A.J. & Bertozzi, A.L. (2002) Vorticity and incompressible flow. Cambridge University Press, Cambridge.
Marín-Rubio, P., Robinson, J.C., & Sadowski, W. (2013) Solutions of the 3D Navier– Stokes equations for initial data in H ½: robustness of regularity and numerical verification of regularity for bounded sets of initial data in H 1 . J. Math. Anal. Appl. 400, 76–85.Google Scholar
Masuda, K. (1967) On the analyticity and the unique continuation theorem for solutions of the Navier–Stokes equations. Proc. Japan. Acad. 43, 827–832.Google Scholar
Masuda, K. (1984) Weak solutions of Navier–Stokes equations. Tohoku Math. J. (2. 36, 623–646.Google Scholar
McCormick, D.S., Robinson, J.C., & Rodrigo, J.L. (2013) Generalised Gagliardo– Nirenberg inequalities using weak Lebesgue spaces and BMO.Milan J. Math. 81, 265–289.Google Scholar
McCormick, D.S., Olson, E.J., Robinson, J.C., Rodrigo, J.L., Vidal-López, A., & Zhou, Y. (2016a) Lower bounds on blowing-up solutions of the 3D Navier–Stokes equations in Ḣ 3/2, Ḣ 5/2, and Ḃ 5/2 2,1. arXiv:1503.04323. SIAM J. Math. Anal., to appear.
McCormick, D.S., Fefferman, C.L., Robinson, J.C., & Rodrigo, J.L. (2016b) Local existence for the non-resistive MHD equations in nearly optimal Sobolev spaces. arXiv:1602.02588.
Mihlin, S.G. (1957) Fourier integrals and multiple singular integrals. Vestnik Leningrad. Univ. Ser. Mat. Meh. Astr. 12, 143–155.(in Russian).Google Scholar
Miyakawa, T. & Sohr, H. (1988) On energy inequality, smoothness and large time behavior in L 2 for weak solutions of the Navier–Stokes equations in exterior domains. Math. Z. 199, 455–478.Google Scholar
Montero, J.A. (2015) Lower bounds for possible blow–up solutions for the Navier– Stokes equations revisited. arXiv:1503.03063.
Mucha, P.B. (2008) Stability of 2D incompressible flows in R3. J. Differential Equations 245, 2355–2367.Google Scholar
Muscalu, C. & Schlag, W. (2013) Classical and multilinear harmonic analysis. Volume I. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge.
Nečas, J., Ružička, M., & Šverák, V. (1996) On Leray's self-similar solutions of the Navier–Stokes equations. Acta Math. 176, 283–294.Google Scholar
Neustupa, J. (1999) Partial regularity of weak solutions to the Navier–Stokes equations in the class L ∞(0,T; L 3(Ω)3). J. Math. Fluid Mech. 1, 309–325.Google Scholar
O'Leary, M. (2003) Conditions for the local boundedness of solutions of the Navier– Stokes system in three dimensions. Comm. Partial Differential Equation. 28, 617–636.Google Scholar
Pettis, B.J. (1938) On integration in vector spaces. Trans. Amer.Math. Soc. 44, 277–304.Google Scholar
Planchon, F. (2003) An extension of the Beale–Kato–Majda criterion for the Euler equations. Comm. Math. Phys. 232, 319–326.Google Scholar
Pooley, B.C. & Robinson, J.C. (2016) Well-posedness for the diffusive 3DBurgers equations with initial data in H 1/2 . In Robinson, J.C., Rodrigo, J.L., Sadowski, W., & Vidal-López, A. (eds.) Recent progress in the theory of the Euler and Navier–Stokes equations, 137–153. Cambridge University Press, Cambridge.
Prodi, G. (1959) Un teorema di unicita per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48, 173–182.Google Scholar
Raugel, G. & Sell, G.R. (1993) Navier–Stokes equations on thin 3D domains. I: Global attractors and global regularity of solutions. J. Amer. Math. Soc. 6, 503–568.Google Scholar
Renardy, M. & Rogers, R.C. (2004) An introduction to partial differential equations. Second Edition. Springer-Verlag, New York, NY.
Robertson, A.P. (1974) On measurable selections. Proc. Roy. Soc. Edinburgh Sect.. 72, 1–7.Google Scholar
Robinson, J.C. (2001) Infinite-dimensional dynamical systems. Cambridge University Press, Cambridge.
Robinson, J.C. (2006) Regularity and singularity in the three-dimensional Navier– Stokes equations. Boletin de SEM. 35, 43–71.Google Scholar
Robinson, J.C. (2011) Dimensions, embeddings, and attractors. Cambridge University Press, Cambridge.
Robinson, J.C. & Sadowski, W. (2007) Decay of weak solutions and the singular set of the three-dimensional Navier–Stokes equations. Nonlinearit. 20, 1185–1191.Google Scholar
Robinson, J.C. & Sadowski, W. (2009) Almost everywhere uniqueness of Lagrangian trajectories for suitable weak solutions of the three-dimensional Navier–Stokes equations. Nonlinearit. 22, 2093–2099.Google Scholar
Robinson, J.C. & Sadowski, W. (2014) A local smoothness criterion for solutions of the 3D Navier–Stokes equations. Rend. Semin. Mat. Univ. Padov. 131, 159–178.Google Scholar
Robinson, J.C., Sadowski, W., & Sharples, N. (2013) On the regularity of Lagrangian trajectories corresponding to suitable weak solutions of the Navier–Stokes equations. Procedia IUTA. 7, 161–166.Google Scholar
Robinson, J.C., Sadowski, W., & Silva, R.P. (2012) Lower bounds on blow up solutions of the three-dimensional Navier–Stokes equations in homogeneous Sobolev spaces. J. Math. Phys. 53, 115618.Google Scholar
Roubíček, T. (2013) Nonlinear partial differential equations with applications. Second edition. Birkhauser, Springer, Basel.
Rudin, W. (1991) Functional Analysis. McGraw-Hill, New York, NY.
Scheffer, V. (1976) Turbulence and Hausdorff dimension. In Turbulence and Navier– Stokes equation, Orsay 1975, Springer Lecture Notes in Mathematics 565, 174–183. Springer, Berlin.
Scheffer, V. (1977) Hausdorff measure and the Navier–Stokes equations. Comm. Math. Phys. 55, 97–112.Google Scholar
Scheffer, V. (1980) The Navier–Stokes equations on a bounded domain. Comm. Math. Phys. 73, 1–42.Google Scholar
Scheffer, V. (1985) A solution to the Navier–Stokes inequality with an internal singularity. Comm. Math. Phys. 101, 47–85.Google Scholar
Scheffer, V. (1987) Nearly one-dimensional singularities of solutions to the Navier– Stokes inequality. Comm. Math. Phys. 110, 525–551.Google Scholar
Scheffer, V. (1993) An inviscid flowwith compact support in space–time. J. Geom. Anal. 3, 343–401.Google Scholar
Schonbek, M.E. (1985) L 2 decay for weak solutions to the Navier–Stokes equation. Arch. Ration. Mech. Anal. 88, 209–222.Google Scholar
Seregin, G. (2014) Lecture notes on regularity theory for the Navier–Stokes equations. World Scientific, Hackensack, NJ.
Seregin, G. & Šverák, V. (2002) Navier–Stokes equations with lower bounds on pressure. Arch. Ration. Mech. Anal. 163, 65–86.Google Scholar
Seregin, G. & Zajaczkowski, W. (2007) A sufficient condition of regularity for axially symmetric solutions to the Navier–Stokes equations. SIAM J. Math. Anal. 39, 669–685.Google Scholar
Serrin, J. (1962) On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195.Google Scholar
Serrin, J. (1963) The initial value problem for the Navier–Stokes equations. In Nonlinear Problem. (Proc. Sympos., Madison, Wis.), 69–98. Univ. of Wisconsin Press, Madison, WI.
Shapiro, V.L. (1966) The uniqueness of solutions of the heat equation in an infinite strip. Trans. Amer. Math. Soc. 125, 326–361.Google Scholar
Shatah, J. & Struwe, M. (1994) Well-posedness in the energy space for semilinear wave equations with critical growth. Int. Math. Res. Notice. 1994, 303–309.Google Scholar
Shnirelman, A. (1997) On the nonuniqueness of weak solution of the Euler equation. Comm. Pure Appl. Math. 50, 1261–1286.Google Scholar
Shnirelman, A. (2000) Weak solutions with decreasing energy of incompressible Euler equations. Comm. Math. Phys. 210, 541–603.Google Scholar
Simader, C.G. & Sohr, H. (1992) A new approach to the Helmholtz decomposition and the Neumann problem in L q-spaces for bounded and exterior domains. In Galdi, G.P. (ed.) Mathematical Problems Relating to the Navier–Stokes Equations. Series on Advances in Mathematics for Applied Sciences, 11, 1–35. World Scientific, Singapore.
Simader, C.G., Sohr, H., & Varnhorn, W. (2014) Necessary and sufficient conditions for the existence of Helmholtz decompositions in general domains. Ann. Univ. Ferrara 60, 245–262.Google Scholar
Simon, J. (1987) Compact sets in the spac. Lp (0,T; B). Ann. Mat. Pura Appl. 146, 65–96.Google Scholar
Sohr, H. (1983) Zur Reguläritatstheorie der instationären Gleichungen von Navier– Stokes. (German) [On the regularity theory of the nonstationary Navier–Stokes equations. Math. Z. 184, 359–375.Google Scholar
Sohr, H. (2001) The Navier–Stokes equations: an elementary functional analytic approach. Modern Birkhauser Classics. Birkhauser/Springer, Basel.
Sohr, H. & vonWahl, W. (1984) On the singular set and the uniqueness of weak solutions of the Navier–Stokes equations. Manuscripta Math. 49, 27–59.Google Scholar
Sohr, H. & von Wahl, W. (1986) On the regularity of the pressure of weak solutions of Navier–Stokes equations. Arch. Math. (Basel. 46, 428–439.Google Scholar
Solonnikov, V.A. (1964) Estimates of the solutions of a nonstationary linearized system of Navier–Stokes equations. Trudy Mat. Inst. Steklov. 70, in: Amer. Math. Soc. Translations, Series 2, Vol. 75, 1–117.Google Scholar
Stein, E.M. (1970) Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, NJ.
Stein, E.M. (1993) Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton University Press, Princeton, NJ.
Struwe, M. (1988) On partial regularity results for the Navier–Stokes equations. Comm. Pure. Appl. Math. 41, 437–458.Google Scholar
Takahashi, S. (1990) On interior regularity criteria for weak solutions of the Navier– Stokes equations. Manuscripta Math. 69, 237–254.Google Scholar
Temam, R. (1977) Navier–Stokes equations. North Holland, Amsterdam. Reprinted by AMS Chelsea, 2001.
Temam, R. (1982) Behaviour at time t = 0 of the solutions of semi-linear evolution equations. J. Differential Equation. 43, 73–92.Google Scholar
Temam, R. (1983) Navier–Stokes equations and nonlinear functional analysis. SIAM, Philadelphia, PA.
Tychonoff, A.N. (1935) Uniqueness theorem for the heat equation. Mat. Sb. 42, 199–216.Google Scholar
Vasseur, A. (2007) A new proof of partial regularity of solutions to Navier–Stokes equations. Nonlinear Diff. Equ. Appl. 14, 753–785.Google Scholar
von Wahl, W. (1980) Regularitatsfragen fur die instationaren Navier–Stokesschen Gleichungen in hoheren Dimensionen. J. Math. Soc. Japa. 32, 263–283.Google Scholar
von Wahl, W. (1982) The equation u' + A(tu) = f in a Hilbert space and Lp -estimates for parabolic equations. J. London Math. Soc. 25, 483–497.Google Scholar
vonWahl, W. (1985) The equations of Navier–Stokes and abstract parabolic equations. Friedr. Vieweg & Sons, Braunschweig.
Weinberger, H.F. (1999) An example of blowup produced by equal diffusions. J. Differential Equation. 154, 225–237.Google Scholar
Yosida, K. (1980) Functional analysis. Springer Classics in Mathematics, Springer, Berlin.
Zhou, Y. & Pokorny, M. (2010) On the regularity of the solutions of the Navier–Stokes equations via one velocity component. Nonlinearit. 23, 1097–1107.Google Scholar
Zuazua, E. (2002) Log-Lipschitz regularity and uniqueness of the flow for a field in ( Wn/p+1,p loc (ℝ n )) n . C. R. Acad. Sci. Pari. 335, 17–22.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • James C. Robinson, University of Warwick, José L. Rodrigo, University of Warwick, Witold Sadowski, Uniwersytet Warszawski, Poland
  • Book: The Three-Dimensional Navier–Stokes Equations
  • Online publication: 05 September 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139095143.028
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • James C. Robinson, University of Warwick, José L. Rodrigo, University of Warwick, Witold Sadowski, Uniwersytet Warszawski, Poland
  • Book: The Three-Dimensional Navier–Stokes Equations
  • Online publication: 05 September 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139095143.028
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • James C. Robinson, University of Warwick, José L. Rodrigo, University of Warwick, Witold Sadowski, Uniwersytet Warszawski, Poland
  • Book: The Three-Dimensional Navier–Stokes Equations
  • Online publication: 05 September 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139095143.028
Available formats
×