Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-01T13:02:27.787Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2016

Richard M. Martin
Affiliation:
University of Illinois, Urbana-Champaign
Lucia Reining
Affiliation:
École Polytechnique, Paris
David M. Ceperley
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Interacting Electrons
Theory and Computational Approaches
, pp. 750 - 805
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] R. M, Martin, Electronic Structure: Basic Theory and Methods, Cambridge University Press, Cambridge, 2004, reprinted 2005, 2008; Japanese translation, 2010, 2012.Google Scholar
[2] M, Born and J. R., Oppenheimer, “Zur Quantentheorie der Molekeln,” Ann. Physik 84: 457, 1927.Google Scholar
[3] C. J., Cramer, Essentials of Computational Chemistry, Wiley, Chichester, 2004.Google Scholar
[4] L., Hoddeson, E., Braun, J., Teichmann, and S., Weart, Out of the Crystal Maze [Chapters for the History of Solid State Physics], Oxford University Press, New York, 1992.Google Scholar
[5] D. R., Hartree, “The wave mechanics of an atom with non-Coulombic central field: parts I, II, III,” Proc. Cambridge Phil. Soc. 24: 89, 111, 426, 1928.Google Scholar
[6] D. R., Hartree, The Calculation of Atomic Structures, Wiley, New York, 1957.Google Scholar
[7] E., Fermi, “Sulla quantizzazione del gas perfetto monoatomico (On the quantization of the monoatomic ideal gas),” Rend. Lincei 3:145–149, 1926.Google Scholar
[8] A., Zannoni, “Translation of E. Fermi, Rend. Lincei 3, 145–9 (1926) On the quantization of the monoatomic ideal gas,” arxiv cond-mat/9912229v1, 1999.
[9] E. C., Stoner, “The distribution of electrons among atomic levels,” Phil. Mag. 48:719, 1924.Google Scholar
[10] W., Pauli, “Uber den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplex Struktur der Spektren,” Z. Phys. 31:765, 1925.Google Scholar
[11] P. A. M., Dirac, “On the theory of quantum mechanics,” Proc. Roy. Soc. London Ser. A 112:661, 1926.Google Scholar
[12] P. A. M., Dirac, “Note on exchange phenomena in the Thomas–Fermi atom,” Proc. Cambridge Phil. Soc. 26:376–385, 1930.Google Scholar
[13] G., Baym, “Self-consistent approximations in many-body systems,” Phys. Rev. 127:1391– 1401, 1962.Google Scholar
[14] L. D., Landau, “The theory of a Fermi liquid [Soviet Phys. JETP 3, 920–925 (1957)],” Zh. Eksp. i Teor. Fiz. 30:1058–1064, 1956.Google Scholar
[15] L. D., Landau, “Oscillations in a Fermi liquid [Soviet Phys. JETP 5, 101–108 (1957)],” Zh. Eksp. i Teor. Fiz. 32:59–66, 1957.Google Scholar
[16] L. D., Landau, “On the theory of the Fermi liquid [Soviet Phys. JETP 8, 70–74 (1959)],” Zh. Eksp. i Teor. Fiz. 35:97–103, 1958.Google Scholar
[17] C. J., Pethick and H., Smith, Bose–Einstein Condensation in Dilute Gases, Cambridge University Press, Cambridge, 2008.Google Scholar
[18] L. D., Landau, “Theory of phase transformations I. Trans: Zh. Eksp. Teor. Fiz. 7, 19 (1937),” Phys. Z. Sowjet 11:26–47, 1937.Google Scholar
[19] L. D., Landau, “Theory of phase transformations II. Trans: Zh. Eksp. Teor. Fiz. 7, 627 (1937),” Phys. Z. Sowjet 11:545–555, 1937.Google Scholar
[20] X.-G, Wen, Quantum Field Theory ofMany-Body Systems, Oxford University Press, Oxford, 2004.Google Scholar
[21] M. Z., Hasan and C. L., Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82:3045–3067, 2010.Google Scholar
[22] E. P., Wigner, “On the interaction of electrons in metals,” Phys. Rev. 46:1002–1011, 1934.Google Scholar
[23] J., Bardeen, “Theory of the work function. II. The surface double layer,” Phys. Rev. 49:653, 1936.Google Scholar
[24] E. A., Hylleraas, “Uber den Grundterm der Zweielektronenprobleme von H-, He, Li+, Be+ usw,” Z. Phys. 65:209, 1930.Google Scholar
[25] E. P., Wigner and F., Seitz, “On the constitution of metallic sodium,” Phys. Rev. 43:804, 1933.Google Scholar
[26] E. P., Wigner and F., Seitz, “On the constitution of metallic sodium II,” Phys. Rev. 46:509, 1934.Google Scholar
[27] R. P., Feynman, “Space-time approach to non-relativistic quantum mechanics,” Rev. Mod. Phys. 20:367–387, 1948.Google Scholar
[28] R. P., Feynman, “Space-time approach to quantum electrodynamics,” Phys. Rev. 76:769– 789, 1949.Google Scholar
[29] F. J., Dyson, “The S matrix in quantum electrodynamics,” Phys. Rev. 75:1736–1755, 1949.Google Scholar
[30] D., Bohm and D., Pines, “A collective description of electron interactions. I. Magnetic interactions,” Phys. Rev. 82:625–634, 1951; II. “Collective vs individual particle aspects of the interactions,” Phys. Rev. 85:338–353, 1952; III. “Coulomb interactions in a degenerate electron gas,” Phys. Rev. 92:609–625, 1953.Google Scholar
[31] J., Lindhard, “On the properties of a gas of charged particles,” Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. 28:1–57, 1954.Google Scholar
[32] J., Hubbard, “Description of collective motion in terms of many-body perturbation theory. II. The correlation energy of a free electron gas,” Proc. Roy. Soc. London, Ser. A 243:336–352, 1958.Google Scholar
[33] H., Ehrenreich and M. H., Cohen, “Self-consistent field approach to the many-electron problem,” Phys. Rev. 115:786–790, 1959.Google Scholar
[34] M., Gell-Mann and K. A, Brueckner, “Correlation energy of an electron gas at high density,” Phys. Rev. 106:364–368, 1957.Google Scholar
[35] V. M., Galitskii and A. B., Migdal, “Application of quantum field theory methods to the many body problem [translation: Soviet Phys. JETP 7, 96–104 (1958)],” Zh. Eksp. Teor. Fiz. 34:139–150, 1958.Google Scholar
[36] J. M., Luttinger and J. C., Ward, “Ground-state energy of a many-fermion system. II,” Phys. Rev. 118:1417–1427, 1960.Google Scholar
[37] J. M., Luttinger, “Fermi surface and some simple equilibrium properties of a system of interacting fermions,” Phys. Rev. 119:1153–1163, 1960.Google Scholar
[38] A. A., Abrikosov, L. P., Gorkov, and I. E., Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Prentice-Hall, Englewood Cliffs, NJ, 1963.Google Scholar
[39] G., Baym and L. P., Kadanoff, “Conservation laws and correlation functions,” Phys. Rev. 124:287–299, 1961.Google Scholar
[40] P. C., Martin and J., Schwinger, “Theory of many particle systems. I,” Phys. Rev. 115:1342–1373, 1959.Google Scholar
[41] P., Hohenberg and W., Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136:B864–871, 1964.Google Scholar
[42] W., Kohn and L. J., Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140:A1133–1138, 1965.Google Scholar
[43] L., Hedin, “New method for calculating the one-particle Green's function with application to the electron-gas problem,” Phys. Rev. 139:A796–823, 1965.Google Scholar
[44] W. L., McMillan, “Ground state of liquid He4,” Phys. Rev. 138:A442–451, 1965.Google Scholar
[45] M., Head-Gordon and E., Artacho, “Chemistry on the computer,” Physics Today 61:58–63, 2008.Google Scholar
[46] T., Koopmans, “Ueber die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms,” Physica 1:104–113, 1934.Google Scholar
[47] A. L., Fetter and J. D., Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, New York, 1971.Google Scholar
[48] V. L., Moruzzi, A. R., Williams, and J. F., Janak, “Local density theory of metallic cohesion,” Phys. Rev. B 15:2854–2857, 1977.Google Scholar
[49] J. D., van der Waals, Nobel Lectures in Physics, Elsevier, Amsterdam, 1964, pp. 254–265.Google Scholar
[50] F., London, “Zur Theorie und Systematik der Molekularkrfte,” Z. Phys. A 63:245–279, 1930.Google Scholar
[51] N. W., Ashcroft and N. D., Mermin, Solid State Physics, W. B. Saunders Company, Philadelphia, PA, 1976.Google Scholar
[52] F. G., Brickwedde, J. Res. Nat. Bur. Stnd. A 64:1–4, 1960.
[53] A., Tkatchenko, M., Rossi, V., Blum, J., Ireta, and M., Scheffler, “Unraveling the stability of polypeptide helices: Critical role of van derWaals interactions,” Phys. Rev. Lett. 106:118102, 2011.Google Scholar
[54] Ferromagnetic Materials, edited by E. P., Wolfarth, North Holland, Amsterdam, 1986.
[55] A. I, Lichtenstein, M. I., Katsnelson, and G., Kotliar, “Finite-temperature magnetism of transition metals: An ab initio dynamical mean-field theory,” Phys. Rev. Lett. 87:067205, 2001.Google Scholar
[56] E. C., Stoner, “Collective electron ferromagnetism. II. Energy and specific heat,” Roy. Soc. London, Proc. Ser. A 169:339–371, 1939.Google Scholar
[57] S., Huefner, Photoemission Spectroscopy: Principles and Applications, Springer-Verlag, Berlin, 2003.Google Scholar
[58] M., Cardona and L., Ley, Photoemission in Solids I, Vol. 26 of Topics in Applied Physics, Springer-Verlag, Berlin, 1978.Google Scholar
[59] A., Damascelli, Z., Hussain, and Z.-X., Shen, “Angle-resolved photoemission studies of the cuprate superconductors,” Rev. Mod. Phys. 75:473–541, 2003.Google Scholar
[60] A. L., Wachs, T., Miller, T. C., Hsieh, A. P., Shapiro, and T. C., Chiang, “Angle-resolved photoemission studies of Ge(111)-c(2 x 8), Ge(111)-(1 x 1)H, Si(111)-(7 x 7), and Si(100)-(2 x 1),” Phys. Rev. B 32:2326–2333, 1985.Google Scholar
[61] J. E., Ortega and F. J., Himpsel, “Inverse-photoemission study of Ge(100), Si(100), and GaAs(100): Bulk bands and surface states,” Phys. Rev. B 47:2130–2137, 1993.Google Scholar
[62] M., Rohlfing, P., Krüger, and J., Pollmann, “Quasiparticle band-structure calculations for C, Si, Ge, GaAs, and SiC using gaussian-orbital basis sets,” Phys. Rev. B 48:17791–17805, 1993.Google Scholar
[63] A., Svane, “Hartree–Fock band-structure calculations with the linear muffin-tin-orbital method: Application to C, Si, Ge, and alpha-Sn,” Phys. Rev. B 35:5496–5502, 1987.Google Scholar
[64] R., Knorren, K. H., Bennemann, R., Burgermeister, and M., Aeschlimann, “Dynamics of excited electrons in copper and ferromagnetic transition metals: Theory and experiment,” Phys. Rev. B 61:9427–9440, 2000.Google Scholar
[65] J., Guedde, M., Rohleder, T., Meier, S. W., Koch, and U., Hoefer, “Time-resolved investigation of coherently controlled electric currents at a metal surface,” Science 318:1287–1291, 2007.Google Scholar
[66] U., Hofer, I. L., Shumay, C., Reuss, U., Thomann, W., Wallauer, and T., Fauster, “Time-resolved coherent photoelectron spectroscopy of quantized electronic states on metal surfaces,” Science 277:1480–1482, 1997.Google Scholar
[67] P., Steiner, H., Höchst, and S., Hüfner, Photoemission in Solids II, Vol. 27 of Topics in Applied Physics, Springer-Verlag, Berlin, 1979, pp. 349–372.Google Scholar
[68] M., Grioni, P., Weibel, D., Malterre, Y., Baer, and L., Du'o, “Resonant inverse photoemission in cerium-based materials,” Phys. Rev. B 55:2056–2067, 1997.Google Scholar
[69] J. W., Allen, S.-J., Oh, M. B., Maple, and M. S., Torikachvili, “Large Fermi-level resonance in the electron-addition spectrum of CeRu2 and CeIr2,” Phys. Rev. B 28:5347–5349, 1983.Google Scholar
[70] D. M., Roessler and W. C., Walker, “Optical constants of magnesium oxide and lithium fluoride in far ultraviolet,” J. Opt. Soc. Am. 57:835–836, 1967.Google Scholar
[71] M., Rohlfing and S. G., Louie, “Electron–hole excitations in semiconductors and insulators,” Phys. Rev. Lett. 81:2312–2315, 1998.Google Scholar
[72] Epioptics: Linear and Nonlinear Optical Spectroscopy of Surfaces and Interfaces, ESPRIT Basic Research Series, edited by J. F., McGilp, D., Weaire, and C., Patterson, Springer-Verlag, Berlin, 2011.
[73] W., Schülke, Electron Dynamics by Inelastic X-Ray Scattering, Oxford Series on Synchrotron Radiation, Oxford University Press, Oxford, 2007.Google Scholar
[74] W., Schülke, in Handbook on Synchrotron Radiation, edited by G., Brown and D. E., Moncton, Elsevier Science, Amsterdam, 1991, pp. 565–637.Google Scholar
[75] T. P., Devereaux and R., Hackl, “Inelastic light scattering from correlated electrons,” Rev. Mod. Phys. 79:175–233, 2007.Google Scholar
[76] R. F., Egerton, “Electron energy-loss spectroscopy in the TEM,” Rep. Prog. Phys. 72:016502, 2009.Google Scholar
[77] R. F., Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope, Springer-Verlag, New York, 2011.Google Scholar
[78] B. C., Larson, W., Ku, J. Z., Tischler, C.-C., Lee, O. D., Restrepo, A. G., Eguiluz, P., Zschack, and K. D., Finkelstein, “Nonresonant inelastic X-ray scattering and energy-resolvedWannier function investigation of d-d excitations in NiO and CoO,” Phys. Rev. Lett. 99:026401, 2007.Google Scholar
[79] M.W., Haverkort, A., Tanaka, L. H., Tjeng, and G. A., Sawatzky, “Nonresonant inelastic X-ray scattering involving excitonic excitations: The examples of NiO and CoO,” Phys. Rev. Lett. 99:257401, 2007.Google Scholar
[80] H. C., Manoharan, C. P., Lutz, and D. M., Eigler, “Quantum mirages formed by coherent projection of electronic structure,” Nature 403:512–513, 2000.Google Scholar
[81] U., Mizutani, Introduction to the Electron Theory of Metals, Cambridge University Press, Cambridge, 2001.Google Scholar
[82] W. J., de Haas, J. H., de Boer, and G. J., van den Berg, “The electrical resistance of gold, copper and lead at low temperatures,” Physica 1:1115–1124, 1934.Google Scholar
[83] J., Kondo, “Resistance minimum in dilute magnetic alloys,” Prog. Theor. Phys. 32:37–69, 1964.Google Scholar
[84] K. G., Wilson, “The renormalization group: Critical phenomena and the Kondo problem,” Rev. Mod. Phys. 47:773–840, 1975.Google Scholar
[85] N., Andrei, K., Furuya, and J. H., Lowenstein, “Solution of the Kondo problem,” Rev. Mod. Phys. 55:331–402, 1983.Google Scholar
[86] N., Quaas, M., Wenderoth, A., Weismann, R. G., Ulbrich, and K., Schönhammer, “Kondo resonance of single Co atoms embedded in Cu(111),” Phys. Rev. B 69:201103, 2004.Google Scholar
[87] Z., Fisk, D. W., Hess, C. J., Pethick, D., Pines, J. L., Smith, J.D., Thompson, and J. O., Willis, “Heavy-electron metals: New highly correlated states of matter,” Science 239:33–42, 1988.Google Scholar
[88] G. R., Stewart, “Heavy-fermion systems,” Rev. Mod. Phys. 56:755–787, 1984.Google Scholar
[89] P., Coleman, in Handbook of Magnetism and Advanced Magnetic Materials, Wiley, New York, 2007.Google Scholar
[90] D. B., McWhan, A., Menth, J. P., Remeika, W. F., Brinkman, and T. M., Rice, “Metal–insulator transitions in pure and doped V2O3,” Phys. Rev. B 7:1920–1931, 1973.Google Scholar
[91] M., Imada, A., Fujimori, and Y., Tokura, “Metal–insulator transitions,” Rev. Mod. Phys. 70:1039–1263, 1998.Google Scholar
[92] D. B., McWhan, T. M., Rice, and J. P., Remeika, “Mott transition in Cr-doped V2O3,” Phys. Rev. Lett. 23:1384–1387, 1969.Google Scholar
[93] S.-K., Mo, H.-D., Kim, J. D., Denlinger, J. W., Allen, J.-H., Park, A., Sekiyama, A., Yamasaki, S., Suga, Y., Saitoh, T., Muro, and P., Metcalf, “Photoemission study of (M = Cr, Ti),” Phys. Rev. B 74:165101, 2006.Google Scholar
[94] E., Papalazarou, M., Gatti, M., Marsi, V., Brouet, F., Iori, L., Reining, E., Annese, I., Vobornik, F., Offi, A., Fondacaro, S., Huotari, P., Lacovig, O., Tjernberg, N. B., Brookes, M., Sacchi, P., Metcalf, and G., Panaccione, “Valence-band electronic structure of V2O3: Identification of V and O bands,” Phys. Rev. B 80:155115, 2009.Google Scholar
[95] J.-H., Park, L. H., Tjeng, A., Tanaka, J.W., Allen, C. T., Chen, P., Metcalf, J. M., Honig, F. M. F., de Groot, and G. A., Sawatzky, “Spin and orbital occupation and phase transitions in V2O3,” Phys. Rev. B 61:11506–11509, 2000.Google Scholar
[96] S. Yu., Ezhov, V. I., Anisimov, D. I., Khomskii, and G. A., Sawatzky, “Orbital occupation, local spin, and exchange interactions in V2O3,” Phys. Rev. Lett. 83:4136–4139, 1999.Google Scholar
[97] M., Hashimoto, I. M., Vishik, T. P., Devereaux, and Z.-X., Shen, “Energy gaps in hightransition- temperature cuprate superconductors,” Nat. Phys. 10:483–495, 2014.Google Scholar
[98] M. R., Norman, M., Randeria, H., Ding, and J. C., Campuzano, “Phenomenology of the lowenergy spectral function in high-Tc superconductors,” Phys. Rev. B 57:R11093–11096, 1998.Google Scholar
[99] M. R., Norman, A., Kanigel, M., Randeria, U., Chatterjee, and J. C., Campuzano, “Modeling the Fermi arc in underdoped cuprates,” Phys. Rev. B 76:174501, 2007.Google Scholar
[100] A., Sekiyama, H., Fujiwara, S., Imada, S., Suga, H., Eisaki, S. I., Uchida, K., Takegahara, H., Harima, Y., Saitoh, I. A., Nekrasov, G., Keller, D. E., Kondakov, A. V., Kozhevnikov, Th., Pruschke, K., Held, D., Vollhardt, and V. I., Anisimov, “Mutual experimental and theoretical validation of bulk photoemission spectra of Sr1-xCaxVO3,” Phys. Rev. Lett. 93:156402, 2004.Google Scholar
[101] S.-K., Mo, J. D., Denlinger, H.-D., Kim, J.-H., Park, J. W., Allen, A., Sekiyama, A., Yamasaki, K., Kadono, S., Suga, Y., Saitoh, T., Muro, P., Metcalf, G., Keller, K., Held, V., Eyert, V. I., Anisimov, and D., Vollhardt, “Prominent quasiparticle peak in the photoemission spectrum of the metallic phase of V2O3,Phys. Rev. Lett. 90:186403, 2003.Google Scholar
[102] I., Lindau and W. E., Spicer, “Probing depth in photoemission and Auger-electron spectroscopy,J. Electron Spectrosc. Relat. Phenom. 3:409–413, 1974.Google Scholar
[103] C. J., Powell, “Attenuation lengths of low-energy electrons in solids,Surface Sci. 44:29–46, 1974.Google Scholar
[104] G. A., Somorjai, Chemistry in Two Dimensions: Surfaces, George Fisher Baker nonresident lectureship in chemistry at Cornell University, Cornell University Press, Ithaca, NY, 1981.Google Scholar
[105] M., Casula, S., Sorella, and G., Senatore, “Ground state properties of the one-dimensional Coulomb gas using the lattice regularized diffusion Monte Carlo method,Phys. Rev. B 74:245427, 2006.Google Scholar
[106] G., Giuliani and G., Vignale, Quantum Theory of the Electron Liquid, Cambridge University Press, Cambridge, 2005.Google Scholar
[107] D., Pines and P., Nozières, The Theory of Quantum Liquids, Vol. I (Advanced Book Classics, originally published by W. A. Benjamin, New York, 1966), Westview Press, Boulder, CO, 1999.Google Scholar
[108] B., Tanatar and D. M., Ceperley, “The ground state of the two-dimensional electron gas,Phys. Rev. B 39:5005–5016, 1989.Google Scholar
[109] D. M., Ceperley and B. J., Alder, “Ground state of the electron gas by a stochastic method,Phys. Rev. Lett. 45:566, 1980.Google Scholar
[110] F. H., Zong, C., Lin, and D. M., Ceperley, “Spin polarization of the low density threedimensional electron gas,Phys. Rev. E 66:036703:1–7, 2002.Google Scholar
[111] B., Spivak and S. A., Kivelson, “Phases intermediate between a two-dimensional electron liquid and Wigner crystal,Phys. Rev. B 70:155114, 2004.Google Scholar
[112] L., Candido, B., Bernu, and D. M. Ceperley, “Magnetic ordering of the three dimensional Wigner crystal,Phys. Rev. B 70:094413:1–6, 2004.Google Scholar
[113] B., Bernu, L., Candido, and D. M., Ceperley, “Exchange frequencies in the 2D Wigner crystal,Phys. Rev. Lett. 86:870–873, 2001.Google Scholar
[114] L., Balents, “Spin liquids in frustrated magnets,Nature 464:199–208, 2010.Google Scholar
[115] N. F., Mott, “The basis of the electron theory of metals, with special reference to the transition metals,Proc. Phys. Soc. A 62:416–422, 1949.Google Scholar
[116] Proceedings of Washington Conference on Magnetism, Rev. Mod. Phys. 25, 1953.
[117] J. C., Thompson, “Introduction and list of participants,Rev. Mod. Phys. 40:673–676, 1968.Google Scholar
[118] N. F., Mott, “The transition to the metallic state,Phil. Mag. 6:287, 1961.Google Scholar
[119] N. F., Mott, “Electrons in transition metals,Adv. Phys. 13:325–422, 1964.Google Scholar
[120] N. F., Mott, Metal–Insulator Transitions, Taylor and Francis, London, 1990.Google Scholar
[121] W. C., Herring, Exchange Interactions among Itinerant Electrons, Academic Press, New York, 1966.Google Scholar
[122] J. C., Slater, “Magnetic effects and the Hartree–Fock equation,Phys. Rev. 82:538–541, 1951.Google Scholar
[123] J., Hubbard, “Electron correlations in narrow energy bands,Proc. Roy. Soc. London, Ser. A 276:238–257, 1963.Google Scholar
[124] J., Hubbard, “Electron correlations in narrow energy bands. II. The degenerate band case,Proc. Roy. Soc. London, Ser. A 277:237–259, 1964.Google Scholar
[125] J., Hubbard, “Electron correlations in narrow energy bands. III. An improved solution,Proc. Roy. Soc. London, Ser. A 281:401–419, 1964.Google Scholar
[126] J., Hubbard, “Electron correlations in narrow energy bands. IV. The atomic representation,Proc. Roy. Soc. London, Ser. A 285:542–560, 1965.Google Scholar
[127] J., Hubbard, “Electron correlations in narrow energy bands. V. A perturbation expansion about the atomic limit,Proc. Roy. Soc. London, Ser. A 296:82–99, 1967.Google Scholar
[128] J., Hubbard, “Electron correlations in narrow energy bands. VI. The connexion with manybody perturbation theory,Proc. Roy. Soc. London, Ser. A 296:100–112, 1967.Google Scholar
[129] M., Gutzwiller, “Effect of correlation on the ferromagnetism of transition metals,Phys. Rev. Lett. 10:159–162, 1963.Google Scholar
[130] M. C., Gutzwiller, “Effect of correlation on the ferromagnetism of transition metals,Phys. Rev. 134:A923–941, 1964.Google Scholar
[131] M. C., Gutzwiller, “Correlation of electrons in a narrow s band,Phys. Rev. 137:A1726– 1735, 1965.Google Scholar
[132] P. W., Anderson, “New approach to the theory of superexchange interactions,Phys. Rev. 115:2–13, 1959.Google Scholar
[133] J., Kanamori, “Electron correlation and ferromagnetism of transition metals,Prog. Theor. Phys. 30:275–289, 1963.Google Scholar
[134] E., Lieb and F. Y., Wu, “Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension,Phys. Rev. Lett. 20:1445–1448, 1968.Google Scholar
[135] H. A., Bethe, “Zur Theorie der Metalle. Eigenwerte und Eigenfunktionen der linearen Atomkette,Z. Phys. 71:205, 1931.Google Scholar
[136] N., Trivedi and D. M., Ceperley, “Ground-state correlations of quantum antiferromagnets: A Green-function Monte Carlo study.Phys. Rev. B 41:4552–4569, 1990.Google Scholar
[137] W., Heitler and F., London, “Wechselwirkung neutraler Atome und homopolare Bindung nach der Quantenmechanik,Z. Phys. 44:455–472, 1927.Google Scholar
[138] W. F., Brinkman and T. M., Rice, “Application of Gutzwiller's variational method to the metal–insulator transition,Phys. Rev. B 2:4302–4304, 1970.Google Scholar
[139] M., Lax, “Multiple scattering of waves,Rev. Mod. Phys. 23:287–310, 1951.Google Scholar
[140] R. J., Elliott, J. A., Krumhansl, and P. L., Leath, “The theory and properties of randomly disordered crystals and related physical systems,Rev. Mod. Phys. 46:465–543, 1974.Google Scholar
[141] P., Soven, “Coherent-potential model of substitutional disordered alloys,Phys. Rev. 156:809–813, 1967.Google Scholar
[142] B., Velicky, S., Kirkpatrick, and H., Ehrenreich, “Single-site approximations in the electronic theory of simple binary alloys,Phys. Rev. 175:747–766, 1968.Google Scholar
[143] G. H., Wannier, Statistical Physics, Wiley, New York, 1966.Google Scholar
[144] P. M., Chaikin and T. C., Lubensky, Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, 1995.Google Scholar
[145] D., Pines, The Many Body Problem (Advanced Book Classics, originally published in 1961), Addison-Wesley, Reading, MA, 1997.Google Scholar
[146] A. C., Hewson, The Kondo Problem to Heavy Fermions, Cambridge University Press, Cambridge, 1993.Google Scholar
[147] G., Baym and C., Pethick, Theory of Interacting Fermi Systems (originally published in 1991), Wiley-VCH, Weinheim, 2004.Google Scholar
[148] P., Nozières, Theory of Interacting Fermi Systems (Advanced Book Classics, originally published in 1964), Addison-Wesley, Reading, MA, 1997.Google Scholar
[149] G. D., Mahan, Many-Particle Physics, 3rd Ed., Kluwer Academic/Plenum Publishers, New York, 2000.Google Scholar
[150] D., Vollhardt, “Normal 3He: An almost localized Fermi liquid,Rev. Mod. Phys. 56:99–120, 1984.Google Scholar
[151] C., Kittel, Introduction to Solid State Physics, Wiley, New York, 1996.Google Scholar
[152] V. P., Silin, “On the theory of a degenerate electron fluid [Soviet Phys. JETP 6, 387 and 985 (1958)],Zh. Eksp. i Teor. Fiz. 33:495 and 1282, 1957.Google Scholar
[153] P., Nozières and J.M., Luttinger, “Derivation of the Landau theory of Fermi liquids. I. Formal preliminaries,Phys. Rev. 127:1423–1431, 1962.Google Scholar
[154] J. M., Luttinger and P., Nozières, “Derivation of the Landau theory of Fermi liquids. II. Equilibrium properties and transport equation,Phys. Rev. 127:1431–1440, 1962.Google Scholar
[155] P. W., Anderson, “Localized magnetic states in metals,Phys. Rev. 124:41–53, 1961.Google Scholar
[156] S., Doniach and E. H., Sondheimer, Green's Functions for Solid State Physicists (Reprinted in Frontiers in Physics Series, No. 44), W. A. Benjamin, Reading, MA, 1974.Google Scholar
[157] J. R., Schrieffer and P., Wolfe, “Relation between the Anderson and Kondo hamiltonians,Phys. Rev. 149:491–492, 1966.Google Scholar
[158] B., Coqblin and J. R., Schrieffer, “Exchange interaction in alloys with cerium impurities,Phys. Rev. 185:847–853, 1969.Google Scholar
[159] O. E., Gunnarsson and K., Schönhammer, “Electron spectroscopies for Ce compounds in the impurity model,Phys. Rev. B 28:4315–4341, 1983.Google Scholar
[160] K., Yamada, “Perturbation expansion for the Anderson hamiltonian. II,Prog. Th. Phys. 53:970–986, 1975.Google Scholar
[161] I., Dzyaloshinskii, “Some consequences of the Luttinger theorem: The Luttinger surfaces in non-Fermi liquids and Mott insulators,Phys. Rev. B 68:085113, 2003.Google Scholar
[162] P., Nozières, “A ‘Fermi-liquid’ description of the Kondo problem at low temperatures,J. Low Temp. Phys. 17:31–42, 1974.Google Scholar
[163] J., Friedel, “The distribution of electrons around impurities in monovalent metals,Phil. Mag. 43:153–189, 1952.Google Scholar
[164] J. S., Langer and V., Ambegaokar, “Friedel sum rule for a system of interacting electrons,Phys. Rev. 121:1090–1092, 1961.Google Scholar
[165] D. C., Langreth, “Friedel sum rule for Anderson's model of localized impurity states,Phys. Rev. 150:516–518, 1966.Google Scholar
[166] R. M., Martin, “Fermi-surface sum rule and its consequences for periodic Kondo and mixedvalence systems,Phys. Rev. Lett. 48:362–365, 1982.Google Scholar
[167] D. R., Hartree and W., Hartree, “Self-consistent field, with exchange for beryllium,Proc. Roy. Soc. London, Series A 150:9–33, 1935.Google Scholar
[168] V., Fock, “Naherungsmethode zur Losung des quanten-mechanischen Mehrkorperprobleme,Z. Phys. 61:126–148, 1930.Google Scholar
[169] A., Szabo and N. S., Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Unabridged reprinting of 1989 version), Dover, Mineola, NY, 1996.Google Scholar
[170] R. D., McWeeny and B. T., Sutcliffe, Methods of Molecular Quantum Mechanics, 2nd Ed., Academic Press, New York, 1976.Google Scholar
[171] P., Weiss, “The molecular field hypothesis and ferromagnetism,J. Phys. Radium 6:661, 1907.Google Scholar
[172] H. A., Bethe, “Statistical theory of superlattices,Proc. Roy. Soc. London, Ser. A 150:552– 575, 1935.Google Scholar
[173] R., Peierls, “Statistical theory of superlattices with unequal concentrations of the components,Proc. Roy. Soc. London, Ser. A 154:207–222, 1936.Google Scholar
[174] R., Kikuchi, “A theory of cooperative phenomena,Phys. Rev. 81:988–1003, 1951.Google Scholar
[175] R. G., Parr and W., Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.Google Scholar
[176] Density Functional Theory: An Approach to the Quantum Many-Body Problem, edited by R. M., Dreizler and E. K. U., Gross, Springer-Verlag, Berlin, 1990.
[177] Density Functional Theory, edited by E. K. U., Gross and R.M., Dreizler, Plenum Press, New York, 1995.
[178] J. D., van der Waals, “Thermodynamische Theorie der Kapillaritat unter Voraussetzung stetiger Dichteanderung,Z. Phys. Chem. 13:657, 1894.Google Scholar
[179] J. W., Cahn and J. E., Hilliard, “Free energy of a nonuniform system. I. Interfacial energy,J. Chem. Phys 28:258, 1958.Google Scholar
[180] F., Malet and P., Gori-Giorgi, “Strong correlation in Kohn–Sham density functional theory,Phys. Rev. Lett. 109:246402, 2012.Google Scholar
[181] P., Hohenberg and W., Kohn, “Inhomogeneous electron gas,Phys. Rev. 136:B864–871, 1964.Google Scholar
[182] M., Levy, “Electron densities in search of hamiltonians,Phys. Rev. A 26:1200, 1982.Google Scholar
[183] E., Lieb, in Physics as Natural Philosophy, edited by A., Shimony and H., Feshbach, MIT Press, Cambridge, MA, 1982, p. 111.Google Scholar
[184] J. T., Chayes, L., Chayes, and M. B., Ruskai, “Density functional-approach to quantum-lattice systems,J. Stat. Phys. 38:497–518, 1985.Google Scholar
[185] C. A., Ullrich and W., Kohn, “Degeneracy in density functional theory: Topology in the v and n spaces,Phys. Rev. Lett. 89:156401–156404, 2002.Google Scholar
[186] A. D., Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,Phys. Rev. A 38:3098–3100, 1988.Google Scholar
[187] C., Lee, W., Yang, and R. G., Parr, “Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density,Phys. Rev. B 37:785–789, 1988.Google Scholar
[188] J. P., Perdew and K., Schmidt, in Density Functional Theory and Its Applications to Materials, edited by V. E., van Doren, C., van Alsenoy, and P., Geerlings, AIP Conference Proceedings, Vol. 577, American Institute of Physics, College Park, MD, 2001.Google Scholar
[189] N. D., Mermin, “Thermal properties of the inhomogeneous electron gas,Phys. Rev. 137:A1441–1443, 1965.Google Scholar
[190] J. P., Perdew, R. G., Parr, M., Levy, and J. L., Balduz, “Density-functional theory for fractional particle number: Derivative discontinuities of the energy,Phys. Rev. Lett. 49:1691–1694, 1982.Google Scholar
[191] C.-O., Almbladh and U., von Barth, “Exact results for the charge and spin densities, exchange–correlation potentials, and density-functional eigenvalues,Phys. Rev. B 31:3231–3244, 1985.Google Scholar
[192] R.W., Godby, M., Schlüter, and L. J., Sham, “Self-energy operators and exchange–correlation potentials in semiconductors,Phys. Rev. B 37:10159–10175, 1988.Google Scholar
[193] L., Hedin, “Electron correlation: Keeping close to an orbital description,Int. J. Quant. Chemi. 56:445–452, 1995.Google Scholar
[194] E. J., Baerends, O. V., Gritsenko, and R., van Meer, “The Kohn–Sham gap, the fundamental gap and the optical gap: The physical meaning of occupied and virtual Kohn–Sham orbital energies,Phys. Chem. Chem. Phys. 15:16408–16425, 2013.Google Scholar
[195] J. F., Janak, “Proof that in density-functional theory,Phys. Rev. B 18:7165, 1978.Google Scholar
[196] J. P., Perdew, R. G., Parr, M., Levy, and J. L., Balduz Jr., “Density-functional theory for fractional particle number: Derivative discontinuities of the energy,Phys. Rev. Lett. 49:1691–1694, 1982.Google Scholar
[197] A. J., Cohen, P., Mori-Sánchez, and W., Yang, “Fractional charge perspective on the band gap in density-functional theory,Phys. Rev. B 77:115123, 2008.Google Scholar
[198] A. J., Mori-Sánchez, P., Cohen, and W., Yang, “Discontinuous nature of the exchange– correlation functional in strongly correlated systems,Phys. Rev. Lett. 102:066403, 2009.Google Scholar
[199] W., Yang, A. J., Cohen, and P., Mori-Sánchez, “Derivative discontinuity, bandgap and lowest unoccupied molecular orbital in density functional theory,J. Chem. Phys. 136, 2012.Google Scholar
[200] E., Teller, “On the stability of molecules in the Thomas–Fermi theory,Rev. Mod. Phys. 34:627–631, 1962.Google Scholar
[201] A., Seidl, A., Görling, P., Vogl, J. A., Majewski, and M., Levy, “Generalized Kohn–Sham schemes and the band-gap problem,Phys. Rev. B 53:3764–3774, 1996.Google Scholar
[202] P., Rinke, A., Qteish, J., Neugebauer, C., Freysoldt, and M., Scheffler, “Combining GW calculations with exact-exchange density-functional theory: An analysis of valence-band photoemission for compound semiconductors,New J. Phys. 7:126, 2005.Google Scholar
[203] J. P., Perdew and A., Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,Phys Rev. B 23:5048, 1981.www.easypostjob4u.comGoogle Scholar
[204] R. T., Sharp and G. K., Horton, “A variational approach to the unipotential many-electron problem,Phys. Rev. 90:317, 1953.Google Scholar
[205] T., Grabo, T., Kreibich, S., Kurth, and E. K. U., Gross, in Strong Coulomb Correlations in Electronic Structure: Beyond the Local Density Approximation, edited by V. I. Anisimov, Gordon & Breach, Tokyo, 1998.Google Scholar
[206] K., Burke, “Perspective on density functional theory,J. Chem. Phys. 136:150901, 2012.Google Scholar
[207] D. C., Langreth and J. P., Perdew, “Exchange–correlation energy of a metallic surface,Solid Sate Comm. 17:1425–1429, 1975.Google Scholar
[208] D. C., Langreth and J. P., Perdew, “Exchange–correlation energy of a metallic surface:Wavevector analysis,Phys. Rev. B 15:2884–2901, 1977.Google Scholar
[209] L. N., Oliveira, E. K. U., Gross, and W., Kohn, “Density-functional theory for superconductors,Phys. Rev. Lett. 60:2430–2433, 1988.Google Scholar
[210] M., Lüders, M. A. L., Marques, N. N., Lathiotakis, A., Floris, G., Profeta, L., Fast, A., Continenza, S., Massidda, and E. K. U., Gross, “Ab initio theory of superconductivity. I. Density functional formalism and approximate functionals,Phys. Rev. B 72:024545, 2005.Google Scholar
[211] M. A. L., Marques, M., Luders, N. N., Lathiotakis, G., Profeta, A., Floris, L., Fast, A., Continenza, E. K. U., Gross, and S., Massidda, “Ab initio theory of superconductivity. II. Application to elemental metals,Phys. Rev. B 72:024546, 2005.Google Scholar
[212] G. M., Eliashberg, “Interactions between electrons and lattice vibrations in a superconductor,Soviet Phys. JETP 11:696–702, 1960.Google Scholar
[213] P., Cudazzo, G., Profeta, A., Sanna, A., Floris, A., Continenza, S., Massidda, and E. K. U., Gross, “Ab initio description of high-temperature superconductivity in dense molecular hydrogen,Phys. Rev. Lett. 100:257001, 2008.Google Scholar
[214] Time-Dependent Density Functional Theory, Lecture Notes in Physics, Vol. 706, edited by F., Nogueira, A., Rubio, K., Burke, E. K. U., Gross, M. A. L., Marques, and C. A., Ullrich, Springer-Verlag, Berlin, 2006.
[215] M., Marques and E. K. U., Gross, “Time-dependent density functional theory,Ann. Rev. Phys. Chem. 55:427–455, 2004.Google Scholar
[216] S., Botti, A., Schindlmayr, R., Del Sole, and L., Reining, “Time-dependent density-functional theory for extended systems,Rep. Prog. Phys. 70:357–407, 2007.Google Scholar
[217] E., Runge and E. K. U., Gross, “Density-functional theory for time-dependent systems,Phys. Rev. Lett. 52:997–1000, 1984.Google Scholar
[218] E. K. U., Gross, C. A., Ullrich, and U. J., Gossmann, in Density Functional Theory, edited by E. K. U., Gross and R. M., Dreizler, Plenum Press, New York, 1995, p. 149.Google Scholar
[219] R., van Leeuwen, “Causality and symmetry in time-dependent density-functional theory,Phys. Rev. Lett. 80:1280–1283, 1998.Google Scholar
[220] A., Zangwill and P., Soven, “Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases,Phys. Rev. A 21:1561, 1980.Google Scholar
[221] D. J., Thouless and J. G., Valatin, “Time-dependent Hartree–Fock equations and rotational states of nuclei,Nucl. Phys. 31:211, 1962.Google Scholar
[222] G., Vignale and M., Rasolt, “Current- and spin-density-functional theory for inhomogeneous electronic systems in strong magnetic fields,Phys. Rev. B 37:10685–10696, 1988.Google Scholar
[223] G., Vignale and W., Kohn, “Current-dependent exchange–correlation potential for dynamical linear response theory,Phys. Rev. Lett. 77:2037–2040, 1996.Google Scholar
[224] R., van Leeuwen, “Causality and symmetry in time-dependent density-functional theory,Phys. Rev. Lett. 80:1280–1283, 1998.Google Scholar
[225] M., Gatti, “Design of effective kernels for spectroscopy and molecular transport: Timedependent current-density-functional theory,J. Chem. Phys. 134, 2011.Google Scholar
[226] A. W., Overhauser, “New mechanism of antiferromagnetism,Phys. Rev. Lett. 3:414–416, 1959.Google Scholar
[227] E. K. U., Gross, E., Runge, and O., Heinonen, Many-Particle Theory, Adam-Milger, Bristol, 1991.Google Scholar
[228] P. W., Anderson, “More is different: Broken symmetry and the nature of the heirarchical structure of science,Science 177:393–396, 1972.Google Scholar
[229] O., Penrose and L., Onsager, “Bose–Einstein condensation and liquid helium,Phys. Rev. 104:576–584, 1956.Google Scholar
[230] S., Huotari, J. A., Soininen, T., Pylkkänen, K., Hämäläinen, A., Issolah, A., Titov, J., McMinis, J., Kim, K., Esler, D. M., Ceperley, M., Holzmann, and V., Olevano, “Momentum distribution and renormalization factor in sodium and the electron gas,Phys. Rev. Lett. 105:086403, 2010.Google Scholar
[231] M., Holzmann, B., Bernu, C., Pierleoni, J., McMinis, D. M., Ceperley, V., Olevano, and L., Delle Site, “Momentum distribution of the homogeneous electron gas,Phys. Rev. Lett. 107:110402, 2011.Google Scholar
[232] D., Pines and P., Nozières, The Theory of Quantum Liquids, Vol. I (Advanced Book Classics, originally published in 1966), Addison-Wesley, Redwood City, CA, 1989.Google Scholar
[233] E. N., Economou, Green's Functions in Quantum Physics, 2nd Ed., Springer-Verlag, Berlin, 1992.Google Scholar
[234] T., Matsubara, “A new approach to quantum-statistical mechanics,Prog. Theor. Phys. 14:351, 1955.Google Scholar
[235] D., Pines, Elementary Excitations in Solids, Wiley, New York, 1964.Google Scholar
[236] M., Marder, Condensed Matter Physics, Wiley, New York, 2000.Google Scholar
[237] H. B., Callen and T. A., Welton, “Irreversibility and generalized noise,Phys. Rev. 83:34–40, 1951.Google Scholar
[238] R., Kubo, “The fluctuation–dissipation theorem,Rep. Prog. Phys. 29:255–284, 1966.Google Scholar
[239] R., Kubo, “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems,Rep. Prog. Phys. 12:570, 1957.Google Scholar
[240] P., Nozières and D., Pines, “Electron interaction in solids. Characteristic energy loss spectrum,Phys. Rev. 113:1254–1267, 1959.Google Scholar
[241] W., Schülke and A., Kaprolat, “Nondiagonal response of Si by inelastic-X-ray-scattering experiments at Bragg position: Evidence for bulk plasmon bands,Phys. Rev. Lett. 67:879– 882, 1991.Google Scholar
[242] J., Steibling, “Optical-properties of mono-crystalline silicon by electron-energy loss measurements,Z. Phys. B: Condens. Matter 31:355–357, 1978.Google Scholar
[243] V., Olevano and L., Reining, “Excitonic effects on the silicon plasmon resonance,Phys. Rev. Lett. 86:5962–5965, 2001.Google Scholar
[244] H.-C., Weissker, J., Serrano, S., Huotari, E., Luppi, M., Cazzaniga, F., Bruneval, F., Sottile, G., Monaco, V., Olevano, and L., Reining, “Dynamic structure factor and dielectric function of silicon for finite momentum transfer: Inelastic X-ray scattering experiments and ab initio calculations,Phys. Rev. B 81:085104, 2010.Google Scholar
[245] P., Lautenschlager, M., Garriga, L., Vina, and M., Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,Phys. Rev. B 36:4821–4830, 1987.Google Scholar
[246] J. J., Sakurai, Modern Quantum Mechanics, Pearson Education, Upper Saddle River, NJ, 1994.Google Scholar
[247] C.-O., Almbladh and L., Hedin, in Handbook on Synchrotron Radiation, edited by E. E., Koch, North-Holland, Amsterdam, 1983, Ch. 8.Google Scholar
[248] G., Strinati, “Application of the Green's-functions method to the study of the opticalproperties of semiconductors,Rivista del Nuovo Cimento 11:1–86, 1988.Google Scholar
[249] S., Boffi, Da Heisenberg a Landau. Introduzione alla fisica dei sistemi a molte particelle. Quaderni di Fisica Teorica, Bibliopolis, Napoli, via Arangio Ruiz 83, 2004.Google Scholar
[250] U., von Barth, N. E., Dahlen, R., van Leeuwen, and G., Stefanucci, “Conserving approximations in time-dependent density functional theory,Phys. Rev. B 72:235109, 2005.Google Scholar
[251] T. G., Carlson, Photoelectron and Auger Spectroscopy, Plenum Press, New York, 1975.Google Scholar
[252] R. R., Rye, T. E., Madey, J. E., Houston, and P. H., Holloway, “Chemical-state effects in Augerelectron spectroscopy,J. Chem. Phys. 69:1504–1512, 1978.Google Scholar
[253] P. G., Fournier, J., Fournier, F., Salama, D., Stärk, S. D., Peyerimhoff, and J. H. D., Eland, “Theoretical and experimental studies of the electronic states of the diatomic cation Cl2+ 2,Phys. Rev. A 34:1657–1666, 1986.Google Scholar
[254] J., Appell, J., Durup, F. C, Fehsenfe, and P., Fournier, “Double charge-transfer spectroscopy of diatomic-molecules,J. Phys. B 6:197–205, 1973.Google Scholar
[255] J., Appell, J., Durup, F. C., Fehsenfe, and P., Fournier, “Doubly ionized states of some polyatomic-molecules studied by double charge-transfer spectroscopy,J. Phys. B 7:406– 414, 1974.Google Scholar
[256] G., Csanak, H. S., Taylor, and R., Yaris, “Green's function technique in atomic and molecular physics,Adv. At. Mol. Phys. 7:287–361, 1971.Google Scholar
[257] T., Kato, “On the eigenfunctions of many-particle systems in quantum mechanics,Commun. Pure Appl. Math 10:151–177, 1957.Google Scholar
[258] R. T., Pack and W., Byers Brown, “Cusp conditions for molecular wavefunctions,J. Chem. Phys. 45:556–559, 1966.Google Scholar
[259] R., Resta, “The insulating state of matter: A geometric approach,Eur. Phys. J. B 79:121–137, 2011.Google Scholar
[260] W., Kohn, “Theory of the insulating state,Phys. Rev. 133:A171–181, 1964.Google Scholar
[261] D. J., Scalapino, S. R., White, and S., Zhang, “Insulator, metal, or superconductor: The criteria,Phys. Rev. B 47:7995, 1993.Google Scholar
[262] I., Souza, T. J., Wilkens, and R. M., Martin, “Polarization and localization in insulators: Generating function approach,Phys. Rev. B 62:1666–1683, 2000.Google Scholar
[263] R. D., King-Smith and D., Vanderbilt, “Theory of polarization of crystalline solids,Phys. Rev. B 47:1651–1654, 1993.Google Scholar
[264] G., Ortiz and R. M., Martin, “Macroscopic polarization as a geometric quantum phase: Many-body formulation,Phys. Rev. B 49:14202–14210, 1994.Google Scholar
[265] M., Stone, Quantum Hall Effect, World Scientific, Singapore, 1992.Google Scholar
[266] M., Oshikawa and T., Senthil, “Fractionalization, topological order, and quasiparticle statistics,Phys. Rev. Lett. 96:060601, 2006.Google Scholar
[267] G., Temple, “The theory of Rayleigh's principle as applied to continuous systems,Proc. Roy. Soc. London, Ser. A 119:276–293, 1928.Google Scholar
[268] E., Hylleraas, “Neue Berectnumg der Energie des Heeliums im Grundzustande, sowie tiefsten Terms von Ortho-Helium,Z. Phys. 54:347, 1929.Google Scholar
[269] A., Bijl, “The lowest wave function of the symmetrical many particles system,Physica VII:869, 1940.Google Scholar
[270] R. B., Dingle, “The zero-point energy of a system of particles,Phil. Mag. 40:573, 1949.Google Scholar
[271] R., Jastrow, “Many-body problem with strong forces,Phys. Rev. 98:1479, 1955.Google Scholar
[272] R. B., Laughlin, “Quantized Hall conductivity in two dimensions,Phys. Rev. B 23:5632– 5633, 1981.Google Scholar
[273] S. F., Boys and N. C., Handy, Proc. Roy. Soc. London, Ser. A 309:209, 1969.
[274] T., Gaskell, “The collective treatment of a Fermi gas: II,Proc. Phys. Soc. 77:1182, 1961.Google Scholar
[275] D. M., Ceperley, “Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions,Phys. Rev. B 18:3126–3138, 1978.Google Scholar
[276] W. H., Press and S. A., Teukolsky, Numerical Recipes, Cambridge University Press, Cambridge, 1992.Google Scholar
[277] E., Buendía, F. J., Gálvez, P., Maldonado, and A., Sarsa, “Quantum Monte Carlo ground state energies for the atoms Li through Ar,J. Chem. Phys. 131:044115, 2009.Google Scholar
[278] N. D., Drummond, Z., Radnai, J. R., Trail, M. D., Towler, and R. J., Needs, “Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals,Phys. Rev. B 69:085116, 2004.Google Scholar
[279] Y., Kwon, D. M., Ceperley, and R. M., Martin, “Effects of three-body and backflow correlations in the 2D electron gas,Phys. Rev. B. 48:12037, 1993.Google Scholar
[280] M., Casula and S., Sorella, “Geminal wave functions with Jastrow correlation: A first application to atoms,J. Chem. Phys. 119:6500–6511, 2003.Google Scholar
[281] M., Casula, C., Attaccalite, and S., Sorella, “Correlated geminal wave function for molecules: An efficient resonating valence bond approach,J. Chem. Phys. 121:7110–7126, 2004.Google Scholar
[282] A. J., Leggett, Quantum Liquids, Oxford University Press, Oxford, 2006.Google Scholar
[283] M., Bajdich, L., Mitas, L. K., Wagner, and K. E., Schmidt, “Pfaffian pairing and backflow wavefunctions for electronic structure quantum Monte Carlo methods,Phys. Rev. B 77:115112, 2008.Google Scholar
[284] M., Holzmann, D. M., Ceperley, C., Pierleoni, and K., Esler, “Backflow correlations for the electron gas and metallic hydrogen,Phys. Rev. E 68:046707:1–15, 2003.Google Scholar
[285] Y., Kwon, D. M., Ceperley, and R. M., Martin, “Effects of backflow correlation in the threedimensional electron gas: Quantum Monte Carlo study,Phys. Rev. B 58:6800–6806, 1998.Google Scholar
[286] P., López Ríos, A., Ma, N. D., Drummond, M. D., Towler, and R. J., Needs, “Inhomogeneous backflow transformations in quantum Monte Carlo calculations,Phys. Rev. E 74:066701, 2006.Google Scholar
[287] L., Hedin, “On correlation effects in electron spectroscopies and the GW approximation,J. Phys. C 11:R489–528, 1999.Google Scholar
[288] B., Farid, in Electron Correlation in the Solid State, edited by N. H., March, Imperial College Press, London, 1999, p. 103.Google Scholar
[289] A. J., Layzer, “Properties of the one-particle Green's function for nonuniform many-fermion systems,Phys. Rev. 129:897–907, 1963.Google Scholar
[290] A., Fleszar and W., Hanke, “Spectral properties of quasiparticles in a semiconductor,Phys. Rev. B 56:10228–10232, 1997.Google Scholar
[291] M., van Schilfgaarde, T., Kotani, and S., Faleev, “Quasiparticle self-consistent GW theory,Phys. Rev. Lett. 96:226402–226402, 2006.Google Scholar
[292] S. V., Faleev, M., van Schilfgaarde, and T., Kotani, “All-electron self-consistent GW approximation: Application to Si, MnO, and NiO,Phys. Rev. Lett. 93:126406, 2004.Google Scholar
[293] T., Kotani, M., van Schilfgaarde, and S. V., Faleev, “Quasiparticle self-consistent GW method: A basis for the independent-particle approximation,Phys. Rev. B 76:165106, 2007.Google Scholar
[294] A., Klein, “Perturbation theory for an infinite medium of fermions. II,Phys. Rev. 121:950– 956, 1961.Google Scholar
[295] A., Klein and R. E., Prange, “Perturbation theory for an infinite medium of fermions,Phys. Rev. 112:994–1007, 1958.Google Scholar
[296] M., Potthoff, “Self-energy-functional approach to systems of correlated electrons,Euro. Phys. J. B 32:429–436, 2003.Google Scholar
[297] R., Chitra and G., Kotliar, “Effective-action approach to strongly correlated fermion systems,Phys. Rev. B 63:115110, 2001.Google Scholar
[298] C.-O., Almbladh, U., von Barth, and R., van Leeuwen, “Variational total energies from Φ- and Ψ-derivable theories,Int. J. Mod. Phys. 13:535–541, 1999.Google Scholar
[299] G., Baym and L. P., Kadanoff, “Conservation laws and correlation functions,Phys. Rev. 124:287–299, 1961.Google Scholar
[300] R., van Leeuwen, N. E., Dahlen, and A., Stan, “Total energies from variational functionals of the Green function and the renormalized four-point vertex,Phys. Rev. B 74:195105, 2006.Google Scholar
[301] G., Stefanucci and R., van Leeuwen, Many-Body Theory of Quantum Systems, Cambridge University Press, Cambridge, 2013.Google Scholar
[302] A., Georges, G., Kotliar, W., Krauth, and M. J., Rozenberg, “Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions,Rev. Mod. Phys. 68:13–125, 1996.Google Scholar
[303] G., Kotliar, S. Y., Savrasov, K., Haule, V. S., Oudovenko, O., Parcollet, and C. A., Marianetti, “Electronic structure calculations with dynamical mean-field theory,Rev. Mod. Phys. 78:865, 2006.Google Scholar
[304] B. A., Lippmann and J., Schwinger, “Variational principles for scattering processes. I,Phys. Rev. 79:469–480, 1950.Google Scholar
[305] L. D., Landau and E. M., Lifshitz, Quantum Mechanics: Non-relativistic theory, Pergamon Press, Oxford, 1977.Google Scholar
[306] Chr., Møller and M. S., Plesset, “Note on an approximation treatment for many-electron systems,Phys. Rev. 46:618–622, 1934.Google Scholar
[307] X., Ren, A., Tkatchenko, P., Rinke, and M., Scheffler, “Beyond the random-phase approximation for the electron correlation energy: The importance of single excitations,Phys. Rev. Lett. 106:153003, 2011.Google Scholar
[308] S. Y., Willow, K. S., Kim, and S., Hirata, “Stochastic evaluation of second-order many-body perturbation energies,J. Chem. Phys. 137:204122, 2012.Google Scholar
[309] R. J., Bartlett, “Many-body perturbation-theory and coupled cluster theory for electron correlation in molecules,Ann. Rev. Phys. Chem. 32:359–401, 1981.Google Scholar
[310] R. J., Bartlett and M., Musial, “Coupled-cluster theory in quantum chemistry,Rev. Mod. Phys. 79:291, 2007.Google Scholar
[311] M., Gell-Mann and F., Low, “Bound states in quantum field theory,Phys. Rev. 84:350–354, 1951.Google Scholar
[312] R. D., Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem, Dover Books on Physics, Mineola, NY, 1992.Google Scholar
[313] G. C., Wick, “The evaluation of the collision matrix,Phys. Rev. 80:268–272, 1950.Google Scholar
[314] A., Houriet and A., Kind, “Classification invariante des termes de la matrice-s,Helv. Phys. Acta 22:319, 1949.Google Scholar
[315] J., Goldstone, “Derivation of the Brueckner many-body theory,Proc. Roy. Soc. London, Ser. A 239:267–279, 1957.Google Scholar
[316] W., Kohn and J. M., Luttinger, “Ground-state energy of a many-fermion system,Phys. Rev. 118:41–45, 1960.Google Scholar
[317] L. P., Kadanoff and G., Baym, Quantum Statistical Mechanics, W. A. Benjamin, New York, 1964.Google Scholar
[318] F., Aryasetiawan and S., Biermann, “Generalized Hedin's equations for quantum many-body systems with spin-dependent interactions,Phys. Rev. Lett. 100:116402, 2008.Google Scholar
[319] P. C., Martin and J., Schwinger, “Theory of many-particle systems. I,Phys. Rev. 115:1342– 1373, 1959.Google Scholar
[320] J., Schwinger, “On the Green's functions of quantized fields.1.Proc. Natl. Acad. Sci. USA 37:452–455, 1951.Google Scholar
[321] G.|Baym, “Self-consistent approximations in many-body systems,Phys. Rev. 127:1391– 1401, 1962.
[322] C.-O., Almbladh, in Progress in Nonequilibrium Green's Functions III, Vol. 35 of Journal of Physics Conference Series, edited by M., Bonitz, and A., Filinov, IOP Publishing, Bristol, 2006, pp. 127–144.Google Scholar
[323] L. P., Kadanoff and P. C., Martin, “Hydrodynamic equations and correlation functions (Reprinted from Ann. Phys. 24:419–469, 1963),Ann. Phys. 281:800–852, 2000.
[324] P., Danielewicz, “Quantum-theory of nonequilibrium processes. 1.Ann. Phys. 152:239– 304, 1984.Google Scholar
[325] J., Lindhard, “On the properties of a gas of charged particles,Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. 28:1–57, 1954.Google Scholar
[326] J., Hubbard, “The description of collective motions in terms of many-body perturbation theory,Proc. Roy. Soc. London, Ser. A 240:539–560, 1957.Google Scholar
[327] J. J., Quinn and R. A., Ferrell, “Electron self-energy approach to correlation in a degenerate electron gas,Phys. Rev. 112:812–827, 1958; Phys. Rev. Lett. 1:303, 1958.Google Scholar
[328] R. H., Ritchie, “Interaction of charged particles with a degenerate Fermi–Dirac electron gas,Phys. Rev. 114:644–654, 1959.Google Scholar
[329] J. J., Quinn, “Range of excited electrons in metals,Phys. Rev. 1:1453, 1962.Google Scholar
[330] S. L., Adler, “Theory of range of hot electrons in real metals,Phys. Rev. 130:1654, 1963.Google Scholar
[331] J. J., Quinn, “The range of hot electrons and holes in metals,App. Phys. Lett. 2:167–169, 1963.Google Scholar
[332] E. P., Wigner, “Effects of the electron interaction on the energy levels of electrons in metals,Trans. Faraday Soc. 34:678, 1938.Google Scholar
[333] H., Stoll and A., Savin, Density Functional Methods in Physics, Plenum Press, New York, 1985.Google Scholar
[334] L., Hedin and S., Lundqvist, “Effects of electron–electron and electron–phonon interactions on the one-electron states of solids,Solid State Phys. 23:1, 1969.Google Scholar
[335] M. E., Casida and D. P., Chong, “Physical interpretation and assessment of the Coulomb-hole and screened-exchange approximation for molecules,Phys. Rev. A 40:4837–4848, 1989.Google Scholar
[336] M., Born and W., Heisenberg, “Über den Einfluss der Deformierbarekit der Ionen auf optische und chemische Konstanten. I.Z. Phys. 23:388, 1924.Google Scholar
[337] S., Ismail-Beigi and T. A., Arias, “Locality of the density matrix in metals, semiconductors, and insulators,Phys. Rev. Lett. 82:2127–2130, 1999.Google Scholar
[338] L. X., He and D., Vanderbilt, “Exponential decay properties of Wannier functions and related quantities,Phys. Rev. Lett. 86:5341–5344, 2001.Google Scholar
[339] S. N., Taraskin, D. A., Drabold, and S. R., Elliott, “Spatial decay of the single-particle density matrix in insulators: Analytic results in two and three dimensions,Phys. Rev. Lett. 88:196405–196408, 2002.Google Scholar
[340] S. N., Taraskin, P. A., Fry, X., Zhang, D. A., Drabold, and S. R., Elliott, “Spatial decay of the single-particle density matrix in tight-binding metals: Analytic results in two dimensions,Phys. Rev. B 66:233101, 2002.Google Scholar
[341] L. J., Sham and W., Kohn, “1-particle properties of an inhomogeneous interacting electron gas,Phys. Rev. 145:561–567, 1966.Google Scholar
[342] F., Gygi and A., Baldereschi, “Quasiparticle energies in semiconductors: Self-energy correction to the local-density approximation,Phys. Rev. Lett. 62:2160–2163, 1989.Google Scholar
[343] N. E., Zein, S. Y., Savrasov, and G., Kotliar, “Local self-energy approach for electronic structure calculations,Phys. Rev. Lett. 96:226403, 2006.Google Scholar
[344] H. N., Rojas, R. W., Godby, and R. J., Needs, “Space-time method for ab-initio calculations of self-energies and dielectric response functions of solids,Phys. Rev. Lett. 74:1827–1830, 1995.Google Scholar
[345] M. M., Rieger, L., Steinbeck, I. D., White, H. N., Rojas, and R. W., Godby, “The GW spacetime method for the self-energy of large systems,Comput. Phys. Commun. 117:211–228, 1999.Google Scholar
[346] G., Strinati, H. J., Mattausch, and W., Hanke, “Dynamical aspects of correlation corrections in a covalent crystal,Phys. Rev. B 25:2867–2888, 1982.Google Scholar
[347] F., Aryasetiawan and O., Gunnarsson, “The GW method,Rep. Prog. Phys. 61:237–312, 1998.Google Scholar
[348] F., Bechstedt, M., Fiedler, C., Kress, and R., Del Sole, “Dynamical screening and quasi-particle spectral functions for nonmetals,Phys. Rev. B 49:7357–7362, 1994.Google Scholar
[349] N. E., Dahlen, A., Stan, and R., van Leeuwen, in Progress in Nonequilibrium Green's Functions III, Vol. 35 of Journal of Physics Conference Series, edited by M., Bonitz and A., Filinov, IOP Publishing, Bristol, 2006, pp. 324–339.Google Scholar
[350] A., Stan, N. E., Dahlen, and R., van Leeuwen, “Levels of self-consistency in the GW approximation,J. Chem. Phys. 130:224101, 2009.Google Scholar
[351] B., Holm and U., von Barth, “Fully self-consistent GW self-energy of the electron gas,Phys. Rev. B 57:2108–2117, 1998.Google Scholar
[352] U., von Barth and B., Holm, “Self-consistent GW results for the electron gas: Fixed screened potential W within the random-phase approximation,Phys. Rev. B 54:8411–8419, 1996 [Erratum: Phys. Rev. B 55:10120–10122, 1997].Google Scholar
[353] F., Bruneval, “GW approximation of the many-body problem and changes in the particle number,Phys. Rev. Lett. 103:176403, 2009.Google Scholar
[354] K., Frey, J. C., Idrobo, M. L., Tiago, F., Reboredo, and S., Ögüt, “Quasiparticle gaps and exciton Coulomb energies in Si nanoshells: First-principles calculations,Phys. Rev. B 80:153411, 2009.Google Scholar
[355] C., Massobrio, A., Pasquarello, and R., Car, “First principles study of photoelectron spectra of Cu- n clusters,Phys. Rev. Lett. 75:2104–2107, 1995.Google Scholar
[356] V. I., Anisimov, F., Aryasetiawan, and A. I., Lichtenstein, “First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method,J. Phys. Condens. Matter 9:767–808, 1997.Google Scholar
[357] A., Liebsch, H., Ishida, and G., Bihlmayer, “Coulomb correlations and orbital polarization in the metal–insulator transition of VO2,Phys. Rev. B 71:085109, 2005.Google Scholar
[358] M. A., Korotin, N. A., Skorikov, and V. I., Anisimov, “Variation of orbital symmetry of the localized 3d(1) electron of the V4+ ion upon the metal–insulator transition in VO2,Phys. Met. Metall. 94:17–23, 2002.Google Scholar
[359] A., Continenza, S., Massidda, and M., Posternak, “Self-energy corrections in VO2 within a model GW scheme,Phys. Rev. B 60:15699–15704, 1999.Google Scholar
[360] M., Gatti, F., Bruneval, V., Olevano, and L., Reining, “Understanding correlations in vanadium dioxide from first principles,Phys. Rev. Lett. 99:266402, 2007.Google Scholar
[361] R., Sakuma, T., Miyake, and F., Aryasetiawan, “First-principles study of correlation effects in VO2,Phys. Rev. B 78:075106, 2008.Google Scholar
[362] R., Sakuma, T., Miyake, and F., Aryasetiawan, “Quasiparticle band structure of vanadium dioxide,J. Phys. Condens. Matter 21:474212, 2009.Google Scholar
[363] J. P., Perdew and A., Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,Phys. Rev. B 23:5048–5079, 1981.Google Scholar
[364] D. M., Bylander and L., Kleinman, “Good semiconductor band-gaps with a modified localdensity approximation,Phys. Rev. B 41:7868–7871, 1990.Google Scholar
[365] J., Heyd, G. E., Scuseria, and M., Ernzerhof, “Hybrid functionals based on a screened Coulomb potential (Erratum: J. Chem. Phys. 124:219906, 2006),J. Chem. Phys. 118:8207– 8215, 2003.Google Scholar
[366] J., Vidal, S., Botti, P., Olsson, J.-F., Guillemoles, and L., Reining, “Strong interplay between structure and electronic properties in CuIn(S, Se)(2): A first-principles study,Phys. Rev. Lett. 104:056401, 2010.Google Scholar
[367] A., Schindlmayr, “Violation of particle number conservation in the GW approximation,Phys. Rev. B 56:3528–3531, 1997.Google Scholar
[368] A., Schindlmayr, P., García-González, and R. W., Godby, “Diagrammatic self-energy approximations and the total particle number,Phys. Rev. B 64:235106, 2001.Google Scholar
[369] P., García-González and R. W., Godby, “Self-consistent calculation of total energies of the electron gas using many-body perturbation theory,Phys. Rev. B 63:075112, 2001.Google Scholar
[370] M. M., Rieger and R. W., Godby, “Charge density of semiconductors in the GW approximation,Phys. Rev. B 58:1343–1348, 1998.Google Scholar
[371] V. M., Galitskii and A. B., Migdal, “Application of quantum field theory methods to the many body problem,Soviet Phys. JETP 7:96–104, 1958.Google Scholar
[372] C. O., Almbladh, U., von Barth, and R., van Leeuwen, “Variational total energies from Phiand Psi-derivable theories,Int. J. Mod. Phys. B 13:535–541, 1999.Google Scholar
[373] N. E., Dahlen, R., van Leeuwen, and U., von Barth, “Variational energy functionals of the Green function and of the density tested on molecules,Phys. Rev. A 73:012511, 2006.Google Scholar
[374] M. P., Agnihotri, W., Apel, and W., Weller, “The Luttinger–Ward method applied to the 2D Coulomb gas,Phys. Stat. Sol. B 245:421–427, 2008.Google Scholar
[375] N. E., Dahlen and U., von Barth, “Variational energy functionals tested on atoms,Phys. Rev. B 69:195102, 2004.Google Scholar
[376] F., Furche, “Molecular tests of the random phase approximation to the exchange–correlation energy functional,Phys. Rev. B 64:195120, 2001.Google Scholar
[377] M., Fuchs and X., Gonze, “Accurate density functionals: Approaches using the adiabaticconnection fluctuation–dissipation theorem,Phys. Rev. B 65:235109, 2002.Google Scholar
[378] J., Paier, X., Ren, P., Rinke, G. E., Scuseria, A., Grueneis, G, Kresse, and M., Scheffler, “Assessment of correlation energies based on the random-phase approximation,New J. Phys. 14:053020, 2012.Google Scholar
[379] F., Aryasetiawan, T., Miyake, and K., Terakura, “Total energy method from many-body formulation,Phys. Rev. Lett. 88:166401, 2002.Google Scholar
[380] T., Miyake, F., Aryasetiawan, T., Kotani, M., van Schilfgaarde, M., Usuda, and K., Terakura, “Total energy of solids: An exchange and random-phase approximation correlation study,Phys. Rev. B 66:245103, 2002.Google Scholar
[381] M., Fuchs, K., Burke, Y.-M., Niquet, and X., Gonze, “Comment on ‘Total energy method from many-body formulation,’Phys. Rev. Lett. 90:189701, 2003.Google Scholar
[382] F., Aryasetiawan, T., Miyake, and K., Terakura, “Aryasetiawan, Miyake, and Terakura reply,Phys. Rev. Lett. 90:189702, 2003.Google Scholar
[383] B. I., Lundqvist, “Single-particle spectrum of the degenerate electron gas,Z. Phys. B: Condens. Matter 6:193–205, 1967.Google Scholar
[384] B. I., Lundqvist, “Single-particle spectrum of degenerate electron gas 2. Numerical results for electrons coupled to plasmons,Phys. Kondens. Mater. 6:206, 1967.Google Scholar
[385] H. O., Frota and G. D., Mahan, “Band tails and bandwidth in simple metals,Phys. Rev. B 45:6243–6246, 1992.Google Scholar
[386] A. J., Morris, M., Stankovski, K. T., Delaney, P., Rinke, P., García-González, and R.W., Godby, “Vertex corrections in localized and extended systems,Phys. Rev. B 76:155106, 2007.Google Scholar
[387] R., Maezono, M. D., Towler, Y., Lee, and R. J., Needs, “Quantum Monte Carlo study of sodium,Phys. Rev. B 68:165103, 2003.Google Scholar
[388] I.-W., Lyo and E.W., Plummer, “Quasiparticle band structure of Na and simple metals,Phys. Rev. Lett. 60:1558–1561, 1988.Google Scholar
[389] E., Jensen and E. W., Plummer, “Experimental band structure of Na,Phys. Rev. Lett. 55:1912–1915, 1985.Google Scholar
[390] M., Holzmann, B., Bernu, C., Pierleoni, J., McMinis, D. M., Ceperley, V., Olevano, and L., Delle Site, “Momentum distribution of the homogeneous electron gas,Phys. Rev. Lett. 107:110402, 2011.Google Scholar
[391] M., Vogt, R., Zimmermann, and R. J., Needs, “Spectral moments in the homogeneous electron gas,Phys. Rev. B 69:045113, 2004.Google Scholar
[392] B., Holm, “Total energies from GW calculations,Phys. Rev. Lett. 83:788–791, 1999.Google Scholar
[393] A., Schindlmayr, T. J., Pollehn, and R. W., Godby, “Spectra and total energies from selfconsistent many-body perturbation theory,Phys. Rev. B 58:12684–12690, 1998.Google Scholar
[394] P., Rinke, K., Delaney, P., Garcia-Gonzalez, and R.W., Godby, “Image states in metal clusters,Phys. Rev. A 70:063201, 2004.Google Scholar
[395] P., García-González and R. W., Godby, “Many-body GW calculations of ground-state properties: Quasi-2D electron systems and van der Waals forces,Phys. Rev. Lett. 88:056406, 2002.Google Scholar
[396] P., Romaniello, S., Guyot, and L., Reining, “The self-energy beyond GW: Local and nonlocal vertex corrections,J. Chem. Phys. 131:154111, 2009.Google Scholar
[397] The LDA+DMFT Approach to Strongly Correlated Materials: Lecture Notes of the Autumn School 2011, Forschungszentrum Juelich, edited by E., Pavarini, E., Koch, D., Vollhardt, and A., Lichtenstein, Forschungszentrum Juelich GmbH and Institute for Advanced Simulations, Juelich, Germany, 2011.
[398] W., Nelson, P., Bokes, P., Rinke, and R.W., Godby, “Self-interaction in Green's-function theory of the hydrogen atom,Phys. Rev. A 75:032505, 2007.Google Scholar
[399] J. J., Fernandez, “GW calculations in an exactly solvable model system at different dilution regimes: The problem of the self-interaction in the correlation part,Phys. Rev. A 79:052513, 2009.Google Scholar
[400] F., Aryasetiawan, R., Sakuma, and K., Karlsson, “GW approximation with self-screening correction,Phys. Rev. B 85:035106, 2012.Google Scholar
[401] C., Verdozzi, R. W., Godby, and S., Holloway, “Evaluation of GW approximations for the self-energy of a Hubbard cluster,Phys. Rev. Lett. 74:2327–2330, 1995.Google Scholar
[402] T. J., Pollehn, A, Schindlmayr, and R. W., Godby, “Assessment of the GW approximation using Hubbard chains,J. Phys. Condens. Matter 10:1273–1283, 1998.Google Scholar
[403] X., Wang, C. D., Spataru, M. S., Hybertsen, and A. J., Millis, “Electronic correlation in nanoscale junctions: Comparison of the GW approximation to a numerically exact solution of the single-impurity Anderson model,Phys. Rev. B 77:045119, 2008.Google Scholar
[404] F., Caruso, D. R., Rohr, M., Hellgren, X., Ren, P., Rinke, A., Rubio, and M., Scheffler, “Bond breaking and bond formation: How electron correlation is captured in many-body perturbation theory and density-functional theory,Phys. Rev. Lett. 110:146403, 2013.Google Scholar
[405] L., Wolniewicz, “Relativistic energies of the ground state of the hydrogen molecule,J. Chem. Phys. 99(3):1851–1868, 1993.Google Scholar
[406] D. C., Langreth, “Singularities in X-ray spectra of metals,Phys. Rev. B 1:471, 1970.Google Scholar
[407] B. I., Lundqvist, “Characteristic structure in core electron spectra of metals due to electron– plasmon coupling,Phys. Kondens. Mater. 9:236, 1969.Google Scholar
[408] W. G., Aulbur, L., Jonsson, and J. W., Wilkins, “Quasiparticle calculations in solids,Solid State Phys. 54:1–218, 2000.Google Scholar
[409] J. J., Quinn and R. A., Ferrell, “Electron self-energy approach to correlation in a degenerate electron gas,Phys. Rev. 112:812–827, 1958.Google Scholar
[410] D. F., DuBois, “Electron interactions: Part I. Field theory of a degenerate electron gas,Ann. Phys. 7:174–237, 1959.Google Scholar
[411] D. F., DuBois, “Electron interactions: Part II. Properties of a dense electron gas,Ann. Phys. 8:24–77, 1959.Google Scholar
[412] B. I., Lundqvist, “Single-particle spectrum of degenerate electron gas 3. Numerical results in random phase approximation,Phys. Kondens. Mater. 7:117, 1968.Google Scholar
[413] T. M., Rice, “Effects of electron–electron interaction on properties of metals,Ann. Phys. 31:100, 1965.Google Scholar
[414] G. D., Mahan and B. E., Sernelius, “Electron–electron interactions and the bandwidth of metals,Phys. Rev. Lett. 62:2718–2720, 1989.Google Scholar
[415] H. O., Frota and G. D., Mahan, “Band tails and bandwidth in simple metals,Phys. Rev. B 45:6243–6246, 1992.Google Scholar
[416] G., Strinati, H. J., Mattausch, and W., Hanke, “Dynamical correlation effects on the quasiparticle Bloch states of a covalent crystal,Phys. Rev. Lett. 45:290–294, 1980.Google Scholar
[417] G., Strinati, H. J., Mattausch, and W., Hanke, “Dynamical aspects of correlation corrections in a covalent crystal,Phys. Rev. B 25:2867–2888, 1982.Google Scholar
[418] M. S., Hybertsen and S. G., Louie, “First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators,Phys. Rev. Lett. 55:1418–1421, 1985.Google Scholar
[419] M. S., Hybertsen and S. G., Louie, “Electron correlation and the band gap in ionic crystals,Phys. Rev. B 32:7005–7008, 1985.Google Scholar
[420] M. S., Hybertsen and S. G., Louie, “Erratum: Electron correlation and the band gap in ionic crystals,Phys. Rev. B 35:9308, 1987.Google Scholar
[421] M. S., Hybertsen and S. G., Louie, “Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies,Phys. Rev. B 34:5390–5413, 1986.Google Scholar
[422] R. W., Godby, M., Schlüter, and L. J., Sham, “Accurate exchange–correlation potential for silicon and its discontinuity on addition of an electron,Phys. Rev. Lett. 56:2415–2418, 1986.Google Scholar
[423] R. W., Godby, M., Schlüter, and L. J., Sham, “Quasiparticle energies in GaAs and AlAs,Phys. Rev. B 35:4170–4171, 1987.Google Scholar
[424] R. W., Godby, M., Schlüter, and L. J., Sham, “Trends in self-energy operators and their corresponding exchange–correlation potentials,Phys. Rev. B 36:6497–6500, 1987.Google Scholar
[425] L., Hedin, B. I., Lundqvist, and S., Lundqvist, “New structure in single-particle spectrum of an electron gas,Solid State Commun. 5:237–239, 1967.Google Scholar
[426] H., Ness, L. K., Dash, M., Stankovski, and R.W., Godby, “GW approximations and vertex corrections on the Keldysh time-loop contour: Application for model systems at equilibrium,Phys. Rev. B 84:195114, 2011.Google Scholar
[427] B., Farid, “Self-consistent density-functional approach to the correlated ground states and an unrestricted many-body perturbation theory,Phil. Mag. B 76:145–192, 1996.Google Scholar
[428] L., Hedin, “Electron correlation – keeping close to an orbital description,Int. J. Quantum Chem. 56:445–452, 1995.Google Scholar
[429] J.-L., Li, G.-M., Rignanese, E. K., Chang, X., Blase, and S. G., Louie, “GW study of the metal– insulator transition of bcc hydrogen,Phys. Rev. B 66:035102, 2002.Google Scholar
[430] P., Rinke, A., Qteish, J., Neugebauer, C., Freysoldt, and M., Scheffler, “Combining GW calculations with exact-exchange density-functional theory: An analysis of valence-band photoemission for compound semiconductors,New J. Phys. 7:126, 2005.Google Scholar
[431] E. L., Shirley and R. M., Martin, “GW quasiparticle calculations in atoms,Phys. Rev. B 47:15404–15412, 1993.Google Scholar
[432] A. D., Becke, “A new mixing of Hartree–Fock and local density-functional theories,J. Chem. Phys. 98:1372–1377, 1993.Google Scholar
[433] J., Heyd, G. E., Scuseria, and M., Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,J. Chem. Phys. 118:8207–8215, 2003.Google Scholar
[434] F., Fuchs, J., Furthmueller, F., Bechstedt, M., Shishkin, and G., Kresse, “Quasiparticle band structure based on a generalized Kohn–Sham scheme,Phys. Rev. B 76:115109, 2007.Google Scholar
[435] V. I., Anisimov, I. V., Solovyev, M. A., Korotin, M. T., Czyzyk, and G. A., Sawatzky, “Density functional theory and NiO photoemission spectra,Phys. Rev. B 48:16929–16934, 1993.Google Scholar
[436] T., Miyake, P., Zhang, M. L., Cohen, and S. G., Louie, “Quasiparticle energy of semicore d electrons in ZnS: Combined LDA + U and GW approach,Phys. Rev. B 74:245213, 2006.Google Scholar
[437] E., Kioupakis, P., Zhang, M. L., Cohen, and S. G., Louie, “GW quasiparticle corrections to the LDA+U and GGA+U electronic structure of bcc hydrogen,Phys. Rev. B 77:155114, 2008.Google Scholar
[438] S., Kobayashi, Y., Nohara, S., Yamamoto, and T., Fujiwara, “GW approximation with LSDA+U method and applications to NiO, MnO, and V2O3,Phys. Rev. B 78:155112, 2008.Google Scholar
[439] H., Jiang, R. I., Gomez-Abal, P., Rinke, and M., Scheffler, “Localized and itinerant states in lanthanide oxides united by GW @ LDA+U,Phys. Rev. Lett. 102:126403, 2009.Google Scholar
[440] B.I., Lundqvist, Phys. Kondens. Mater. 6:206, 1967.
[441] R. W., Godby and R. J., Needs, “Metal–insulator transition in Kohn–Sham theory and quasiparticle theory,Phys. Rev. Lett. 62:1169–1172, 1989.Google Scholar
[442] R., Shaltaf, G. M., Rignanese, X., Gonze, F., Giustino, and A., Pasquarello, “Band offsets at the Si/SiO2 interface from many-body perturbation theory,Phys. Rev. Lett. 100:186401, 2008.Google Scholar
[443] J. A., Soininen, J. J., Rehr, and E. L., Shirley, “Electron self-energy calculation using a general multi-pole approximation,J. Phys. Condens. Matter 15:2573–2586, 2003.Google Scholar
[444] J. A., Soininen, J. J., Rehr, and E. L., Shirley, “Multi-pole representation of the dielectric matrix,Physica Scripta T115:243–245, 2005.Google Scholar
[445] Z. H., Levine and S. G., Louie, “New model dielectric function and exchange–correlation potential for semiconductors and insulators,Phys. Rev. B 25:6310–6316, 1982.Google Scholar
[446] M. S., Hybertsen and S. G., Louie, “Model dielectric matrices for quasiparticle self-energy calculations,Phys. Rev. B 37:2733–2736, 1988.Google Scholar
[447] F., Bechstedt, R., Delsole, G., Cappellini, and L., Reining, “An efficient method for calculating quasi-particle energies in semiconductors,Solid State Commun. 84:765–770, 1992.Google Scholar
[448] W. E., Pickett and C. S., Wang, “Local-density approximation for dynamical correlation corrections to single-particle excitations in insulators,Phys. Rev. B 30:4719–4733, 1984.Google Scholar
[449] S., Massidda, A., Continenza, M., Posternak, and A., Baldereschi, “Band-structure picture for MnO reexplored: A model GW calculation,Phys. Rev. Lett. 74:2323–2326, 1995.Google Scholar
[450] S., Massidda, A., Continenza, M., Posternak, and A., Baldereschi, “Quasiparticle energy bands of transition-metal oxides within a model GW scheme,Phys. Rev. B 55:13494–13502, 1997.Google Scholar
[451] V., Fiorentini and A., Baldereschi, “Dielectric scaling of the self-energy scissor operator in semiconductors and insulators,Phys. Rev. B 51:17196–17198, 1995.Google Scholar
[452] J. C., Phillips, “Generalized Koopmans' theorem,Phys. Rev. 123:420–424, 1961.Google Scholar
[453] G., Arbman and U., von Barth, “Correlated potentials for simple metals: Aluminium,J. Phys. F: Met. Phys. 5:1155, 1975.Google Scholar
[454] M. L., Tiago, S., Ismail-Beigi, and S. G., Louie, “Effect of semicore orbitals on the electronic band gaps of Si, Ge, and GaAs within the GW approximation,Phys. Rev. B 69:125212, 2004.Google Scholar
[455] R., Gomez-Abal, X., Li, M., Scheffler, and C., Ambrosch-Draxl, “Influence of the core– valence interaction and of the pseudopotential approximation on the electron self-energy in semiconductors,Phys. Rev. Lett. 101:106404, 2008.Google Scholar
[456] M., Rohlfing, P., Krüger, and J., Pollmann, “Quasiparticle band structure of CdS,Phys. Rev. Lett. 75:3489–3492, 1995.Google Scholar
[457] P., Rinke, A., Qteish, J., Neugebauer, C., Freysoldt, and M., Scheffler, “Combining GW calculations with exact-exchange density-functional theory: An analysis of valence-band photoemission for compound semiconductors,New J. Phys. 7:126, 2005.Google Scholar
[458] A., Marini, G., Onida, and R., Del Sole, “Quasiparticle electronic structure of copper in the GW approximation,Phys. Rev. Lett. 88:016403, 2001.Google Scholar
[459] F., Bruneval, N., Vast, L., Reining, M., Izquierdo, F., Sirotti, and N., Barrett, “Exchange and correlation effects in electronic excitations of Cu2O,Phys. Rev. Lett. 97:267601, 2006.Google Scholar
[460] W., Muller and W., Meyer, “Ground-state properties of alkali dimers and their cations (including the elements Li, Na, and K) from ab initio calculations with effective core polarization potentials,J. Chem. Phys. 80:3311–3320, 1984.Google Scholar
[461] W., Muller, J., Flesch, and W., Meyer, “Treatment of intershell correlation-effects in ab initio calculations by use of core polarization potentials – method and application to alkali and alkaline-earth atoms,J. Chem. Phys. 80:3297–3310, 1984.Google Scholar
[462] E. L., Shirley, X., Zhu, and S. G., Louie, “Core polarization in semiconductors: Effects on quasiparticle energies,Phys. Rev. Lett. 69:2955–2958, 1992.Google Scholar
[463] E. L., Shirley and R. M., Martin, “Many-body core-valence partitioning,Phys. Rev. B 47:15413–15427, 1993.Google Scholar
[464] E., Luppi, H.-C., Weissker, S., Bottaro, F., Sottile, V., Veniard, L., Reining, and G., Onida, “Accuracy of the pseudopotential approximation in ab initio theoretical spectroscopies,Phys. Rev. B 78:245124, 2008.Google Scholar
[465] P. E., Blöchl, “Projector augmented-wave method,Phys. Rev. B 50:17953–17979, 1994.Google Scholar
[466] G., Kresse and D., Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,Phys. Rev. B 59:1758–1775, 1999.Google Scholar
[467] B., Arnaud and M., Alouani, “All-electron projector-augmented-wave GW approximation: Application to the electronic properties of semiconductors,Phys. Rev. B 62:4464–4476, 2000.Google Scholar
[468] M., Gajdoš, K., Hummer, G., Kresse, J., Furthmüller, and F., Bechstedt, “Linear optical properties in the projector-augmented wave methodology,Phys. Rev. B 73:045112, 2006.Google Scholar
[469] M., Shishkin and G., Kresse, “Implementation and performance of the frequency-dependent GW method within the PAW framework,Phys. Rev. B 74:035101, 2006.Google Scholar
[470] M., Gatti, G., Panaccione, and L., Reining, “Effects of low-energy excitations on spectral properties at higher binding energy: The metal–insulator transition of VO)2,Phys. Rev. Lett. 114:116402, 2015.Google Scholar
[471] M., van Schilfgaarde, T., Kotani, and S. V., Faleev, “Adequacy of approximations in GW theory,Phys. Rev. B 74:245125, 2006.Google Scholar
[472] Y. M., Niquet and X., Gonze, “Band-gap energy in the random-phase approximation to density-functional theory,Phys. Rev. B 70:245115, 2004.Google Scholar
[473] G. D., Mahan, Many-Particle Physics, Plenum Press, New York, 1990.Google Scholar
[474] M., Marsili, O., Pulci, F., Bechstedt, and R., Del Sole, “Electronic structure of the C(111) surface: Solution by self-consistent many-body calculations,Phys. Rev. B 72:115415, 2005.Google Scholar
[475] F., Bruneval, N., Vast, and L., Reining, “Effect of self-consistency on quasiparticles in solids,Phys. Rev. B 74:045102, 2006.Google Scholar
[476] R., Sakuma, T., Miyake, and F., Aryasetiawan, “Effective quasiparticle Hamiltonian based on Löwdin's orthogonalization,Phys. Rev. B 80:235128, 2009.Google Scholar
[477] M., Shishkin and G., Kresse, “Self-consistent GW calculations for semiconductors and insulators,Phys. Rev. B 75:235102, 2007.Google Scholar
[478] F., Caruso, P., Rinke, X., Ren, M., Scheffler, and A., Rubio, “Unified description of ground and excited states of finite systems: The self-consistent GW approach,Phys. Rev. B 86:081102, 2012.Google Scholar
[479] N., Marom, F., Caruso, X., Ren, O. T., Hofmann, T., Körzdörfer, J. R., Chelikowsky, A., Rubio, M., Scheffler, and P., Rinke, “Benchmark of GW methods for azabenzenes,Phys. Rev. B 86:245127, 2012.Google Scholar
[480] H. J., de Groot, P. A., Bobbert, and W., van Haeringen, “Self-consistent GW for a quasi-onedimensional semiconductor,Phys. Rev. B 52:11000–11007, 1995.Google Scholar
[481] W.-D., Schöne and A. G., Eguiluz, “Self-consistent calculations of quasiparticle states in metals and semiconductors,Phys. Rev. Lett. 81:1662–1665, 1998.Google Scholar
[482] G., Lani, P., Romaniello, and L., Reining, “Approximations for many-body Green's functions: Insights from the fundamental equations,New J. Phys.14, 2012.Google Scholar
[483] J. A., Berger, P., Romaniello, F., Tandetzky, B. S., Mendoza, C., Brouder, and L., Reining, “Solution to the many-body problem in one point,New J. Phys. 16:113025, 2014.Google Scholar
[484] F., Aryasetiawan, “Self-energy of ferromagnetic nickel in the GW approximation,Phys. Rev. B 46:13051–13064, 1992.Google Scholar
[485] Y., Dewulf, D., Van Neck, and M., Waroquier, “Discrete approach to self-consistent GW calculations in an electron gas,Phys. Rev. B 71:245122, 2005.Google Scholar
[486] B., Farid, R., Daling, D., Lenstra, and W., van Haeringen, “GW approach to the calculation of electron self-energies in semiconductors,Phys. Rev. B 38:7530–7534, 1988.Google Scholar
[487] S., Lebègue, B., Arnaud, M., Alouani, and P. E., Bloechl, “Implementation of an all-electron GW approximation based on the projector augmented wave method without plasmon pole approximation: Application to Si, SiC, AlAs, InAs, NaH, and KH,Phys. Rev. B 67:155208, 2003.Google Scholar
[488] H. N., Rojas, R. W., Godby, and R. J., Needs, “Space-time method for ab initio calculations of self-energies and dielectric response functions of solids,Phys. Rev. Lett. 74:1827–1830, 1995.Google Scholar
[489] O. W., Day, D. W., Smith, and C., Garrod, “Generalization of Hartree–Fock one-particle potential,Int. J. Quant. Chem. 8:501–509, 1974.Google Scholar
[490] M. M., Morrell, R.G., Parr, and M., Levy, “Calculation of ionization-potentials from density matrices and natural functions, and long-range behavior of natural orbitals and electrondensity,J. Chem. Phys. 62(2):549–554, 1975.Google Scholar
[491] H., Eshuis, J. E., Bates, and F., Furche, “Electron correlation methods based on the random phase approximation,Theor. Chem. Acc. 131(1):1084, 2012.Google Scholar
[492] H. F., Wilson, F., Gygi, and G., Galli, “Efficient iterative method for calculations of dielectric matrices,Phys. Rev. B 78:113303, 2008.Google Scholar
[493] M., Govoni and G., Galli, “Large scale GWcalculations,J. Chem. Theory Comput. 11:2680– 2696, 2015.Google Scholar
[494] P., Umari, G., Stenuit, and S., Baroni, “Optimal representation of the polarization propagator for large-scale GW calculations,Phys. Rev. B 79:201104, 2009.Google Scholar
[495] P., Umari, G., Stenuit, and S., Baroni, “GW quasiparticle spectra from occupied states only,Phys. Rev. B 81:115104, 2010.Google Scholar
[496] F., Giustino, M. L., Cohen, and S. G., Louie, “GW method with the self-consistent Sternheimer equation,Phys. Rev. B 81:115105, 2010.Google Scholar
[497] O. K., Andersen, “Linear methods in band theory,Phys. Rev. B 12:3060–3083, 1975.Google Scholar
[498] F., Aryasetiawan and O., Gunnarsson, “Linear-muffin-tin-orbital method with multiple orbitals per L channel,Phys. Rev. B 49:7219–7232, 1994.Google Scholar
[499] F., Aryasetiawan and O., Gunnarsson, “Electronic structure of NiO in the GW approximation,Phys. Rev. Lett. 74:3221–3224, 1995.Google Scholar
[500] M., Rohlfing, P., Krüger, and J., Pollmann, “Quasiparticle band-structure calculations for C, Si, Ge, GaAs, and SiC using Gaussian-orbital basis sets,Phys. Rev. B 48:17791–17805, 1993.Google Scholar
[501] X., Blase, C., Attaccalite, and V., Olevano, “First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications,Phys. Rev. B 83:115103, 2011.Google Scholar
[502] N., Marzari and D., Vanderbilt, “Maximally localized generalized Wannier functions for composite energy bands,Phys. Rev. B 56:12847–12865, 1997.Google Scholar
[503] J. M., Soler, E., Artacho, J. D., Gale, A., Garcia, J., Junquera, P., Ordejon, and D., Sanchez-Portal, “The SIESTA method for ab initio order-N materials simulation,J. Phys. Condens. Matter 14:2745–2779, 2002.Google Scholar
[504] V., Blum, R., Gehrke, F., Hanke, P., Havu, V., Havu, X., Ren, K., Reuter, and M., Scheffler, “Ab initio molecular simulations with numeric atom-centered orbitals,Comput. Phys. Commun. 180:2175–2196, 2009.Google Scholar
[505] C., Friedrich, S., Blügel, and A., Schindlmayr, “Efficient implementation of the GW approximation within the all-electron FLAPW method,Phys. Rev. B 81:125102, 2010.Google Scholar
[506] M., Weinert, E., Wimmer, and A. J., Freeman, “Total-energy all-electron density functional method for bulk solids and surfaces,Phys. Rev. B 26:4571, 1982.Google Scholar
[507] F., Aryasetiawan and O., Gunnarsson, “Product-basis method for calculating dielectric matrices,Phys. Rev. B 49:16214–16222, 1994.Google Scholar
[508] G., Onida, L., Reining, R.W., Godby, R., Del Sole, and W., Andreoni, “Ab initio calculations of the quasiparticle and absorption spectra of clusters: The sodium tetramer,Phys. Rev. Lett. 75:818–821, 1995.Google Scholar
[509] S., Ismail-Beigi, “Truncation of periodic image interactions for confined systems,Phys. Rev. B 73:233103, 2006.Google Scholar
[510] O., Pulci, G., Onida, R., Del Sole, and L., Reining, “Ab initio calculation of self-energy effects on optical properties of GaAs(110),Phys. Rev. Lett. 81:5374–5377, 1998.Google Scholar
[511] A., Schindlmayr, “Analytic evaluation of the electronic self-energy in the GW approximation for two electrons on a sphere,Phys. Rev. B 87:075104, 2013.Google Scholar
[512] J., Klimes, M., Kaltak, and G., Kresse, “Predictive GW calculations using plane waves and pseudopotentials,Phys. Rev. B 90:075125, 2014.Google Scholar
[513] K., Delaney, P., Garcia-Gonzalez, A., Rubio, P., Rinke, and R. W., Godby, “Comment on ‘Band-gap problem in semiconductors revisited: Effects of core states and many-body self-consistency,’Phys. Rev. Lett. 93:249701, 2004.Google Scholar
[514] J. A., Berger, L., Reining, and F., Sottile, “Ab initio calculations of electronic excitations: Collapsing spectral sums,Phys. Rev. B 82:041103(R), 2010.Google Scholar
[515] E., Prodan and W., Kohn, “Nearsightedness of electronic matter,Proc. Natl. Acad. Sci. USA 102:11635–11638, 2005.Google Scholar
[516] J. C., Phillips and L., Kleinman, “Crystal potential and energy bands of semiconductors. IV. Exchange and correlation,Phys. Rev. 128:2098–2102, 1962.Google Scholar
[517] W., Brinkman and B., Goodman, “Crystal potential and correlation for energy bands in valence semiconductors,Phys. Rev. 149:597–613, 1966.Google Scholar
[518] E. O., Kane, “Comparison of screened exchange with the Slater approximation for silicon,Phys. Rev. B 5:1493–1499, 1972.Google Scholar
[519] W., Ku and A. G., Eguiluz, “Band-gap problem in semiconductors revisited: Effects of core states and many-body self-consistency,Phys. Rev. Lett. 89:126401, 2002.Google Scholar
[520] R., Gomez-Abal, X., Li, M., Scheffler, and C., Ambrosch-Draxl, “Influence of the core– valence interaction and of the pseudopotential approximation on the electron self-energy in semiconductors,Phys. Rev. Lett. 101:106404, 2008.Google Scholar
[521] M., Guzzo, G., Lani, F., Sottile, P., Romaniello, M., Gatti, J. J., Kas, J. J., Rehr, M. G., Silly, F., Sirotti, and L., Reining, “Valence electron photoemission spectrum of semiconductors: Ab initio description of multiple satellites,Phys. Rev. Lett. 107:166401, 2011.Google Scholar
[522] F. J., Himpsel, P., Heimann, and D. E., Eastman, “Surface-states on Si(111)-(2x1),Phys. Rev. B 24:2003–2008, 1981.Google Scholar
[523] A. L., Wachs, T., Miller, T. C., Hsieh, A. P., Shapiro, and T.-C., Chiang, “Angle-resolved photoemission studies of Ge(111)-c(2X1), Ge(111)-(1X1)H, Si(111)-(7X7), and Si(100)- (2X1),Phys. Rev. B 32:2326–2333, 1985.Google Scholar
[524] D. H., Rich, T., Miller, G. E., Franklin, and T. C., Chiang, “Sb-induced bulk band transitions in Si(111) and Si(001) observed in synchrotron photoemission-studies,Phys. Rev. B 39:1438– 1441, 1989.Google Scholar
[525] D. H., Rich, G. E., Franklin, F. M., Leibsle, T., Miller, and T.-C., Chiang, “Synchrotron photoemission studies of the Sb-passivated Si surfaces: Degenerate doping and bulk band dispersions,Phys. Rev. B 40:11804–11816, 1989.Google Scholar
[526] C., Bowles, A. S., Kheifets, V. A., Sashin, M., Vos, and E., Weigold, “The direct measurement of spectral momentum densities of silicon with high energy (e, 2e) spectroscopy,J. Electron Spectrosc. Relat. Phenom. 141:95–104, 2004.Google Scholar
[527] M., Vos, C., Bowles, A. S., Kheifets, and M. R., Went, “Band structure of silicon as measured in extended momentum space,Phys. Rev. B 73:085207, 2006.Google Scholar
[528] J. E., Ortega and F. J., Himpsel, “Inverse-photoemission study of Ge(100), Si(100), and GaAs(100) – bulk bands and surface-states,Phys. Rev. B 47:2130–2137, 1993.Google Scholar
[529] D., Straub, L., Ley, and F. J., Himpsel, “Inverse-photoemission study of unoccupied electronic states in Ge and Si – bulk energy-bands,Phys. Rev. B 33:2607–2614, 1986.Google Scholar
[530] F., Ma, S., Zhang, and H., Krakauer, “Excited state calculations in solids by auxiliary-field quantum Monte Carlo,New J. Phys. 15:093017, 2013.Google Scholar
[531] A. J., Williamson, R. Q., Hood, R. J., Needs, and G., Rajagopal, “Diffusion quantum Monte Carlo calculations of the excited states of silicon,Phys. Rev. B 57:12140–12144, 1998.Google Scholar
[532] J. J., Yeh and I., Lindau, “Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103,Atom. Data Nucl. Data Tab. 32(1):1–155, 1985.Google Scholar
[533] P., Rinke, M., Scheffler, A., Qteish, M., Winkelnkemper, D., Bimberg, and J., Neugebauer, “Band gap and band parameters of InN and GaN from quasiparticle energy calculations based on exact-exchange density-functional theory,Appl. Phys. Lett. 89:161919, 2006.Google Scholar
[534] P., van Gelderen, P. A., Bobbert, P. J., Kelly, and G., Brocks, “Parameter-free quasiparticle calculations for YH3,Phys. Rev. Lett. 85:2989–2992, 2000.Google Scholar
[535] T., Miyake, F., Aryasetiawan, H., Kino, and K., Terakura, “GW quasiparticle band structure of YH3,Phys. Rev. B 61:16491–16496, 2000.Google Scholar
[536] P., van Gelderen, P. A., Bobbert, P. J., Kelly, G., Brocks, and R., Tolboom, “Parameterfree calculation of single-particle electronic excitations in YH3,Phys. Rev. B 66:075104, 2002.Google Scholar
[537] J. A., Alford, M. Y., Chou, E. K., Chang, and S. G., Louie, “First-principles studies of quasiparticle band structures of cubic YH3 and LaH3,Phys. Rev. B 67:125110, 2003.Google Scholar
[538] K. K., Ng, F. C., Zhang, V. I., Anisimov, and T. M., Rice, “Electronic structure of lanthanum hydrides with switchable optical properties,Phys. Rev. Lett. 78:1311–1314, 1997.Google Scholar
[539] R., Eder, H. F., Pen, and G. A., Sawatzky, “Kondo-lattice-like effects of hydrogen in transition metals,Phys. Rev. B 56:10115–10120, 1997.Google Scholar
[540] A., Svane, N. E., Christensen, I., Gorczyca, M., van Schilfgaarde, A. N., Chantis, and T., Kotani, “Quasiparticle self-consistent GW theory of III–V nitride semiconductors: Bands, gap bowing, and effective masses,Phys. Rev. B 82:115102, 2010.Google Scholar
[541] A., Svane, N. E., Christensen, M., Cardona, A. N., Chantis, M., van Schilfgaarde, and T., Kotani, “Quasiparticle self-consistent GW calculations for PbS, PbSe, and PbTe: Band structure and pressure coefficients,Phys. Rev. B 81:245120, 2010.Google Scholar
[542] A. N., Chantis, M., van Schilfgaarde, and T., Kotani, “Ab initio prediction of conduction band spin splitting in zinc blende semiconductors,Phys. Rev. Lett. 96:086405, 2006.Google Scholar
[543] M., Oshikiri, F., Aryasetiawan, Y., Imanaka, and G., Kido, “Quasiparticle effective-mass theory in semiconductors,Phys. Rev. B 66:125204, 2002.Google Scholar
[544] P. E., Trevisanutto, C., Giorgetti, L., Reining, Massimo, Ladisa, and V., Olevano, “Ab initio GW many-body effects in graphene,Phys. Rev. Lett. 101:226405, 2008.Google Scholar
[545] D. A., Siegel, C.-H., Park, C., Hwang, J., Deslippe, A. V., Fedorov, S. G., Louie, and A., Lanzara, “Many-body interactions in quasi-freestanding graphene,Proc. Natl. Acad. Sci. USA 108:11365–11369, 2011.Google Scholar
[546] Y. B., Zhang, Y. W., Tan, H. L., Stormer, and P., Kim, “Experimental observation of the quantum Hall effect and Berry's phase in graphene,Nature 438:201–204, 2005.Google Scholar
[547] A., Marini, R., Del Sole, and G., Onida, “First-principles calculation of the plasmon resonance and of the reflectance spectrum of silver in the GWapproximation,Phys. Rev. B 66:115101, 2002.Google Scholar
[548] R., Shaltaf, G.-M., Rignanese, X., Gonze, F., Giustino, and A., Pasquarello, “Band offsets at the Si/SiO2 interface from many-body perturbation theory,Phys. Rev. Lett. 100:186401, 2008.Google Scholar
[549] J. P. A., Charlesworth, R.W., Godby, and R. J., Needs, “First-principles calculations of manybody band-gap narrowing at an Al/GaAs(110) interface,Phys. Rev. Lett. 70:1685–1688, 1993.Google Scholar
[550] P. M., Echenique, J. M., Pitarke, E. V., Chulkov, and A., Rubio, “Theory of inelastic lifetimes of low-energy electrons in metals,Chem. Phys. 251:1–35, 2000.Google Scholar
[551] W.-D., Schöne, “Theoretical determination of electronic lifetimes in metals,J. Progr. Surf. Sci. 82:161–192, 2007.Google Scholar
[552] A., Gerlach, K., Berge, A., Goldmann, I., Campillo, A., Rubio, J. M., Pitarke, and P. M., Echenique, “Lifetime of d holes at Cu surfaces: Theory and experiment,Phys. Rev. B 64:085423, 2001.Google Scholar
[553] X., Zubizarreta, V.M., Silkin, and E. V., Chulkov, “First-principles quasiparticle damping rates in bulk lead,Phys. Rev. B 84:115144, 2011.Google Scholar
[554] V. P., Zhukov, F., Aryasetiawan, E. V., Chulkov, and P.M., Echenique, “Lifetimes of quasiparticle excitations in 4d transition metals: Scattering theory and LMTO-RPA-GW approaches,Phys. Rev. B 65:115116, 2002.Google Scholar
[555] M., Springer, F., Aryasetiawan, and K., Karlsson, “First-principles T-matrix theory with application to the 6 eV satellite in Ni,Phys. Rev. Lett. 80:2389–2392, 1998.Google Scholar
[556] C.-H., Park, F., Giustino, C. D., Spataru, M. L., Cohen, and S. G., Louie, “First-principles study of electron linewidths in graphene,Phys. Rev. Lett. 102:076803, 2009.Google Scholar
[557] E. V., Chulkov, A. G., Borisov, J. P., Gauyacq, D., Sanchez-Portal, V. M., Silkin, V. P., Zhukov, and P. M., Echenique, “Electronic excitations in metals and at metal surfaces,Chem. Rev. 106:4160–4206, 2006.Google Scholar
[558] T., Kotani and M., van Schilfgaarde, “Impact ionization rates for Si, GaAs, InAs, ZnS, and GaN in the GW approximation,Phys. Rev. B 81:125201, 2010.Google Scholar
[559] P., Gori, F., Ronci, S., Colonna, A., Cricenti, O., Pulci, and G., Le Lay, “First-principles calculations and bias-dependent STM measurements at the alpha-Sn/Ge(111) surface,Europhys. Lett. 85:66001, 2009.Google Scholar
[560] L., Reining and R., Del Sole, “Screening properties of surface states at Si(111) 2x1,Phys. Rev. B 38:12768–12771, 1988.Google Scholar
[561] J., van den Brink and G. A., Sawatzky, “Non-conventional screening of the Coulomb interaction in low-dimensional and finite-size systems,Europhys. Lett. 50:447–453, 2000.Google Scholar
[562] J., Deslippe, M., Dipoppa, D., Prendergast, M. V. O., Moutinho, R. B., Capaz, and S. G., Louie, “Electron–hole interaction in carbon nanotubes: Novel screening and exciton excitation spectra,Nano. Lett. 9:1330–1334, 2009.Google Scholar
[563] F., Bruneval, “Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies,J. Chem. Phys. 136:194107, 2012.Google Scholar
[564] L., Wirtz, A., Marini, and A., Rubio, “Excitons in boron nitride nanotubes: Dimensionality effects,Phys. Rev. Lett. 96:12604, 2006.Google Scholar
[565] M., Rohlfing and S. G., Louie, “Electron–hole excitations and optical spectra from first principles,Phys. Rev. B 62:4927–4944, 2000.Google Scholar
[566] P., Mori-Sánchez, A. J., Cohen, and W., Yang, “Localization and delocalization errors in density functional theory and implications for band-gap prediction,Phys. Rev. Lett. 100:146401, 2008.Google Scholar
[567] A. J., Cohen, P., Mori-Sanchez, and W., Yang, “Insights into current limitations of density functional theory,Science 321:792–794, 2008.Google Scholar
[568] R. W., Godby and I. D., White, “Density-relaxation part of the self-energy,Phys. Rev. Lett. 80:3161–3161, 1998.Google Scholar
[569] F. R., Vukajlovic, E. L., Shirley, and R. M., Martin, “Single-body methods in 3d transitionmetal atoms,Phys. Rev. B 43:3994–4001, 1991.Google Scholar
[570] J. L., Martins, J., Buttet, and R., Car, “Electronic and structural properties of sodium clusters,Phys. Rev. B 31:1804–1816, 1985.Google Scholar
[571] S., Saito, S. B., Zhang, S. G., Louie, and M. L., Cohen, “Quasiparticle energies in small metal clusters,Phys. Rev. B 40:3643–3646, 1989.Google Scholar
[572] R., Hesper, L. H., Tjeng, and G. A., Sawatzky, “Strongly reduced band gap in a correlated insulator in close proximity to a metal,Europhys. Lett. 40:177–182, 1997.Google Scholar
[573] C., Freysoldt, P., Rinke, and M., Scheffler, “Controlling polarization at insulating surfaces: Quasiparticle calculations for molecules adsorbed on insulator films,Phys. Rev. Lett. 103:056803, 2009.Google Scholar
[574] J. M., Garcia-Lastra, C., Rostgaard, A., Rubio, and K. S., Thygesen, “Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces,Phys. Rev. B 80:245427, 2009.Google Scholar
[575] Y., Pavlyukh and W., Hübner, “Configuration interaction approach for the computation of the electronic self-energy,Phys. Rev. B 75:205129, 2007.Google Scholar
[576] U., Litzen, J. W., Brault, and A. P., Thorne, “Spectrum and term system of neutral nickel, Ni-I,Physica Scripta 47:628–673, 1993.Google Scholar
[577] H., Mårtensson and P. O., Nilsson, “Investigation of the electronic structure of Ni by angleresolved UV photoelectron spectroscopy,Phys. Rev. B 30:3047–3054, 1984.Google Scholar
[578] J., Bunemann, F., Gebhard, T., Ohm, R., Umstatter, S., Weiser, W., Weber, R., Claessen, D., Ehm, A., Harasawa, A., Kakizaki, A., Kimura, G., Nicolay, S., Shin, and V. N., Strocov, “Atomic correlations in itinerant ferromagnets: Quasi-particle bands of nickel,Europhys. Lett. 61:667–673, 2003.Google Scholar
[579] A. N., Chantis, M., van Schilfgaarde, and T., Kotani, “Quasiparticle self-consistent GW method applied to localized 4f electron systems,Phys. Rev. B 76:165126, 2007.Google Scholar
[580] J. H., de Boer and E. J. W, Verwey, “Semi-conductors with partially and with completely filled 3d-lattice bands,Proc. Phys. Soc. 49:59–71, 1937.Google Scholar
[581] C., Rödl, F., Fuchs, J., Furthmüller, and F., Bechstedt, “Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO,Phys. Rev. B 79: 235114, 2009.Google Scholar
[582] F., Bechstedt, F., Fuchs, and G., Kresse, “Ab-initio theory of semiconductor band structures: New developments and progress,Phys. Stat. Sol. B 246: 1877–1892, 2009.Google Scholar
[583] D., Ködderitzsch, W., Hergert, W. M., Temmerman, Z., Szotek, A., Ernst, and H., Winter, “Exchange interactions in NiO and at the NiO(100) surface,Phys. Rev. B 66: 064434, 2002.Google Scholar
[584] I. D., Hughes, M., Dine, A., Ernst, W., Hergert, M., Luders, J. B., Staunton, Z., Szotek, and W. M., Temmerman, “Onset of magnetic order in strongly-correlated systems from ab initio electronic structure calculations: Application to transition metal oxides,New J. Phys. 10: 063010, 2008.Google Scholar
[585] F. J., Morin, “Oxides which show a metal-to-insulator transition at the Néel temperature,Phys. Rev. Lett. 3: 34–36, 1959.Google Scholar
[586] R. M., Wentzcovitch, W. W., Schulz, and P. B., Allen, “VO2: Peierls or Mott–Hubbard? A view from band theory,Phys. Rev. Lett. 72: 3389–3392, 1994.Google Scholar
[587] S., Biermann, A., Poteryaev, A. I., Lichtenstein, and A., Georges, “Dynamical singlets and correlation-assisted Peierls transition in VO2,Phys. Rev. Lett. 94: 026404, 2005.Google Scholar
[588] J. B., Goodenough, “The two components of crystallographic transition in VO2,J. Solid State Chem. 3: 490–500, 1971.Google Scholar
[589] V., Eyert, “The metal–insulator transitions of VO2: A band theoretical approach,Ann. Phys. 11: 650–702, 2002.Google Scholar
[590] T. C., Koethe, Z., Hu, M.W., Haverkort, C., Schüßler-Langeheine, F., Venturini, N. B., Brookes, O., Tjernberg, W., Reichelt, H. H., Hsieh, H.-J., Lin, C. T., Chen, and L. H., Tjeng, “Transfer of spectral weight and symmetry across the metal–insulator transition in VO2,Phys. Rev. Lett. 97: 116402, 2006.Google Scholar
[591] S., Suga, A., Sekiyama, S., Imada, T., Miyamachi, H., Fujiwara, A., Yamasaki, K., Yoshimura, K., Okada, M., Yabashi, K., Tamasaku, A., Higashiya, and T., Ishikawa, “~8 keV photoemission of the metal–insulator transition system VO2,New J. Phys. 11: 103015, 2009.Google Scholar
[592] H., Abe, M., Terauchi, M., Tanaka, S., Shin, and Y., Ueda, “Electron energy-loss spectroscopy study of the metal–insulator transition in VO2,Japanese J. Appl. Phys. 36: 165–169, 1997.Google Scholar
[593] J. M., Tomczak, F., Aryasetiawan, and S., Biermann, “Effective bandstructure in the insulating phase versus strong dynamical correlations in metallic VO2,Phys. Rev. B 78: 115103, 2008.Google Scholar
[594] J., Harl and G., Kresse, “Accurate bulk properties from approximate many-body techniques,Phys. Rev. Lett. 103: 056401, 2009.Google Scholar
[595] J., Harl and G., Kresse, “Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation–dissipation theory,Phys. Rev. B 77: 045136, 2008.Google Scholar
[596] A., Marini, P., Garcia-Gonzalez, and A., Rubio, “First-principles description of correlation effects in layered materials,Phys. Rev. Lett. 96: 136404, 2006.Google Scholar
[597] S., Kurth and J. P., Perdew, “Density-functional correction of random-phase-approximation correlation with results for jellium surface energies,Phys. Rev. B 59: 10461–10468, 1999.Google Scholar
[598] S., Lebègue, J., Harl, T., Gould, J. G., Ángyán, G., Kresse, and J. F., Dobson, “Cohesive properties and asymptotics of the dispersion interaction in graphite by the random phase approximation,Phys. Rev. Lett. 105: 196401, 2010.Google Scholar
[599] L., Spanu, S., Sorella, and G., Galli, “Nature and strength of interlayer binding in graphite,Phys. Rev. Lett. 103: 196401, 2009.Google Scholar
[600] J. F., Dobson, A., White, and A., Rubio, “Asymptotics of the dispersion interaction: Analytic benchmarks for van der Waals energy functionals,Phys. Rev. Lett. 96: 073201, 2006.Google Scholar
[601] J. P., Perdew, K., Burke, and M., Ernzerhof, “Generalized gradient approximation made simple,Phys. Rev. Lett. 77: 3865–3868, 1996.Google Scholar
[602] A., Stan, N. E., Dahlen, and R. van, Leeuwen, “Fully self-consistent GW calculations for atoms and molecules,Europhys. Lett. 76: 298–304, 2006.Google Scholar
[603] N. E., Dahlen and U. von, Barth, “Variational second-order Moller–Plesset theory based on the Luttinger–Ward functional,J. Chem. Phys. 120: 6826–6831, 2004.Google Scholar
[604] G., Antonius, S., Poncé, P., Boulanger, M., Côté, and X., Gonze, “Many-body effects on the zero-point renormalization of the band structure,Phys. Rev. Lett. 112: 215501, 2014.Google Scholar
[605] M., Lazzeri, C., Attaccalite, L., Wirtz, and F., Mauri, “Impact of the electron–electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite,Phys. Rev. B 78: 081406, 2008.Google Scholar
[606] Z., Szotek, W.M., Temmerman, and H., Winter, “Application of the self-interaction correction to transition-metal oxides,Phys. Rev. B 47: 4029–4032, 1993.Google Scholar
[607] C., Franchini, V., Bayer, R., Podloucky, J., Paier, and G., Kresse, “Density functional theory study of MnO by a hybrid functional approach,Phys. Rev. B 72: 045132, 2005.Google Scholar
[608] S. V., Faleev, M. van, Schilfgaarde, T., Kotani, F., Léonard, and M. P., Desjarlais, “Finitetemperature quasiparticle self-consistent GW approximation,Phys. Rev. B 74: 033101, 2006.Google Scholar
[609] L. X., Benedict, C. D., Spataru, and S. G., Louie, “Quasiparticle properties of a simple metal at high electron temperatures,Phys. Rev. B 66: 085116, 2002.Google Scholar
[610] A., Eiguren, C., Ambrosch-Draxl, and P. M., Echenique, “Self-consistently renormalized quasiparticles under the electron–phonon interaction,Phys. Rev. B 79: 245103, 2009.Google Scholar
[611] A., Marini, “Ab initio finite-temperature excitons,Phys. Rev. Lett. 101: 106405, 2008.Google Scholar
[612] W., Hanke, “Dielectric theory of elementary excitations in crystals,Adv. Phys. 27: 287–341, 1978.Google Scholar
[613] H. A., Bethe and E. E., Salpeter, “A relativistic equation for bound state problems,Phys. Rev. 82: 309–310, 1951.Google Scholar
[614] “Bethe–Salpeter equation (origins),Scholarpedia 3(11):7483, 2008.CrossRef
[615] E. E., Salpeter and H. A., Bethe, “A relativistic equation for bound-state problems,Phys. Rev. 84: 1232–1242, 1951.Google Scholar
[616] L. J., Sham and T. M., Rice, “Many-particle derivation of the effective-mass equation for the Wannier exciton,Phys. Rev. 144: 708–714, 1966.Google Scholar
[617] G., Giuliani and G., Vignale, Quantum Theory of the Electron Liquid, Cambridge University Press, Cambridge, 2005.Google Scholar
[618] V., Ambegaokar and W., Kohn, “Electromagnetic properties of insulators. I,Phys. Rev. 117: 423–431, 1960.Google Scholar
[619] S. L., Adler, “Quantum theory of the dielectric constant in real solids,Phys. Rev. 126: 413–420, 1962.Google Scholar
[620] N., Wiser, “Dielectric constant with local field effects included,Phys. Rev. 129: 62–69, 1963.Google Scholar
[621] A. G., Marinopoulos, L., Reining, V., Olevano, A., Rubio, T., Pichler, X., Liu, M., Knupfer, and J., Fink, “Anisotropy and interplane interactions in the dielectric response of graphite,Phys. Rev. Lett. 89: 266406, 2002.Google Scholar
[622] L. X., Benedict, E. L., Shirley, and R. B., Bohn, “Optical absorption of insulators and the electron–hole interaction: An ab initio calculation,Phys. Rev. Lett. 80: 4514–4517, 1998.Google Scholar
[623] D., Tamme, R., Schepe, and K., Henneberger, “Comment on ‘self-consistent calculations of quasiparticle states in metals and semiconductors,’Phys. Rev. Lett. 83: 241, 1999.Google Scholar
[624] G. D., Mahan, “GW approximations,Comments Condens. Matter Phys. 16: 333, 1994.Google Scholar
[625] P., Romaniello, D., Sangalli, J. A., Berger, F., Sottile, L. G., Molinari, L., Reining, and G., Onida, “Double excitations in finite systems,J. Chem. Phys. 130: 044108, 2009.Google Scholar
[626] T., Ando, A., Fowler, and F., Stern, “Density-functional calculation of sub-band structure in accumulation and inversion layers,Phys. Rev. B 13: 3468–3477, 1976.Google Scholar
[627] A., Schindlmayr and R. W., Godby, “Systematic vertex corrections through iterative solution of Hedin's equations beyond the GWapproximation,Phys. Rev. Lett. 80: 1702–1705, 1998.Google Scholar
[628] F., Bechstedt, K., Tenelsen, B., Adolph, and R. Del, Sole, “Compensation of dynamical quasiparticle and vertex corrections in optical spectra,Phys. Rev. Lett. 78: 1528–1531, 1997.Google Scholar
[629] R. Del, Sole and R. Girlanda, “Optical properties of solids within the independentquasiparticle approximation: Dynamical effects,Phys. Rev. B 54: 14376–14380, 1996.Google Scholar
[630] M., Gruning, A., Marini, and X., Gonze, “Exciton-plasmon states in nanoscale materials: Breakdown of the Tamm–Dancoff approximation,Nano Lett. 9: 2820–2824, 2009.Google Scholar
[631] I., Tamm, “Relativistic interaction of elementary particles,J. Phys. (USSR) 9: 449, 1945.Google Scholar
[632] S. M., Dancoff, “Non-adiabatic meson theory of nuclear forces,Phys. Rev. 78: 382–385, 1950.Google Scholar
[633] S., Albrecht, L., Reining, R. Del, Sole, and G., Onida, “Ab initio calculation of excitonic effects in the optical spectra of semiconductors,Phys. Rev. Lett. 80: 4510–4513, 1998.Google Scholar
[634] F., Bruneval, F., Sottile, V., Olevano, and L., Reining, “Beyond time-dependent exact exchange: The need for long-range correlation,J. Chem. Phys. 124: 144113, 2006.Google Scholar
[635] L., Yang, J., Deslippe, C.-H., Park, M. L., Cohen, and S. G., Louie, “Excitonic effects on the optical response of graphene and bilayer graphene,Phys. Rev. Lett. 103: 186802, 2009.Google Scholar
[636] G. H., Wannier, “The structure of electronic excitation levels in insulating crystals,Phys. Rev. 52: 191–197, 1937.Google Scholar
[637] N. F., Mott, “Conduction in polar crystals. II. The conduction band and ultra-violet absorption of alkali-halide crystals,Trans. Faraday Soc. 34: 500, 1938.Google Scholar
[638] J., Frenkel, “On the transformation of light into heat in solids. I,Phys. Rev. 37: 17–44, 1931.Google Scholar
[639] M., Gatti and F., Sottile, “Exciton dispersion from first principles,Phys. Rev. B 88: 155113, 2013.Google Scholar
[640] C., Rödl, F., Fuchs, J., Furthmüller, and F., Bechstedt, “Ab initio theory of excitons and optical properties for spin-polarized systems: Application to antiferromagnetic MnO,Phys. Rev. B 77: 184408, 2008.Google Scholar
[641] J. J., Rehr, J. A., Soininen, and E. L., Shirley, “Final-state rule vs the Bethe–Salpeter equation for deep-core X-ray absorption spectra,Physica Scripta T115: 207–211, 2005.Google Scholar
[642] S., Albrecht, L., Reining, G., Onida, V., Olevano, and R. Del, Sole, “Albrecht et al. reply,Phys. Rev. Lett. 83: 3971–3971, 1999.Google Scholar
[643] W., Hanke and L. J., Sham, “Many-particle effects in the optical excitations of a semiconductor,Phys. Rev. Lett. 43: 387–390, 1979.Google Scholar
[644] D., Kammerlander, S., Botti, M. A. L., Marques, A., Marini, and C., Attaccalite, “Speeding up the solution of the Bethe–Salpeter equation by a double-grid method and Wannier interpolation,Phys. Rev. B 86: 125203, 2012.Google Scholar
[645] F., Fuchs, C., Rödl, A., Schleife, and F., Bechstedt, “Efficient O(N2) approach to solve the Bethe–Salpeter equation for excitonic bound states,Phys. Rev. B 78: 085103, 2008.Google Scholar
[646] S., Albrecht, G., Onida, and L., Reining, “Ab initio calculation of the quasiparticle spectrum and excitonic effects in Li2O,Phys. Rev. B 55: 10278–10281, 1997.Google Scholar
[647] R., Haydock, “The recursive solution of the Schrodinger equation,Comput. Phys. Commun. 20: 11–16, 1980.Google Scholar
[648] L. X., Benedict and E. L., Shirley, “Ab initio calculation of 2(ω) including the electron–hole interaction: Application to GaN and CaF2,Phys. Rev. B 59: 5441–5451, 1999.Google Scholar
[649] W. G., Schmidt, S., Glutsch, P. H., Hahn, and F., Bechstedt, “Efficient O(N2) method to solve the Bethe–Salpeter equation,Phys. Rev. B 67: 085307, 2003.Google Scholar
[650] D., Rocca, D., Lu, and G., Galli, “Ab initio calculations of optical absorption spectra: Solution of the Bethe–Salpeter equation within density matrix perturbation theory,J. Chem. Phys. 133: 164109, 2010.Google Scholar
[651] L. X., Benedict, E. L., Shirley, and R. B., Bohn, “Theory of optical absorption in diamond, Si, Ge, and GaAs,Phys. Rev. B 57:R9385–9387, 1998.
[652] S., Galamić-Mulaomerović and C. H., Patterson, “Ab initio many-body calculation of excitons in solid Ne and Ar,Phys. Rev. B 72: 035127, 2005.Google Scholar
[653] K., Yoshino, “Absorption spectrum of argon atom in vacuum-ultraviolet region,J. Opt. Soc. Am. 60: 1220, 1970.Google Scholar
[654] I., Duchemin, T., Deutsch, and X., Blase, “Short-range to long-range charge-transfer excitations in the zincbacteriochlorin–bacteriochlorin complex: A Bethe–Salpeter study,Phys. Rev. Lett. 109: 167801, 2012.Google Scholar
[655] A., Marini, R. Del, Sole, and A., Rubio, “Bound excitons in time-dependent density-functional theory: Optical and energy-loss spectra,Phys. Rev. Lett. 91: 256402, 2003.Google Scholar
[656] P., Abbamonte, T., Graber, J. P., Reed, S., Smadici, C.-L., Yeh, A., Shukla, J.-P., Rueff, and W., Ku, “Dynamical reconstruction of the exciton in LiF with inelastic X-ray scattering,Proc. Natl. Acad. Sci. USA 105: 12159–12163, 2008.Google Scholar
[657] B. C., Larson, W., Ku, J. Z., Tischler, C.-C., Lee, O. D., Restrepo, A. G., Eguiluz, P., Zschack, and K. D., Finkelstein, “Nonresonant inelastic X-ray scattering and energy-resolved Wannier function investigation of d–d excitations in NiO and CoO,Phys. Rev. Lett. 99: 026401, 2007.Google Scholar
[658] C., Rödl and F., Bechstedt, “Optical and energy-loss spectra of the antiferromagnetic transition metal oxides MnO, FeO, CoO, and NiO including quasiparticle and excitonic effects,Phys. Rev. B 86: 235122, 2012.Google Scholar
[659] N., Takeuchi, A., Selloni, A. I., Shkrebtii, and E., Tosatti, “Structural and electronic properties of the (111)2x1 surface of Ge from first-principles calculations,Phys. Rev. B 44: 13611–13617, 1991.Google Scholar
[660] K. C., Pandey, “New pi-bonded chain model for Si(111)-(2x1) surface,Phys. Rev. Lett. 47: 1913–1917, 1981.Google Scholar
[661] K. C., Pandey, “Reconstruction of semiconductor surfaces: Buckling, ionicity, and pi-bonded chains,Phys. Rev. Lett. 49: 223–226, 1982.Google Scholar
[662] M., Rohlfing, M., Palummo, G., Onida, and R. Del, Sole, “Structural and optical properties of the Ge(111)-(2 x 1) surface,Phys. Rev. Lett. 85: 5440–5443, 2000.Google Scholar
[663] L., Reining and R. Del, Sole, “Screened Coulomb interaction at Si(111)2×1,Phys. Rev. B 44: 12918–12926, 1991.Google Scholar
[664] A., Ruini, M. J., Caldas, G., Bussi, and E., Molinari, “Solid state effects on exciton states and optical properties of PPV,Phys. Rev. Lett. 88: 206403, 2002.Google Scholar
[665] K., Hummer and C., Ambrosch-Draxl, “Oligoacene exciton binding energies: Their dependence on molecular size,Phys. Rev. B 71: 081202, 2005.Google Scholar
[666] J. C., Grossman, M., Rohlfing, L., Mitas, S. G., Louie, and M. L., Cohen, “High accuracy manybody calculational approaches for excitations in molecules,Phys. Rev. Lett. 86: 472–475, 2001.Google Scholar
[667] P., Rinke, A., Schleife, E., Kioupakis, A., Janotti, C., Rödl, F., Bechstedt, M., Scheffler, and C. G., Van de Walle, “First-principles optical spectra for f centers in MgO,Phys. Rev. Lett. 108: 126404, 2012.Google Scholar
[668] E., Ertekin, L. K., Wagner, and J. C., Grossman, “Point-defect optical transitions and thermal ionization energies from quantum Monte Carlo methods: Application to the F-center defect in MgO,Phys. Rev. B 87: 155210, 2013.Google Scholar
[669] A., Marini and R. Del, Sole, “Dynamical excitonic effects in metals and semiconductors,Phys. Rev. Lett. 91: 176402, 2003.Google Scholar
[670] K., Shindo, “Effective electron–hole interaction in shallow excitons,J. Phys. Soc. Japan 29: 287, 1970.Google Scholar
[671] R., Zimmermann, K., Kilimann, W. D., Kraeft, D., Kremp, and G., Ropke, “Dynamical screening and self-energy of excitons in electron–hole plasma,Phys. Stat. Sol. B 90: 175–187, 1978.Google Scholar
[672] G., Strinati, “Dynamical shift and broadening of core excitons in semiconductors,Phys. Rev. Lett. 49: 1519–1522, 1982.Google Scholar
[673] G., Strinati, “Effects of dynamical screening on resonances at inner-shell thresholds in semiconductors,Phys. Rev. B 29: 5718–5726, 1984.Google Scholar
[674] D., Sangalli, P., Romaniello, G., Onida, and A., Marini, “Double excitations in correlated systems: A many-body approach,J. Chem. Phys. 134: 034115, 2011.Google Scholar
[675] C., Sternemann, S., Huotari, G., Vankó, M., Volmer, G., Monaco, A., Gusarov, H., Lustfeld, K., Sturm, and W., Schülke, “Correlation-induced double-plasmon excitation in simple metals studied by inelastic X-ray scattering,Phys. Rev. Lett. 95: 157401, 2005.Google Scholar
[676] S., Huotari, C., Sternemann, W., Schülke, K., Sturm, H., Lustfeld, H., Sternemann, M., Volmer, A., Gusarov, H., Müller, and G., Monaco, “Electron-density dependence of double-plasmon excitations in simple metals,Phys. Rev. B 77: 195125, 2008.Google Scholar
[677] Y., Noguchi, S., Ishii, K., Ohno, I., Solovyev, and T., Sasaki, “First principles t-matrix calculations for Auger spectra of hydrocarbon systems,Phys. Rev. B 77: 035132, 2008.Google Scholar
[678] Y., Noguchi, S., Ishii, and K., Ohno, “Two-electron distribution functions and short-range electron correlations of atoms and molecules by first principles T-matrix calculations,J. Chem. Phys. 125: 114108, 2006.Google Scholar
[679] F., Aryasetiawan and K., Karlsson, “Green's function formalism for calculating spin-wave spectra,Phys. Rev. B 60: 7419–7428, 1999.Google Scholar
[680] E., şaşıoglu, A., Schindlmayr, C., Friedrich, F., Freimuth, and S., Blügel, “Wannier-function approach to spin excitations in solids,Phys. Rev. B 81: 054434, 2010.Google Scholar
[681] K., Karlsson and F., Aryasetiawan, “Spin-wave excitation spectra of nickel and iron,Phys. Rev. B 62: 3006–3009, 2000.Google Scholar
[682] G., Onida, L., Reining, and A., Rubio, “Electronic excitations: Density-functional versus many-body Green's-function approaches,Rev. Mod. Phys. 74: 601–659, 2002.Google Scholar
[683] N., Sakkinen, M., Manninen, and R. van, Leeuwen, “The Kadanoff–Baym approach to double excitations in finite systems,New J. Phys. 14: 013032, 2012.Google Scholar
[684] N. E., Dahlen, R. van, Leeuwen, and A., Stan, in Progress in Nonequilibrium Green's Functions III, Vol. 35 of Journal of Physics Conference Series, edited by M., Bonitz and A., Filinov, IOP Publishing, Bristol, 2006, pp. 340–348.Google Scholar
[685] H., Hübener, “Second-order response Bethe–Salpeter equation,Phys. Rev. A 83: 062122, 2011.Google Scholar
[686] C., Attaccalite, M., Grüning, and A., Marini, “Real-time approach to the optical properties of solids and nanostructures: Time-dependent Bethe–Salpeter equation,Phys. Rev. B 84: 245110, 2011.Google Scholar
[687] M., Petersilka, U. J., Gossmann, and E. K. U., Gross, “Excitation energies from timedependent density-functional theory,Phys. Rev. Lett. 76: 1212–1215, 1996.Google Scholar
[688] E. K. U., Gross, J. F., Dobson, and M., Petersilka, Density Functional Theory II, Vol. 181 of Topics in Current Chemistry, Springer-Verlag, Berlin, 1996, pp. 81–172.Google Scholar
[689] M., Casida, in Recent Advances in Density Functional Methods I, edited by P., Chong, World Scientific, Singapore, 1995, p. 155.Google Scholar
[690] A., Dreuw, J. L., Weisman, and M., Head-Gordon, “Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange,J. Chem. Phys. 119: 2943–2946, 2003.Google Scholar
[691] D., Karlsson, A., Privitera, and C., Verdozzi, “Time-dependent density-functional theory meets dynamical mean-field theory: Real-time dynamics for the 3d Hubbard model,Phys. Rev. Lett. 106: 116401, 2011.Google Scholar
[692] M., Fleck, A. M., Oleś, and L., Hedin, “Magnetic phases near the Van Hove singularity in sand d-band Hubbard models,Phys. Rev. B 56: 3159–3166, 1997.Google Scholar
[693] V. P., Zhukov, E. V., Chulkov, and P. M., Echenique, “Lifetimes of excited electrons in Fe and Ni: First-principles GW and the T-matrix theory,Phys. Rev. Lett. 93: 096401, 2004.Google Scholar
[694] M., Hindgren and C. O., Almbladh, “Improved local-field corrections to the G(0)W approximation in jellium: Importance of consistency relations,Phys. Rev. B 56: 12832–12839, 1997.Google Scholar
[695] R., Delsole, L., Reining, and R. W., Godby, “GWT approximation for electron self-energies in semiconductors and insulators,Phys. Rev. B 49: 8024–8028, 1994.Google Scholar
[696] C. A., Kukkonen and A. W., Overhauser, “Electron–electron interaction in simple metals,Phys. Rev. B 20: 550–557, 1979.Google Scholar
[697] M., Shishkin, M., Marsman, and G., Kresse, “Accurate quasiparticle spectra from selfconsistent GW calculations with vertex corrections,Phys. Rev. Lett. 99: 246403, 2007.Google Scholar
[698] A., Grueneis, G., Kresse, Y., Hinuma, and F., Oba, “Ionization potentials of solids: The importance of vertex corrections,Phys. Rev. Lett. 112: 096401, 2014.Google Scholar
[699] M., Hindgren and C.-O., Almbladh, “Improved local-field corrections to the G0W approximation in jellium: Importance of consistency relations,Phys. Rev. B 56: 12832–12839, 1997.Google Scholar
[700] A., Marini and A., Rubio, “Electron linewidths of wide-gap insulators: Excitonic effects in LiF,Phys. Rev. B 70: 081103, 2004.Google Scholar
[701] E. L., Shirley, “Self-consistent GW and higher-order calculations of electron states in metals,Phys. Rev. B 54: 7758–7764, 1996.Google Scholar
[702] R. T. M., Ummels, P. A., Bobbert, and W. van, Haeringen, “First-order corrections to random-phase approximation GW calculations in silicon and diamond,Phys. Rev. B 57: 11962–11973, 1998.Google Scholar
[703] V. M., Galitskii, “The energy spectrum of a non-ideal Fermi gas,Soviet Phys. JETP 7: 104–112, 1958.Google Scholar
[704] H. A., Bethe and J., Goldstone, “Effect of a repulsive core in the theory of complex nuclei,Proc. Roy. Soc. London, Ser. A 238: 551–567, 1957.Google Scholar
[705] V. P., Zhukov, E. V., Chulkov, and P. M., Echenique, “GW+T theory of excited electron lifetimes in metals,Phys. Rev. B 72: 155109, 2005.Google Scholar
[706] I. A., Nechaev and E. V., Chulkov, “Multiple electron–hole scattering effect on quasiparticle properties in a homogeneous electron gas,Phys. Rev. B 73: 165112, 2006.Google Scholar
[707] A., Grueneis, M., Marsman, J., Harl, L., Schimka, and G., Kresse, “Making the random phase approximation to electronic correlation accurate,J. Chem. Phys. 131: 154115, 2009.Google Scholar
[708] N. E., Bickers and D. J., Scalapino, “Conserving approximations for strongly fluctuating electron-systems. 1. Formalism and calculational approach,Ann. Phys. 193: 206–251, 1989.Google Scholar
[709] N. E., Bickers, D. J., Scalapino, and S. R., White, “Conserving approximations for strongly correlated electron systems: Bethe–Salpeter equation and dynamics for the two-dimensional Hubbard model,Phys. Rev. Lett. 62: 961–964, 1989.Google Scholar
[710] A., Liebsch, “Ni d-band self-energy beyond the low-density limit,Phys. Rev. B 23: 5203–5212, 1981.Google Scholar
[711] M. I., Katsnelson and A. I., Lichtenstein, “LDA++ approach to the electronic structure of magnets: Correlation effects in iron,J. Phys. Condens. Matter 11: 1037–1048, 1999.Google Scholar
[712] M. I., Katsnelson and A. I., Lichtenstein, “Electronic structure and magnetic properties of correlated metals – A local self-consistent perturbation scheme,Euro. Phys. J. B 30: 9–15, 2002.Google Scholar
[713] A., Lande and R. A., Smith, “Two-body and three-body parquet theory,Phys. Rev. A 45: 913–921, 1992.Google Scholar
[714] A. D., Jackson, A., Lande, and R. A., Smith, “Variational and perturbation theories made planar,Phys. Lett. Phys. Rep. 86: 55–111, 1982.Google Scholar
[715] N. E., Bickers and S. R., White, “Conserving approximations for strongly fluctuating electron systems. II. Numerical results and parquet extension,Phys. Rev. B 43: 8044–8064, 1991.Google Scholar
[716] DMFT at 25: Infinite Dimensions: Lecture Notes of the Autumn School 2014, Forschungszentrum Juelich, edited by E., Pavarini, E., Koch, D., Vollhardt, and A., Lichtenstein, Forschungszentrum Juelich GmbH and Institute for Advanced Simulations, Juelich, Germany, 2014.
[717] J., Igarashi, “Three body problem in transition-metals – application to nickel,J. Phys. Soc. Japan 52: 2827–2837, 1983.Google Scholar
[718] J., Igarashi, “Three-body problem in the one-dimensional Hubbard-model,J. Phys. Soc. Japan 54: 260–268, 1985.Google Scholar
[719] J., Igarashi, P., Unger, K., Hirai, and P., Fulde, “Local approach to electron correlations in ferromagnetic nickel,Phys. Rev. B 49: 16181–16190, 1994.Google Scholar
[720] C., Calandra and F., Manghi, “Three-body scattering theory of correlated hole and electron states,Phys. Rev. B 50: 2061–2074, 1994.Google Scholar
[721] F., Manghi, V., Bellini, and C., Arcangeli, “On-site correlation in valence and core states of ferromagnetic nickel,Phys. Rev. B 56: 7149–7161, 1997.Google Scholar
[722] F., Manghi, V., Bellini, J., Osterwalder, T. J., Kreutz, P., Aebi, and C., Arcangeli, “Correlation effects in the low-energy region of nickel photoemission spectra,Phys. Rev. B 59:R10409– 10412, 1999.
[723] S., Monastra, F., Manghi, C. A., Rozzi, C., Arcangeli, E., Wetli, H.-J., Neff, T., Greber, and J., Osterwalder, “Quenching of majority-channel quasiparticle excitations in cobalt,Phys. Rev. Lett. 88: 236402, 2002.Google Scholar
[724] S., Monastra, F., Manghi, and C., Ambrosch-Draxl, “Role of electron–electron correlation in the valence states of YBa2Cu3O7: Low-energy excitations and Fermi surface,Phys. Rev. B 64: 020507, 2001.Google Scholar
[725] V., Bellini, C. A., Rozzi, and F., Manghi, “Correlation effects on the electronic properties of Bi2Sr2CaCu2O8,J. Phys. Chem. Solids 67: 286–288, 2006.Google Scholar
[726] M., Cini and C., Verdozzi, “Many-body effects in the electron spectroscopies of incompletely filled bands,Nuovo Cimento D 9: 1–21, 1987.Google Scholar
[727] T. K., Ng and K. S., Singwi, “Effective interactions for self-energy. I. Theory,Phys. Rev. B 34: 7738–7742, 1986.Google Scholar
[728] I. A., Nechaev and E. V., Chulkov, “Variational solution of the T-matrix integral equation,Phys. Rev. B 71: 115104, 2005.Google Scholar
[729] M., Cini and C., Verdozzi, “Photoemission and Auger-spectra of incompletely filled bands – intermediate-coupling theory and application to palladium metal,J. Phys. Condens. Matter 1: 7457–7470, 1989.Google Scholar
[730] C., Verdozzi, P. J., Durham, R. J., Cole, and P., Weightman, “Correlation and disorder effects in photoelectron and Auger spectra: The late transition metals and their alloys,Phys. Rev. B 55: 16143–16158, 1997.Google Scholar
[731] P., Romaniello, F., Bechstedt, and L., Reining, “Beyond the GW approximation: Combining correlation channels,Phys. Rev. B 85: 155131, 2012.Google Scholar
[732] M., Cini and C., Verdozzi, “Photoemission and Auger CVV spectra of partially filled bands – a cluster approach,Solid State Commun. 57: 657–660, 1986.Google Scholar
[733] M. Puig von, Friesen, C., Verdozzi, and C.-O., Almbladh, “Kadanoff–Baym dynamics of Hubbard clusters: Performance of many-body schemes, correlation-induced damping and multiple steady and quasi-steady states,Phys. Rev. B 82: 155108, 2010.CrossRefGoogle Scholar
[734] I. A., Nechaev, I. Yu., Sklyadneva, V. M., Silkin, P. M., Echenique, and E. V., Chulkov, “Theoretical study of quasiparticle inelastic lifetimes as applied to aluminum,Phys. Rev. B 78: 085113, 2008.Google Scholar
[735] D. R., Penn, “Effect of bound hole pairs on the d-band photoemission spectrum of Ni,Phys. Rev. Lett. 42: 921–925, 1979.Google Scholar
[736] A., Liebsch, “Effect of self-energy corrections on the valence-band photoemission spectra of Ni,Phys. Rev. Lett. 43: 1431–1434, 1979.Google Scholar
[737] M., Cini, “Theory of Auger-XVV spectra of solids – many-body effects in incompletely filled bands,Surface Sci. 87: 483–500, 1979.Google Scholar
[738] F. J., Himpsel, J. A., Knapp, and D. E., Eastman, “Experimental energy-band dispersions and exchange splitting for Ni,Phys. Rev. B 19: 2919–2927, 1979.Google Scholar
[739] R., Kubo, “Generalized cumulant expansion method,J. Phys. Soc. Japan 17: 1100–1120, 1962.Google Scholar
[740] O., Gunnarsson, V., Meden, and K., Schönhammer, “Corrections to Migdal's theorem for spectral functions: A cumulant treatment of the time-dependent Green's function,Phys. Rev. B 50: 10462–10473, 1994.Google Scholar
[741] P., Noziéres and C. T. De, Dominicis, “Singularities in the X-ray absorption and emission of metals. III. One-body theory exact solution,Phys. Rev. 178: 1097–1107, 1969.Google Scholar
[742] F., Bechstedt, “On the theory of plasmon satellite structures in the photoelectron-spectra of non-metallic solids. 1. Soluble model,Phys. Stat. Sol. B 101: 275–286, 1980.Google Scholar
[743] F., Bechstedt, “Electronic relaxation effects in core level spectra of solids,Phys. Stat. Sol. B 112: 9–49, 1982.Google Scholar
[744] F., Bechstedt, R., Enderlein, and M., Koch, “Theory of core excitons in semiconductors,Phys. Stat. Sol. B 99: 61–70, 1980.Google Scholar
[745] L., Hedin, “Effects of recoil on shake-up spectra in metals,Physica Scripta 21: 477–480, 1980.Google Scholar
[746] F., Aryasetiawan, L., Hedin, and K., Karlsson, “Multiple plasmon satellites in Na and Al spectral functions from ab initio cumulant expansion,Phys. Rev. Lett. 77: 2268–2271, 1996.Google Scholar
[747] M., Guzzo, J. J., Kas, L., Sponza, C., Giorgetti, F., Sottile, D., Pierucci, M. G., Silly, F., Sirotti, J. J., Rehr, and L., Reining, “Multiple satellites in materials with complex plasmon spectra: From graphite to graphene,Phys. Rev. B 89: 085425, 2014.Google Scholar
[748] B., Holm and F., Aryasetiawan, “Self-consistent cumulant expansion for the electron gas,Phys. Rev. B 56: 12825–12831, 1997.Google Scholar
[749] C., Blomberg and B., Bergerse, “Spurious structure from approximations to Dyson equation,Can. J. Phys. 50:2286+, 1972.
[750] B., Bergerse, F. W., Kus, and C., Blomberg, “Single-particle Green's function in electron– plasmon approximation,Can. J. Phys. 51: 102–110, 1973.Google Scholar
[751] M., Vos, A. S., Kheifets, V. A., Sashin, E., Weigold, M., Usuda, and F., Aryasetiawan, “Quantitative measurement of the spectral function of aluminum and lithium by electron momentum spectroscopy,Phys. Rev. B 66: 155414, 2002.Google Scholar
[752] J., Lischner, D., Vigil-Fowler, and S. G., Louie, “Physical origin of satellites in photoemission of doped graphene: An ab initio GW plus cumulant study,Phys. Rev. Lett. 110: 146801, 2013.Google Scholar
[753] M., Vos, A. S., Kheifets, E., Weigold, and F., Aryasetiawan, “Electron correlation effects in the spectral momentum density of graphite,Phys. Rev. B 63: 033108, 2001.Google Scholar
[754] J. J., Kas, J. J., Rehr, and L., Reining, “Cumulant expansion of the retarded one-electron Green function,Phys. Rev. B 90: 085112, 2014.Google Scholar
[755] S. M., Story, J. J., Kas, F. D., Vila, M. J., Verstraete, and J. J., Rehr, “Cumulant expansion for phonon contributions to the electron spectral function,Phys. Rev. B 90: 195135, 2014.Google Scholar
[756] A. D., Jackson and R. A., Smith, “High cost of consistency in Green's-function expansions,Phys. Rev. A 36: 2517–2518, 1987.Google Scholar
[757] G., Stefanucci, Y., Pavlyukh, A.-M., Uimonen, and R. van, Leeuwen, “Diagrammatic expansion for positive spectral functions beyond GW: Application to vertex corrections in the electron gas,Phys. Rev. B 90: 115134, 2014.Google Scholar
[758] J. C., Ward, “An identity in quantum electrodynamics,Phys. Rev. 78: 182–182, 1950.Google Scholar
[759] Y., Takahashi, “On the generalized Ward identity,Nuovo Cimento 6: 371–375, 1957.Google Scholar
[760] Y., Takada, “Inclusion of vertex corrections in the self-consistent calculation of quasiparticles in metals,Phys. Rev. Lett. 87, 2001.
[761] G., Knizia and G. K.-L., Chan, “Density matrix embedding: A strong-coupling quantum embedding theory,J. Chem. Theory Comput. 9: 1428–1432, 2013.Google Scholar
[762] W., Metzner and D., Vollhardt, “Analytic calculation of ground-state properties of correlated fermions with the Gutzwiller wave function,Phys. Rev. B 37: 7382–7399, 1988.Google Scholar
[763] W., Metzner and D., Vollhardt, “Correlated lattice fermions in d = ∞ dimensions,Phys. Rev. Lett. 62: 324–327, 1989.Google Scholar
[764] E., Müller-Hartmann, “Correlated fermions on a lattice in high dimensions,Z. Phys. B 74: 507–512, 1989.Google Scholar
[765] U., Brandt and C., Mielsch, “Thermodynamics and correlation functions of the Falicov– Kimball model in large dimensions,Z. Phys. B: Condens. Matter 75: 365–370, 1989.Google Scholar
[766] V., Janis, “A new construction of thermodynamic mean-field theories of itinerant fermions: Application to the Falicov–Kimball model,Z. Phys. B: Condens. Matter 83: 227–235, 1992.Google Scholar
[767] A., Georges and G., Kotliar, “Hubbard model in infinite dimensions,Phys. Rev. B 45: 6479–6483, 1992.Google Scholar
[768] M., Jarrell, “Hubbard model in infinite dimensions: A quantum Monte Carlo study,Phys. Rev. Lett. 69: 168–171, 1992.Google Scholar
[769] N. D., Mermin and H., Wagner, “Absence of ferromagnetism or antiferromagnetism in oneor two-dimensional isotropic Heisenberg models,Phys. Rev. Lett. 17: 1133–1136, 1966.Google Scholar
[770] Y., Kakehashi, “Electron correlations and many-body techniques in magnetism,Adv. Phys. 53: 497–536, 2004.Google Scholar
[771] T., Maier, M., Jarrell, T., Pruschke, and M. H., Hettler, “Quantum cluster theories,Rev. Mod. Phys. 77: 1027, 2005.Google Scholar
[772] U., Brandt and C., Mielsch, “Free energy of the Falicov–Kimball model in large dimensions,Z. Phys. B: Condens. Matter 82: 37–41, 1991.Google Scholar
[773] M., Balzer, W., Hanke, and M., Potthoff, “Mott transition in one dimension: Benchmarking dynamical cluster approaches,Phys. Rev. B 77: 045133, 2008.Google Scholar
[774] S. R., White, “Density matrix formulation for quantum renormalization groups,Phys. Rev. Lett. 69: 2863–2866, 1992.Google Scholar
[775] S. R., White and R. L., Martin, “Ab initio quantum chemistry using the density matrix renormalization group,J. Chem. Phys. 110: 4127–4130, 1999.Google Scholar
[776] R., Olivares-Amaya, W., Hu, N., Nakatani, S., Sharma, J., Yang, and G. K.-L., Chan, “The ab-initio density matrix renormalization group in practice,J. Chem. Phys. 142: 034102, 2015.Google Scholar
[777] G., Knizia and G. K.-L., Chan, “Density matrix embedding: A simple alternative to dynamical mean-field theory,Phys. Rev. Lett. 109: 186404, 2012.Google Scholar
[778] X. Y., Zhang, M. J., Rozenberg, and G., Kotliar, “Mott transition in the d =∞Hubbard model at zero temperature,Phys. Rev. Lett. 70: 1666–1669, 1993.Google Scholar
[779] J., Joo and V., Oudovenko, “Quantum Monte Carlo calculation of the finite temperature Mott– Hubbard transition,Phys. Rev. B 64: 193102, 2001.Google Scholar
[780] P., Werner and A. J., Millis, “Doping-driven Mott transition in the one-band Hubbard model,Phys. Rev. B 75: 085108, 2007.Google Scholar
[781] L. de', Medici, A., Georges, G., Kotliar, and S., Biermann, “Mott transition and Kondo screening in f-electron metals,Phys. Rev. Lett. 95: 066402, 2005.Google Scholar
[782] A., Koga, Y., Imai, and N., Kawakami, “Stability of a metallic state in the two-orbital Hubbard model,Phys. Rev. B 66: 165107, 2002.Google Scholar
[783] P., Werner and A. J., Millis, “High-spin to low-spin and orbital polarization transitions in multiorbital Mott systems,Phys. Rev. Lett. 99: 126405, 2007.Google Scholar
[784] O. E., Gunnarsson, E., Koch, and R. M., Martin, “Mott transition in degenerate Hubbard models: Application to doped fullerenes,Phys. Rev. B 54:R11026–11029, 1996.
[785] The LDA+DMFT Approach to Strongly Correlated Materials: Lecture Notes of the Autumn School 2011, Forschungszentrum Juelich, edited by E., Pavarini, E., Koch, D., Vollhardt, and A., Lichtenstein, Forschungszentrum Juelich GmbH and Institute for Advanced Simulations, Juelich, Germany, 2011.
[786] Corrrelated Electrons: Models to Materials: Lecture Notes of the Autumn School 2012, Forschungszentrum Juelich, edited by E., Pavarini, E., Koch, F., Anders, and M., Jarrell, Forschungszentrum Juelich GmbH and Institute for Advanced Simulations, Juelich, Germany, 2012.
[787] G., Kottliar and D., Vollhardt, “Strongly correlated materials: Insights from dynamical meanfield theory,Phys. Today March 53–59, 2004.Google Scholar
[788] K., Held, “Electronic structure calculations using dynamical mean field theory,Adv. Phys. 56: 829–926, 2007.Google Scholar
[789] V. I., Anisimov and Y., Izyumov, Springer Series in Solid-State Sciences, Vol. 163, Electronic Structure of Strongly Correlated Materials, Springer-Verlag, Berlin, 2010.Google Scholar
[790] Springer Series in Solid-State Sciences, Vol. 171, Strongly Correlated Systems: Theoretical methods, edited by A., Avella and F., Mancini, Springer-Verlag, Berlin, 2012.
[791] J. K., Freericks, Transport in Multilayered Nanostructures: The Dynamical Mean-field Theory Approach, World Scientific, Singapore, 2006.Google Scholar
[792] F., Ducastelle, “Analytic properties of the coherent potential approximation and of its molecular generalizations,J. Phys. C 7: 1795–1816, 1974.Google Scholar
[793] A., Gonis, in Studies in Mathematical Physics, Vol. 4, edited by E. van, Groesen and E. M., DeJager, North Holland, Amsterdam, 1992.Google Scholar
[794] T., Morita, “Formal structure of the cluster variation method,Prog. Theor. Phys. Suppl. 15: 27–39, 1994.Google Scholar
[795] D. D., Betts, S., Masui, N., Vats, and G. E., Stewart, “Improved finite-lattice method for estimating the zero-temperature properties of two-dimensional lattice models,Can. J. Phys. 74: 54–64, 1996.Google Scholar
[796] G., Kotliar, S. Y., Savrasov, G., Pálsson, and G., Biroli, “Cellular dynamical mean field approach to strongly correlated systems,Phys. Rev. Lett. 87: 186401–186404, 2001.Google Scholar
[797] G., Biroli and G., Kotliar, “Cluster methods for strongly correlated electron systems,Phys. Rev. B 65: 155112–155116, 2002.Google Scholar
[798] G., Biroli, O., Parcollet, and G., Kotliar, “Cluster dynamical mean-field theories: Causality and classical limit,Phys. Rev. B 69: 205108, 2004.Google Scholar
[799] M., Tsukada, “A new method for the electronic structure of random lattice – the coexistence of the local and the band character,J. Phys. Soc. Japan 26: 684–696, 1969.Google Scholar
[800] D., Sénéchal, D., Perez, and D., Plouffe, “Cluster perturbation theory for Hubbard models,Phys. Rev. B 66: 075129, 2002.Google Scholar
[801] M. H., Hettler, A. N., Tahvildar-Zadeh, M., Jarrell, T., Pruschke, and H. R., Krishnamurthy, “Dynamical cluster approximation: Nonlocal dynamics of correlated electron systems,Phys. Rev. B 61: 12739–12742, 2000.Google Scholar
[802] M., Jarrell and H. R., Krishnamurthy, “Systematic and causal corrections to the coherent potential approximation,Phys. Rev. B 63: 125102–125131, 2001.Google Scholar
[803] D. A., Rowlands, J. B., Staunton, and B. L., Gyorffy, “Korringa–Kohn–Rostoker nonlocal coherent-potential approximation,Phys. Rev. B 67: 115109, 2003.Google Scholar
[804] D. A., Biavaet al., “Systematic, multisite short-range-order corrections to the electronic structure of disordered alloys from first principles: The KKR nonlocal CPA from the dynamical cluster approximation,Phys. Rev. B 72: 113105, 2005.Google Scholar
[805] H., Akima, “A new method of interpolation and smooth curve fitting based on local procedures,J. ACM 17: 589–602, 1970.Google Scholar
[806] M., Potthoff, M., Aichhorn, and C., Dahnken, “Variational cluster approach to correlated electron systems in low dimensions,Phys. Rev. Lett. 91: 206402, 2003.Google Scholar
[807] R., Eder, “From cluster to solid: Variational cluster approximation applied to NiO,Phys. Rev. B 76: 241103, 2007.Google Scholar
[808] A., Schiller and K., Ingersent, “Systematic 1/d corrections to the infinite-dimensional limit of correlated lattice electron models,Phys. Rev. Lett. 75: 113–116, 1995.Google Scholar
[809] J. L., Smith and Q., Si, “Spatial correlations in dynamical mean-field theory,Phys. Rev. B 61: 5184–5193, 2000.Google Scholar
[810] P., Sun and G., Kotliar, “Extended dynamical mean-field theory and GW method,Phys. Rev. B 66: 085120, 2002.Google Scholar
[811] A. N., Rubtsov, M. I., Katsnelson, and A. I., Lichtenstein, “Dual boson approach to collective excitations in correlated fermionic systems,Ann. Phys. 327: 1320–1335, 2012.Google Scholar
[812] E., Koch, G., Sangiovanni, and O. E., Gunnarsson, “Sum rules and bath parametrization for quantum cluster theories,Phys. Rev. B 78: 115102, 2008.Google Scholar
[813] A., Go and G. S., Jeon, “Properties of the one-dimensional Hubbard model: Cellular dynamical mean-field description,J. Phys.: Condens. Matter 21: 485602, 2009.Google Scholar
[814] S., Moukouri and M., Jarrell, “Absence of a Slater transition in the two-dimensional Hubbard model,Phys. Rev. Lett. 87: 167010, 2001.Google Scholar
[815] H., Park, K., Haule, and G., Kotliar, “Cluster dynamical mean field theory of the Mott transition,Phys. Rev. Lett. 101: 186403, 2008.Google Scholar
[816] E., Gull, M., Ferrero, O., Parcollet, A., Georges, and A. J., Millis, “Momentum-space anisotropy and pseudogaps: A comparative cluster dynamical mean-field analysis of the doping-driven metal–insulator transition in the two-dimensional Hubbard model,Phys. Rev. B 82: 155101, 2010.Google Scholar
[817] N., Lin, E., Gull, and A. J., Millis, “Physics of the pseudogap in eight-site cluster dynamical mean-field theory: Photoemission, Raman scattering, and in-plane and c-axis conductivity,Phys. Rev. B 82: 045104, 2010.Google Scholar
[818] X., Wang, E., Gull, L. de', Medici, M., Capone, and A. J., Millis, “Antiferromagnetism and the gap of a Mott insulator: Results from analytic continuation of the self-energy,Phys. Rev. B 80: 045101, 2009.Google Scholar
[819] T. A., Maier, M., Jarrell, T. C., Schulthess, P. R. C., Kent, and J. B., White, “Systematic study of d-wave superconductivity in the 2D repulsive Hubbard model,Phys. Rev. Lett. 95: 237001, 2005.Google Scholar
[820] E., Gull and A. J., Millis, “Energetics of superconductivity in the two-dimensional Hubbard model,Phys. Rev. B 86: 241106, 2012.Google Scholar
[821] S. A., Kivelson, I. P., Bindloss, E., Fradkin, V., Oganesyan, J. M., Tranquada, A., Kapitulnik, and C., Howald, “How to detect fluctuating stripes in the high-temperature superconductors,Rev. Mod. Phys. 75: 1201–1241, 2003.Google Scholar
[822] P. R. C., Kent, M., Jarrell, T. A., Maier, and Th., Pruschke, “Efficient calculation of the antiferromagnetic phase diagram of the three-dimensional Hubbard model,Phys. Rev. B 72: 060411, 2005.Google Scholar
[823] R., Staudt, M., Dzierzawa, and A., Muramatsu, “Phase diagram of the three-dimensional Hubbard model at half filling,Euro. J. Phys. B 17: 411–415, 2000.Google Scholar
[824] T., Paiva, Y. L., Loh, M., Randeria, R. T., Scalettar, and N., Trivedi, “Fermions in 3D optical lattices: Cooling protocol to obtain antiferromagnetism,Phys. Rev. Lett. 107: 086401, 2011.Google Scholar
[825] M., Snoek, I., Titvinidze, C., Toke, K., Byczuk, and W., Hofstetter, “Antiferromagnetic order of strongly interacting fermions in a trap: Real-space dynamical mean-field analysis,New J. Phys. 10: 093008, 2008.Google Scholar
[826] S., Fuchs, E., Gull, M., Troyer, M., Jarrell, and T., Pruschke, “Spectral properties of the threedimensional Hubbard model,Phys. Rev. B 83: 235113, 2011.Google Scholar
[827] C., Lanczos, Applied Analysis, Prentice Hall, New York, 1956.Google Scholar
[828] G. H., Golub and C. F. Van, Loan, Matrix Computations, Baltimore University Press, Baltimore, MD, 1983.Google Scholar
[829] H. Q., Lin and J. E., Gubernatis, “Exact diagonalization methods for quantum systems,Comput. Phys. 7: 7400–407, 1993.Google Scholar
[830] E. R., Gagliano, E., Dagotto, A., Moreo, and F. C., Alcaraz, “Correlation functions of the antiferromagnetic Heisenberg model using a modified Lanczos method,Phys. Rev. B 34: 1677–1682, 1986.Google Scholar
[831] E. R., Gagliano and C. A., Balseiro, “Dynamical properties of quantum many-body systems at zero temperature,Phys. Rev. Lett. 59: 2999–3002, 1987.Google Scholar
[832] Q., Si, M. J., Rozenberg, G., Kotliar, and A. E., Ruckenstein, “Correlation induced insulator to metal transitions,Phys. Rev. Lett. 72: 2761–2764, 1994.Google Scholar
[833] M., Caffarel and W., Krauth, “Exact diagonalization approach to correlated fermions in infinite dimensions: Mott transition and superconductivity,Phys. Rev. Lett. 72: 1545–1548, 1994.Google Scholar
[834] T., Helgaker, J., Olsen, and P., Jorgensen, Molecular Electronic-Structure Theory, Wiley, Chichester, 1996.Google Scholar
[835] I. R., Levine, Quantum Chemistry, 6th Ed., Prentice Hall, Upper Saddle River, NJ, 1996.Google Scholar
[836] D., Zgid and G. K.-L., Chan, “Dynamical mean-field theory from a quantum chemical perspective,J. Chem. Phys. 134: 094115, 2011.Google Scholar
[837] D., Zgid, E., Gull, and G. K.-L., Chan, “Truncated configuration interaction expansions as solvers for correlated quantum impurity models and dynamical mean-field theory,Phys. Rev. B 86: 165128, 2012.Google Scholar
[838] C., Lin and A. A., Demkov, “Efficient variational approach to the impurity problem and its application to the dynamical mean-field theory,Phys. Rev. B 88: 035123, 2013.Google Scholar
[839] Y., Lu, M., Höppner, O., Gunnarsson, and M. W., Haverkort, “Efficient real-frequency solver for dynamical mean-field theory,Phys. Rev. B 90: 085102, 2014.Google Scholar
[840] N., Lin, C. A., Marianetti, A. J., Millis, and D. R., Reichman, “Dynamical mean-field theory for quantum chemistry,Phys. Rev. Lett. 106: 096402, 2011.Google Scholar
[841] R. P., Feynman, Statistical Mechanics: A Set of Lectures, Benjamin/Cummings, Reading, MA, 1970.Google Scholar
[842] J. W., Negele and H., Orland, Quantum Many-Particle Systems (Advanced Book Classics, originally published in 1988 by Westview Press, Boulder, CO), Addison-Wesley, Reading, MA, 1995.Google Scholar
[843] E., Gull, A. J., Millis, A. I., Lichtenstein, A. N., Rubtsov, M., Troyer, and P., Werner, “Continuous-time Monte Carlo methods for quantum impurity models,Rev. Mod. Phys. 83: 349–404, 2011.Google Scholar
[844] J. E., Hirsch and R. M., Fye, “Monte Carlo method for magnetic impurities in metals,Phys. Rev. Lett. 56: 2521–2524, 1986.Google Scholar
[845] R. M., Fye and J. E., Hirsch, “Monte Carlo study of the symmetric Anderson-impurity model,Phys. Rev. B 38: 433–441, 1988.Google Scholar
[846] R., Blankenbecler, D. J., Scalapino, and R. L., Sugar, “Monte Carlo calculations of coupled boson–fermion systems. I,Phys. Rev. D 24: 2278–2286, 1981.Google Scholar
[847] J. E., Hirsch, “Discrete Hubbard–Stratonovich transformation for fermion lattice models,Phys. Rev. B 28: 4059–4061, 1983.Google Scholar
[848] D., Rost, F., Assaad, and N., Blümer, “Quasi-continuous-time impurity solver for the dynamical mean-field theory with linear scaling in the inverse temperature,Phys. Rev. E 87: 053305, 2013.Google Scholar
[849] J., Yoo, S., Chandrasekharan, R. K., Kaul, D., Ullmo, and H. U., Baranger, “On the sign problem in the Hirsch–Fye algorithm for impurity problems,J. Phys. A: Math. Gen. 38: 10307–10310, 2005.Google Scholar
[850] D. C., Handscomb, “The Monte Carlo method in quantum statistical mechanics,Math. Proc. Cambridge Philos. Soc. 58: 594–598, 1962.Google Scholar
[851] D. C., Handscomb, “A rigorous lower bound for the efficiency of Monte Carlo techniques,Math. Proc. Cambridge Philos. Soc. 60: 357–358, 1964.Google Scholar
[852] J. W., Lyklema, “Quantum-statistical Monte Carlo method for Heisenberg spins,Phys. Rev. Lett. 49: 88–90, 1982.Google Scholar
[853] M. H., Kalos, “Monte Carlo calculations of the ground state of three- and four-body nuclei,Phys. Rev. 128: 1791, 1962.Google Scholar
[854] N. V., Prokof'ev, B. V., Svistunov, and I. S., Tupitsyn, “Exact quantum Monte Carlo process for the statistics of discrete systems (translation: JETP Lett. 64: 911, 1996),Pis'ma Zh. Eksp. Teor. Fiz. 64: 853, 1996.Google Scholar
[855] S. M. A., Rombouts, K., Heyde, and N., Jachowicz, “Quantum Monte Carlo method for fermions, free of discretization errors,Phys. Rev. Lett. 82: 4155–4159, 1999.Google Scholar
[856] A. N., Rubtsov, V. V., Savkin, and A. I., Lichtenstein, “Continuous-time quantum Monte Carlo method for fermions,Phys. Rev. B 72: 035122, 2005.Google Scholar
[857] P., Werner, A., Comanac, L. de', Medici, M., Troyer, and A. J., Millis, “Continuous-time solver for quantum impurity models,Phys. Rev. Lett. 97: 076405, 2006.Google Scholar
[858] K., Haule, “Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base,Phys. Rev. B 75: 155113, 2007.Google Scholar
[859] E., Gull, P., Werner, O., Parcollet, and M., Troyer, “Continuous-time auxiliary-field Monte Carlo for quantum impurity models,Europhysics Lett. 82: 57003, 2008.Google Scholar
[860] K., Mikelsons, A., Macridin, and M., Jarrell, “Relationship between Hirsch–Fye and weak-coupling diagrammatic quantum Monte Carlo methods,Phys. Rev. E 79: 057701, 2009.Google Scholar
[861] E., Gull, P., Werner, A. J., Millis, and M., Troyer, “Performance analysis of continuous-time solvers for quantum impurity models,Phys. Rev. B 76: 235123, 2007.Google Scholar
[862] P., Werner and A. J., Millis, “Efficient dynamical mean field simulation of the Holstein– Hubbard model,Phys. Rev. Lett. 99: 146404, 2007.Google Scholar
[863] P., Werner and A. J., Millis, “Dynamical screening in correlated electron materials,Phys. Rev. Lett. 104: 146401, 2010.Google Scholar
[864] F. F., Assaad and T. C., Lang, “Diagrammatic determinantal quantum Monte Carlo methods: Projective schemes and applications to the Hubbard–Holstein model,Phys. Rev. B 76: 035116, 2007.Google Scholar
[865] O., Miura and T., Fujiwara, “Electronic structure and effects of dynamical electron correlation in ferromagnetic bcc Fe, fcc Ni, and antiferromagnetic NiO,Phys. Rev. B 77: 195124, 2008.Google Scholar
[866] H., Keiter and J. C., Kimball, “Perturbation technique for the Anderson hamiltonian,Phys. Rev. Lett. 25: 672–675, 1970.Google Scholar
[867] N. E., Bickers, “Review of techniques in the large-n expansion for dilute magnetic alloys,Rev. Mod. Phys. 59: 845–939, 1987.Google Scholar
[868] K., Haule, V., Oudovenko, S. Y., Savrasov, and G., Kotliar, “The α-γ transition in Ce: A theoretical view from optical spectroscopy,Phys. Rev. Lett. 94: 036401, 2005.Google Scholar
[869] S., Kirchner, J., Kroha, and P., Wölfle, “Dynamical properties of the Anderson impurity model within a diagrammatic pseudoparticle approach,Phys. Rev. B 70: 165102, 2004.Google Scholar
[870] D. J., García, K., Hallberg, and M. J., Rozenberg, “Dynamical mean field theory with the density matrix renormalization group,Phys. Rev. Lett. 93: 246403, 2004.Google Scholar
[871] S., Nishimoto, F., Gebhard, and E., Jeckelmann, “Dynamical mean-field theory calculation with the dynamical density-matrix renormalization group,Physica B: Condens. Matter 378–380: 283–285, 2006.Google Scholar
[872] R., Bulla, T. A., Costi, and T., Pruschke, “Numerical renormalization group method for quantum impurity systems,Rev. Mod. Phys. 80: 395–450, 2008.Google Scholar
[873] J. H. Van, Vleck, “Models of exchange coupling in ferromagnetic media,Rev. Mod. Phys. 25: 220–227, 1953.Google Scholar
[874] K. T., Moore and G. van der, Laan, “Nature of the 5f states in actinide metals,Rev. Mod. Phys. 81: 235–298, 2009.Google Scholar
[875] N. F., Mott and R., Peierls, “Discussion of the paper by de Boer and Verwey,Proc.Phys. Soc. 49: 72, 1937.Google Scholar
[876] C. M., Varma, “Mixed-valence compounds,Rev. Mod. Phys. 48: 219–238, 1976.Google Scholar
[877] R., Resta, “Why are insulators insulating and metals conducting?J. Phys.: Condens. Matter 14:R625–656, 2002.
[878] L. F., Mattheiss, “Electronic structure of the 3d transition-metal monoxides. I. Energy-band results,Phys. Rev. B 5: 290–306, 1972.Google Scholar
[879] L. F., Mattheiss, “Electronic structure of the 3d transition-metal monoxides. II. Interpretation,Phys. Rev. B 5: 306–315, 1972.Google Scholar
[880] J. H. Van, Vleck, “Valence strength and the magnetism of complex salts,J. Chem. Phys. 3: 807–813, 1935.Google Scholar
[881] F. A., Cotton, The Crystal Field Theory. Chemical Applications of Group Theory, 3rd Ed., Wiley, New York, 1990.Google Scholar
[882] R. J., Elliott, Magnetic Properties of Rare Earth Metals, Plenum Press, New York, 1972.Google Scholar
[883] J. S., Griffith and L. E., Orgel, “Ligand-field theory,Q. Rev. Chem. Soc. 11: 381–393, 1957.Google Scholar
[884] S., Lefebvre, P., Wzietek, S., Brown, C., Bourbonnais, D., Jérome, C., Mézière, M., Fourmigué, and P., Batail, “Mott transition, antiferromagnetism, and unconventional superconductivity in layered organic superconductors,Phys. Rev. Lett. 85: 5420–5423, 2000.Google Scholar
[885] K., Kanoda and R., Kato, “Mott physics in organic conductors with triangular lattices,Ann. Rev. Condens. Matter Phys. 2: 167–188, 2011.Google Scholar
[886] R. H., McKenzie, “Similarities between organic and cuprate superconductors,Science 278: 820–821, 1997.Google Scholar
[887] J., Zaanen, G. A., Sawatzky, and J.W., Allen, “Band gaps and electronic structure of transitionmetal compounds,Phys. Rev. Lett. 55: 418–421, 1985.Google Scholar
[888] P., Fulde, Electron Correlation in Molecules and Solids, 3nd Ed., Springer-Verlag, Berlin, 2003.Google Scholar
[889] The Theory of Transition-Metal Ions, edited by J. S., Griffith, Cambridge University Press, Cambridge, 1961.
[890] H., Skriver, The LMTO Method, Springer-Verlag, New York, 1984.Google Scholar
[891] E., Pavarini, S., Biermann, A., Poteryaev, A. I., Lichtenstein, A., Georges, and O. K., Andersen, “Mott transition and suppression of orbital fluctuations in orthorhombic 3d1 perovskites,Phys. Rev. Lett. 92: 176403, 2004.Google Scholar
[892] N., Marzari and D., Vanderbilt, “Maximally localized generalized Wannier functions for composite energy bands,Phys. Rev. B 56: 12847–12865, 1997.Google Scholar
[893] C., Edmiston and K., Ruedenberg, “Localized atomic and molecular orbitals,Rev. Mod. Phys. 35: 457–464, 1963.Google Scholar
[894] I., Souza, N., Marzari, and D., Vanderbilt, “Maximally localized Wannier functions for entangled energy bands,Phys. Rev. B 65: 035109, 2002.Google Scholar
[895] A. K., McMahan, R. M., Martin, and S., Satpathy, “Calculated effective hamiltonian for La2CuO4 and solution in the impurity Anderson approximation,Phys. Rev. B 38: 6650, 1988.Google Scholar
[896] J. F., Herbst, D. N., Lowy, and R. E., Watson, “Single-electron energies, many-electron effects, and the renormalized-atom scheme as applied to rare-earth metals,Phys. Rev. B 6: 1913–1924, 1972.Google Scholar
[897] J. F., Herbst, R. E., Watson, and J. W., Wilkins, “Relativistic calculations of 4f excitation energies in the rare-earth metals: Further results,Phys. Rev. B 17: 3089–3098, 1978.Google Scholar
[898] P. H., Dederichs, S., Blügel, R., Zeller, and H., Akai, “Ground states of constrained systems: Application to cerium impurities,Phys. Rev. Lett. 53: 2512–2515, 1984.Google Scholar
[899] O. E., Gunnarsson, O. K., Andersen, O., Jepsen, and J., Zaanen, “Density-functional calculation of the parameters in the Anderson model: Application to Mn in CdTe,Phys. Rev. B 39: 1708–1722, 1989.Google Scholar
[900] O. E., Gunnarsson, “Calculation of parameters in model hamiltonians,Phys. Rev. B 41:514– 518, 1990.
[901] V. I., Anisimov and O. E., Gunnarsson, “Density-functional calculation of effective Coulomb interactions in metals,Phys. Rev. B 43: 7570–7574, 1991.Google Scholar
[902] V. I., Anisimov, J., Zaanen, and O. K., Andersen, “Band theory and Mott insulators: Hubbard U instead of Stoner I,Phys. Rev. B 44: 943–954, 1991.Google Scholar
[903] M., Cococcioni and S. de, Gironcoli, “Linear response approach to the calculation of the effective interaction parameters in the LDA+U method,Phys. Rev. B 71: 035105, 2005.Google Scholar
[904] W. E., Pickett, S. C., Erwin, and E. C., Ethridge, “Reformulation of the LDA+U method for a local-orbital basis,Phys. Rev. B 58: 1201–1209, 1998.Google Scholar
[905] T., Bandyopadhyay and D. D., Sarma, “Calculation of Coulomb interaction strengths for 3d transition metals and actinides,Phys. Rev. B 39: 3517–3521, 1989.Google Scholar
[906] K., Karlsson, F., Aryasetiawan, and O., Jepsen, “Method for calculating the electronic structure of correlated materials from a truly first-principles LDA+U scheme,Phys. Rev. B 81: 245113, 2010.Google Scholar
[907] H., Jiang, R. I., Gomez-Abal, P., Rinke, and M., Scheffler, “First-principles modeling of localized d states with the GW@LDA+U approach,Phys. Rev. B 82: 045108, 2010.Google Scholar
[908] M. S., Hybertsen, M., Schlüter, and N. E., Christensen, “Calculation of Coulomb interaction parameters for La2CuO4 using a constrained-density-functional approach,Phys. Rev. B 39: 9028, 1989.Google Scholar
[909] A. K., McMahan, J. F., Annett, and R. M., Martin, “Cuprate parameters from numerical Wannier functions.Phys. Rev. B 42: 6268, 1990.Google Scholar
[910] S. B., Bacci, E. R., Gagliano, R. M., Martin, and J. F., Annett, “Derivation of a one-band Hubbard model for CuO planar materials.Phys. Rev. B 44: 7504, 1991.Google Scholar
[911] M., Karolak, G., Ulm, T., Wehling, V., Mazurenko, A., Poteryaev, and A., Lichtenstein, “Double counting in LDA+DMFT – the example of NiO,J. Electron Spectrosc. Relat. Phenom. 181: 11–15, 2010.Google Scholar
[912] M. T., Czyzyk and G. A., Sawatzky, “Local-density functional and on-site correlations: The electronic structure of La2CuO4 and LaCuO3,Phys. Rev. B 49: 14211–14228, 1994.Google Scholar
[913] E. R., Ylvisaker, J., KunešA. K., McMahan, and W. E., Pickett, “Charge fluctuations and the valence transition in Yb under pressure,Phys. Rev. Lett. 102: 246401, 2009.Google Scholar
[914] A., Svane and O., Gunnarsson, “Localization in the self-interaction-corrected densityfunctional formalism,Phys Rev. B 37: 9919, 1988.Google Scholar
[915] A., Svane and O., Gunnarsson, “Transition-metal oxides in the self-interaction-corrected density functional formalism,Phys Rev. Lett. 65: 1148–1151, 1990.Google Scholar
[916] J., Hubbard, “The magnetism of iron,Phys. Rev. B 19: 2626–2636, 1979.Google Scholar
[917] J., Hubbard, “Magnetism of iron. II,Phys. Rev. B 20: 4584–4595, 1979.Google Scholar
[918] J., Hubbard, “Magnetism of nickel,Phys. Rev. B 23: 5974–5977, 1981.Google Scholar
[919] J. B., Staunton, “The electronic structure of magnetic transition metallic materials,Rep. Prog. Phys. 57: 1289, 1994.Google Scholar
[920] J., Staunton, B. L., Gyorffy, A. J., Pindor, G. M., Stocks, and H., Winter, “The ‘disordered local moment’ picture of itinerant magnetism at finite temperatures,J. Magn. Magn. Mater. 45: 15–22, 1984.Google Scholar
[921] B. L., Gyorffy, A. J., Pindor, J., Staunton, G. M., Stocks, and H., Winter, “A first-principles theory of ferromagnetic phase transitions in metals,J. Phys. F: Met. Phys. 15: 1337, 1985.Google Scholar
[922] J., Bünemann, W., Weber, and F., Gebhard, “Multiband Gutzwiller wave functions for general on-site interactions,Phys. Rev. B 57: 6896–6916, 1998.Google Scholar
[923] J., Bünemann, F., Gebhard, and W., Weber, “Gutzwiller-correlated wave functions for degenerate bands: Exact results in infinite dimensions,J. Phys.: Condens. Matter 9: 7343, 1997.Google Scholar
[924] J., Bünemann, F. Gebhard, T. Ohm, S. Weiser, and W. Weber, “Spin–orbit coupling in ferromagnetic nickel,Phys. Rev. Lett. 101: 236404, 2008.Google Scholar
[925] K. M., Ho, J., Schmalian, and C. Z., Wang, “Gutzwiller density functional theory for correlated electron systems,Phys. Rev. B 77: 073101, 2008.Google Scholar
[926] X., Deng, L., Wang, X., Dai, and Z., Fang, “Local density approximation combined with Gutzwiller method for correlated electron systems: Formalism and applications,Phys. Rev. B 79: 075114, 2009.Google Scholar
[927] B., Surer, M., Troyer, P., Werner, T. O., Wehling, A. M., Läuchli, A., Wilhelm, and A. I., Lichtenstein, “Multiorbital Kondo physics of Co in Cu hosts,Phys. Rev. B 85: 085114, 2012.Google Scholar
[928] K. A., GschneidnerJr. and L. R., Eyring, Handbook on the Physics and Chemistry of Rare Earths, North-Holland, Amsterdam, 1978.Google Scholar
[929] J. K., Lang, Y., Baer, and P. A., Cox, “Study of the 4f and valence band density of states in rare-earth metals. II. Experiment and results,J. Phys. F: Met. Phys. 11: 121–138, 1981.Google Scholar
[930] L. V., Pourovskii, K. T., Delaney, C. G. Van, deWalle, N. A., Spaldin, and A., Georges, “Role of atomic multiplets in the electronic structure of rare-earth semiconductors and semimetals,Phys. Rev. Lett. 102: 096401, 2009.Google Scholar
[931] M. J., Lipp, D., Jackson, H., Cynn, C., Aracne, W. J., Evans, and A. K., McMahan, “Thermal signatures of the Kondo volume collapse in cerium,Phys. Rev. Lett. 101: 165703, 2008.Google Scholar
[932] J. D., Thompson, Z., Fisk, J.M., Lawrence, J. L., Smith, and R. M., Martin, “Two critical points on the gamma–alpha phase boundary of cerium alloys,Phys. Rev. Lett. 50: 1081–1084, 1983.Google Scholar
[933] J.W., Allen, S. J., Ott, O. E., Gunnarsson, K., Schönhammer, M. B., Maple, M. S., Torikachvili, and I., Lindau, “Electronic structure of Ce and light rare earth intermetallics,Adv. Phys. 35: 275–316, 1986.Google Scholar
[934] P. W., Bridgeman, “The compressibility and pressure coefficient of resistance of ten elements,Proc. Am. Acad. Arts Sci. 62, 1927.
[935] L., Pauling, “Atomic radii and interatomic distances in metals,J. Am. Chem. Soc. 69: 542, 1947.Google Scholar
[936] A. W., Lawson and T.-Y., Tang, “Concerning the high pressure allotropic modification of cerium,Phys. Rev. 76: 301–302, 1949.Google Scholar
[937] K., Held, A. K., McMahan, and R. T., Scalettar, “Cerium volume collapse: Results from the merger of dynamical mean-field theory and local density approximation,Phys. Rev. Lett. 87: 276404, 2001.Google Scholar
[938] A. K., McMahan, K., Held, and R. T., Scalettar, “Thermodynamic and spectral properties of compressed Ce calculated using a combined local-density approximation and dynamical mean-field theory,Phys. Rev. B 67: 075108, 2003.Google Scholar
[939] K., Haule, C.-H., Yee, and K., Kim, “Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn5, CeCoIn5, and CeRhIn5,Phys. Rev. B 81: 195107, 2010.Google Scholar
[940] B., Johansson, “The α–γ transition in cerium is a Mott transition,Phil. Mag. 30: 469–482, 1974.Google Scholar
[941] B., Johansson, I. A., Abrikosov, M., Aldén, A. V., Ruban, and H. L., Skriver, “Calculated phase diagram for the γ ⇌ α transition in Ce,Phys. Rev. Lett. 74: 2335–2338, 1995.Google Scholar
[942] J. W., Allen and R. M., Martin, “Kondo volume collapse and the gamma to alpha transition in cerium,Phys. Rev. Lett. 49: 1106–1110, 1982.Google Scholar
[943] C., Lacroix, M., Lavagna, and M., Cyrot, “Volume collapse in the Kondo lattice,Phys. Lett. A 90: 210–212, 1982.Google Scholar
[944] J. W., Allen and L. Z., Liu, “Alpha–gamma transition in Ce. II. A detailed analysis of the Kondo volume-collapse model,Phys. Rev. B 46: 5047–5054, 1992.Google Scholar
[945] M., Casadei, X., Ren, P., Rinke, A., Rubio, and M., Scheffler, “Density-functional theory for f -electron systems: The α–γ phase transition in cerium,Phys. Rev. Lett. 109: 146402, 2012.Google Scholar
[946] R., Sakuma, T., Miyake, and F., Aryasetiawan, “Self-energy and spectral function of Ce within the GW approximation,Phys. Rev. B 86: 245126, 2012.Google Scholar
[947] M. B., Zölfl, I. A., Nekrasov, Th., Pruschke, V. I., Anisimov, and J., Keller, “Spectral and magnetic properties of α- and γ -Ce from dynamical mean-field theory and local density approximation,Phys. Rev. Lett. 87: 276403, 2001.Google Scholar
[948] B., Amadon, S., Biermann, A., Georges, and F., Aryasetiawan, “The alpha–gamma transition of cerium is entropy driven,Phys. Rev. Lett. 96: 066402, 2006.Google Scholar
[949] H. C., Choi, B. I., Min, J. H., Shim, K., Haule, and G., Kotliar, “Temperature-dependent Fermi surface evolution in heavy fermion CeIrIn5,Phys. Rev. Lett. 108: 016402, 2012.Google Scholar
[950] P. S., Riseborough, “Heavy fermion semiconductors,Adv. Phys. 49: 257–320, 2000.Google Scholar
[951] A., Menth, E., Buehler, and T. H., Geballe, “Magnetic and semiconducting properties of SmB6,Phys. Rev. Lett. 22: 295–298, 1969.Google Scholar
[952] R. M., Martin and J. W., Allen, “Theory of mixed valence: Metals or small gap insulators,J. Appl. Phys. 50: 7561–7566, 1979.Google Scholar
[953] V. N., Antonov, B. N., Harmon, and A. N., Yaresko, “Electronic structure of mixed-valence semiconductors in the LSDA+U approximation. II. SmB6 and YbB12,Phys. Rev. B 66: 165209, 2002.Google Scholar
[954] M., Dzero, K., Sun, V., Galitski, and P., Coleman, “Topological Kondo insulators,Phys. Rev. Lett. 104: 106408, 2010.Google Scholar
[955] S., Wolgastet al., “Low-temperature surface conduction in the Kondo insulator SmB6,Phys. Rev. B 88: 180405, 2013.Google Scholar
[956] J. H., Shim, K., Haule, and G., Kotliar, “Fluctuating valence in a correlated solid and the anomalous properties of delta-plutonium,Nature 446: 513–516, 2007.Google Scholar
[957] J., Minar, L., Chioncel, A., Perlov, H., Ebert, M. I., Katsnelson, and A. I., Lichtenstein, “Multiple-scattering formalism for correlated systems: A KKR-DMFT approach,Phys. Rev. B 72: 045125, 2005.Google Scholar
[958] J., Sánchez-Barriga, J., Braun, J., Minár, I., Di Marco, A., Varykhalov, O., Rader, V., Boni, V., Bellini, F., Manghi, H., Ebert, M. I., Katsnelson, A. I., Lichtenstein, O., Eriksson, W., Eberhardt, H. A., Dürr, and J., Fink, “Effects of spin-dependent quasiparticle renormalization in Fe, Co, and Ni photoemission spectra: An experimental and theoretical study,Phys. Rev. B 85: 205109, 2012.Google Scholar
[959] I., Leonov, D., Korotin, N., Binggeli, V. I., Anisimov, and D., Vollhardt, “Computation of correlation-induced atomic displacements and structural transformations in paramagnetic KCuF3 and LaMnO3,Phys. Rev. B 81: 075109, 2010.Google Scholar
[960] Y., Kakehashi, M., Atiqur, R., Patoary, and T., Tamashiro, “Dynamical coherent-potential approximation approach to excitation spectra in 3d transition metals,Phys. Rev. B 81: 245133, 2010.Google Scholar
[961] J. B., Staunton and B. L., Gyorffy, “Onsager cavity fields in itinerant-electron paramagnets,Phys. Rev. Lett. 69: 371–374, 1992.Google Scholar
[962] V., Antropov, “Magnetic short-range order above the Curie temperature of Fe and Ni,Phys. Rev. B 72: 140406, 2005.Google Scholar
[963] H., Zhang, B., Johansson, and L., Vitos, “Density-functional study of paramagnetic iron,Phys. Rev. B 84: 140411, 2011.Google Scholar
[964] J. B., Goodenough, “Metallic oxides,Prog. Solid State Chem. 5: 145–399, 1971.Google Scholar
[965] B. H., Brandow, “Electronic structure of Mott insulators,Adv. Phys. 26: 651–808, 1977.Google Scholar
[966] A. I., Poteryaev, J. M., Tomczak, S., Biermann, A., Georges, A. I., Lichtenstein, A. N., Rubtsov, T., Saha-Dasgupta, and O. K., Andersen, “Enhanced crystal-field splitting and orbital-selective coherence induced by strong correlations in V2O3,Phys. Rev. B 76: 085127, 2007.Google Scholar
[967] C., Castellani, C. R., Natoli, and J., Ranninger, “Magnetic structure of V2O3 in the insulating phase,Phys. Rev. B 18: 4945–4966, 1978.Google Scholar
[968] G., Keller, K., Held, V., Eyert, D., Vollhardt, and V. I., Anisimov, “Electronic structure of paramagnetic V2O3: Strongly correlated metallic and Mott insulating phase,Phys. Rev. B 70: 205116, 2004.Google Scholar
[969] A., Toschi, P., Hansmann, G., Sangiovanni, T., Saha-Dasgupta, O. K., Andersen, and K., Held, “Spectral properties of the Mott Hubbard insulator (Cr0.011 V0.989)2 O3 calculated by LDA+DMFT,J. Phys.: Conf. Series 200: 012208, 2010.Google Scholar
[970] J., Weinen, Ph.D. thesis, Universität zu Köln, “Hard X-ray photoelectron spectroscopy: New opportunities for soild state research,” 2015.
[971] G. A., Sawatzky and J. W., Allen, “Magnitude and origin of the band gap in NiO,Phys. Rev. Lett. 53: 2339–2342, 1984.Google Scholar
[972] O., Tjernberg, S., Söderholm, G., Chiaia, R., Girard, U. O., Karlsson, H., Nylén, and I., Lindau, “Influence of magnetic ordering on the NiO valence band,Phys. Rev. B 54: 10245–10248, 1996.Google Scholar
[973] A., Fujimori, F., Minami, and S., Sugano, “Multielectron satellites and spin polarization in photoemission from Ni compounds,Phys. Rev. B 29: 5225–5227, 1984.Google Scholar
[974] J., KunešI., Leonov, M., Kollar, K., Byczuk, V. I., Anisimov, and D., Vollhardt, “Dynamical mean-field approach to materials with strong electronic correlations,Eur. Phys. J. Special Topics 180: 5–28, 2009.Google Scholar
[975] S. J., Oh, J. W., Allen, I., Lindau, and J. C., Mikkelsen, “Resonant valence-band satellites and polar fluctuations in nickel and its compounds,Phys. Rev. B 26: 4845–4856, 1982.Google Scholar
[976] Z.-X., Shen, C. K., Shih, O., Jepsen, W. E., Spicer, I., Lindau, and J. W., Allen, “Aspects of the correlation effects, antiferromagnetic order, and translational symmetry of the electronic structure of NiO and CoO,Phys. Rev. Lett. 64: 2442–2445, 1990.Google Scholar
[977] Z.-X., Shen, R. S., List, D. S., Dessau, B. O., Wells, O., Jepsen, A. J., Arko, R., Barttlet, C. K., Shih, F., Parmigiani, J. C., Huang, and P. A. P., Lindberg, “Electronic structure of NiO: Correlation and band effects,Phys. Rev. B 44: 3604–3626, 1991.Google Scholar
[978] J., KunešV. I., Anisimov, S. L., Skornyakov, A. V., Lukoyanov, and D., Vollhardt, “NiO: Correlated band structure of a charge-transfer insulator,Phys. Rev. Lett. 99: 156404, 2007.Google Scholar
[979] J., KunešV. I., Anisimov, A. V., Lukoyanov, and D., Vollhardt, “Local correlations and hole doping in NiO: A dynamical mean-field study,Phys. Rev. B 75: 165115, 2007.Google Scholar
[980] S. Y., Savrasov and G., Kotliar, “Linear response calculations of lattice dynamics in strongly correlated systems,Phys. Rev. Lett. 90: 056401, 2003.Google Scholar
[981] X., Ren, I., Leonov, G., Keller, M., Kollar, I., Nekrasov, and D., Vollhardt, “LDA+DMFT computation of the electronic spectrum of NiO,Phys. Rev. B 74: 195114, 2006.Google Scholar
[982] J. van, Elp, H., Eskes, P., Kuiper, and G. A., Sawatzky, “Electronic structure of Li-doped NiO,Phys. Rev. B 45: 1612–1622, 1992.Google Scholar
[983] H., Eskes, M. B. J., Meinders, and G. A., Sawatzky, “Anomalous transfer of spectral weight in doped strongly correlated systems,Phys. Rev. Lett. 67: 1035–1038, 1991.Google Scholar
[984] C. S., Yoo, B., Maddox, J.-H. P., Klepeis, V., Iota, W., Evans, A., McMahan, M. Y., Hu, P., Chow, M., Somayazulu, D., Hausermann, R. T., Scalettar, and W. E., Pickett, “First-order isostructural Mott transition in highly compressed MnO,Phys. Rev. Lett. 94: 115502, 2005.Google Scholar
[985] K., Ohta, R. E., Cohen, K., Hirose, K., Haule, K., Shimizu, and Y., Ohishi, “Experimental and theoretical evidence for pressure-induced metallization in FeO with rocksalt-type structure,Phys. Rev. Lett. 108: 026403, 2012.Google Scholar
[986] R. E., Cohen, I. I., Mazin, and D. G., Isaak, “Magnetic collapse in transition metal oxides at high pressure: Implications for the earth,Science 275: 654–657, 1997.Google Scholar
[987] K., Umemoto and R. M., Wentzcovitch, “Multi-mbar phase transitions in minerals,Rev. Mineral. Geochem. 71: 299–314, 2010.Google Scholar
[988] J., KunešA. V., Lukoyanov, V. I., Anisimov, R. T., Scalettar, and W. E., Pickett, “Collapse of magnetic moment drives the Mott transition in MnO,Nat. Mater. 7: 198–202, 2008.Google Scholar
[989] D., Kasinathan, J., KunešK., Koepernik, C. V., Diaconu, R. L., Martin, I. D., Prodan, G. E., Scuseria, N., Spaldin, L., Petit, T. C., Schulthess, and W. E., Pickett, “Mott transition of MnO under pressure: A comparison of correlated band theories,Phys. Rev. B 74: 195110, 2006.Google Scholar
[990] J., van Elp, R. H., Potze, H., Eskes, R., Berger, and G. A., Sawatzky, “Electronic structure of MnO,Phys. Rev. B 44: 1530–1537, 1991.Google Scholar
[991] S., Biermann, F., Aryasetiawan, and A., Georges, “First-principles approach to the electronic structure of strongly correlated systems: Combining the GW approximation and dynamical mean-field theory,Phys. Rev. Lett. 90: 086402, 2003.Google Scholar
[992] F., Aryasetiawan, M., Imada, A., Georges, G., Kotliar, S., Biermann, and A. I., Lichtenstein, “Frequency-dependent local interactions and low-energy effective models from electronic structure calculations,Phys. Rev. B 70: 195104, 2004.Google Scholar
[993] T., Holstein, “Studies of polaron motion: Part I. The molecular-crystal model,Ann. Phys. 8: 325–342, 1959.Google Scholar
[994] T., Holstein, “Studies of polaron motion: Part II. The ‘small’ polaron,Ann. Phys. 8: 343–389, 1959.Google Scholar
[995] I. G., Lang and Y. A., Firsov, “Kinetic theory of semiconductors with low mobility (Zh. ksp. Teor. Fiz.43: 1843, 1962),Sov. Phys. JETP 16: 1301, 1963.Google Scholar
[996] M., Casula, Ph., Werner, L., Vaugier, F., Aryasetiawan, T., Miyake, A. J., Millis, and S., Biermann, “Low-energy models for correlated materials: Bandwidth renormalization from Coulombic screening,Phys. Rev. Lett. 109: 126408, 2012.Google Scholar
[997] A., Toschi, A. A., Katanin, and K., Held, “Dynamical vertex approximation: A step beyond dynamical mean-field theory,Phys. Rev. B 75: 045118, 2007.Google Scholar
[998] H., Kusunose, “Influence of spatial correlations in strongly correlated electron systems: Extension to dynamical mean field approximation,J. Phys. Soc. Japan 75: 054713, 2006.Google Scholar
[999] S. K., Sarker, “A new functional integral formalism for strongly correlated Fermi systems,J. Phys. C: Solid State Phys. 21:L667, 1988.
[1000] A. N., Rubtsov, M. I., Katsnelson, and A. I., Lichtenstein, “Dual fermion approach to nonlocal correlations in the Hubbard model,Phys. Rev. B 77: 033101, 2008.Google Scholar
[1001] H., Hafermann, G., Li, A. N., Rubtsov, M. I., Katsnelson, A. I., Lichtenstein, and H., Monien, “Efficient perturbation theory for quantum lattice models,Phys. Rev. Lett. 102: 206401, 2009.Google Scholar
[1002] A. N., Rubtsov, M. I., Katsnelson, A. I., Lichtenstein, and A., Georges, “Dual fermion approach to the two-dimensional Hubbard model: Antiferromagnetic fluctuations and Fermi arcs,Phys. Rev. B 79: 045133, 2009.Google Scholar
[1003] S., Biermann, “Dynamical screening effects in correlated electron materials – a progress report on combined many-body perturbation and dynamical mean field theory: GW+DMFT,J. Phys.: Condens. Matter 26: 173202, 2014.Google Scholar
[1004] R. P., Feynman, “Atomic theory of the ƛ transition in helium,Phys. Rev. 91: 1291–1301, 1953.Google Scholar
[1005] J., Dongarra and F., Sullivan, “Guest editors' introduction: The top 10 algorithms,Comput. Sci. Eng. 2: 22–23, 2000.Google Scholar
[1006] N., Metropolis, A., Rosenbluth, M., Rosenbluth, A., Teller, and E., Teller, “Equation of state calculations by fast computing machines,J. Chem. Phys. 21: 1087, 1953.Google Scholar
[1007] J. M., Hammersley and D. C., Handscomb, Monte Carlo Methods, Chapman and Hall, London, 1964.Google Scholar
[1008] W. K., Hastings, “Monte Carlo sampling methods using Markov chains and their applications,Biometrika 57: 97–109, 1970.Google Scholar
[1009] D., Frenkel and B., Smit, Understanding Molecular Simulation, From Algorithms to Applications, Academic Press, San Diego, CA, 2002.Google Scholar
[1010] B. L., Hammond, W. A., Lester Jr., and P. J., Reynolds, Monte Carlo Methods in ab initio Quantum Chemistry, World Scientific, Singapore, 1994.Google Scholar
[1011] D., Ceperley, G. V., Chester, and M. H., Kalos, “Monte Carlo simulation of a many-fermion system,Phys. Rev. B 16: 3081–3099, 1977.Google Scholar
[1012] G. H., Golub and C. F. Van, Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 1980.Google Scholar
[1013] M., Allen and D., Tildesley, Computer Simulation of Liquids, Oxford University Press, New York, 1989.Google Scholar
[1014] P., Rossky, J. D., Doll, and H. L., Friedman, “Brownian dynamics as smart Monte Carlo simulation,J. Chem. Phys. 69: 4628–33, 1978.Google Scholar
[1015] V., Natoli and D. M., Ceperley, “An optimized method for treating arbitrary long-ranged potentials,J. Comput. Phys. 117: 171, 1995.Google Scholar
[1016] B. K., Clark, M. A., Morales, J., McMinis, J., Kim, and G. E., Scuseria, “Computing the energy of a water molecule using multideterminants: A simple, efficient algorithm,J. Chem. Phys. 135: 244105, 2011.Google Scholar
[1017] D. M., Ceperley and M. H., Kalos, in Monte Carlo Methods in Statistical Physics, Topics in Condensed Matter Physics, edited by K., Binder, Springer-Verlag, Berlin, 1986, pp. 145–194.Google Scholar
[1018] W. M., Press, B. P., Flannery, S. A., Teukolsky, and W. T., Vetterling, Numerical Recipes, Cambridge University Press, Cambridge, 1986.Google Scholar
[1019] C. J., Umrigar, J., Toulouse, C., Filippi, S., Sorella, and R. G., Hennig, “Alleviation of the fermion-sign problem by optimization of many-body wave functions,Phys. Rev. Lett. 98: 110201, 2007.Google Scholar
[1020] J., Toulouse and C. J., Umrigar, “Optimization of quantum Monte Carlo wave functions by energy minimization,J. Chem. Phys. 126: 084102, 2007.Google Scholar
[1021] J., Toulouse and C. J., Umrigar, “Full optimization of Jastrow–Slater wave functions with application to the first-row atoms and homonuclear diatomic molecules,J. Chem. Phys. 128: 174101, 2008.Google Scholar
[1022] D. M., Ceperley, “The statistical error of Green's function Monte Carlo,J. Stat. Phys. 43: 815, 1986.Google Scholar
[1023] S., Fahy, X. W., Wang, and S. G., Louie, “Variational quantum Monte Carlo nonlocal pseudopotential approach to solids: Cohesive and structural properties of diamond,Phys. Rev. Lett 61: 1631–1634, 1988.Google Scholar
[1024] S., Fahy, X. W., Wang, and S. G., Louie, “Variational quantum Monte Carlo nonlocal pseudopotential approach to solids: Formulation and application to diamond, graphite, and silicon,Phys. Rev. B 42: 3503–3522, 1990.Google Scholar
[1025] M. H., Kalos and P., Whitlock, Monte Carlo Methods, Wiley, New York, 1986.Google Scholar
[1026] L., Mitas, E. L., Shirley, and D.M., Ceperley, “Nonlocal pseudopotentials and diffusion Monte Carlo.J. Chem. Phys. 95: 3467, 1991.Google Scholar
[1027] P. H., Acioli and D., Ceperley, “Generation of pseudopotentials from correlated wave functions,J. Chem. Phys. 100: 1, 1994.Google Scholar
[1028] J. R., Trail and R. J., Needs, “Smooth relativistic Hartree–Fock pseudopotentials for H to Ba and Lu to Hg,J. Chem. Phys. 122: 174109, 2005.Google Scholar
[1029] M., Burkatzki, C., Filippi, and M., Dolg, “Energy-consistent pseudopotentials for quantum Monte Carlo calculations,J. Chem. Phys. 126: 234105, 2007.Google Scholar
[1030] M., Burkatzki, C., Filippi, and M., Dolg, “Energy-consistent small-core pseudopotentials for 3d-transition metals adapted to quantum Monte Carlo calculations,J. Chem. Phys. 129: 164115, 2008.Google Scholar
[1031] C., Lin, F.-H., Zong, and D. M., Ceperley, “Twist-averaged boundary conditions in continuum Quantum Monte Carlo algorithms,Phys. Rev. E 64: 016702, 2001.Google Scholar
[1032] S., Chiesa, D.M., Ceperley, R. M., Martin, and M., Holzmann, “Finite-size error in many-body simulations with long-range interactions,Phys. Rev. Lett. 97: 076404, 2006.Google Scholar
[1033] N. D., Drummond, R. J., Needs, A., Sorouri, and W. M. C., Foulkes, “Finite-size errors in continuum quantum Monte Carlo calculations,Phys. Rev. B 78: 125106, 2008.Google Scholar
[1034] C. S., Hellberg and E., Manousakis, “Green's-function Monte Carlo for lattice fermions: Application to the t–J model,Phys. Rev. B 61: 11787–11806, 2000.Google Scholar
[1035] N., Trivedi and D. M., Ceperley, “Ground-state correlations of quantum antiferromagnets: A Green-function Monte Carlo study,Phys. Rev. B 40: 2737, 1989.Google Scholar
[1036] E., Manousakis, “The spin-1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides,Rev. Mod. Phys. 63: 1–62, 1991.Google Scholar
[1037] H. De, Raedt and W. von der, Linden, in The Monte Carlo Method in Condensed Matter Physics, edited by K., Binder, Springer-Verlag, Berlin, 1995, Vol. 71, pp. 249–284.Google Scholar
[1038] M., Capello, F., Becca, M., Fabrizio, S., Sorella, and E., Tosatti, “Variational description of Mott insulators,Phys. Rev. Lett. 94: 026406, 2005.Google Scholar
[1039] L. F., Tocchio, F., Becca, A., Parola, and S., Sorella, “Role of backflow correlations for the nonmagnetic phase of the t–t_ Hubbard model,Phys. Rev. B 78: 041101, 2008.Google Scholar
[1040] J. K. L., MacDonald, “Successive approximations by the Rayleigh–Ritz variation method,Phys. Rev. 43: 830, 1933.Google Scholar
[1041] D. M., Ceperley and B., Bernu, “The calculation of excited state properties with quantum Monte Carlo.J. Chem. Phys. 89: 6316, 1988.Google Scholar
[1042] M. P., Nightingale and V., Melik-Alaverdian, “Optimization of ground- and excited-state wave functions and van der Waals clusters,Phys. Rev. Lett. 87: 043401, 2001.Google Scholar
[1043] Y., Kwon, D. M., Ceperley, and R. M., Martin, “Quantum Monte Carlo calculation of the Fermi liquid parameters in the two-dimensional electron gas.Phys. Rev. B 50: 1684–1694, 1994.Google Scholar
[1044] M., Holzmann, B., Bernu, V., Olevano, R. M., Martin, and D. M., Ceperley, “Renormalization factor and effective mass of the two-dimensional electron gas,Phys. Rev. B 79: 041308, 2009.Google Scholar
[1045] N. D., Drummond and R. J., Needs, “Diffusion quantum Monte Carlo calculation of the quasiparticle effective mass of the two-dimensional homogeneous electron gas,Phys. Rev. B 87: 045131, 2013.Google Scholar
[1046] R., Asgari, B., Davoudi, M., Polini, G. F., Giuliani, M. P., Tosi, and G., Vignale, “Quasiparticle self-energy and many-body effective mass enhancement in a two-dimensional electron liquid,Phys. Rev. B 71: 045323, 2005.Google Scholar
[1047] H.-J., Schulze, P., Schuck, and N., Van Giai, “Two-dimensional electron gas in the random-phase approximation with exchange and self-energy corrections,Phys. Rev. B 61: 8026–8032, 2000.Google Scholar
[1048] D., Ceperley, in Recent Progress in Many-Body Theories, edited by J. G., Zabolitsky, Springer-Verlag, Berlin, 1981, p. 262.Google Scholar
[1049] N., Metropolis and S., Ulam, “The Monte Carlo method,J. Am. Stat. Assoc. 247: 335, 1949.Google Scholar
[1050] M. D., Donsker and M., Kac, “A sampling method for determining the lowest eigenvalue and the principal eigenfunction of Schrodinger's equation,J. Res. Nat. Bur. Stand. 44: 551–557, 1950.Google Scholar
[1051] M. H., Kalos, D., Levesque, and L., Verlet, “Helium at zero temperature with hard-sphere and other forces,Phys. Rev. A 9: 2178–2195, 1974.Google Scholar
[1052] J. B., Anderson, “A random-walk simulation of the Schrödinger equation: H+ 3,J. Chem. Phys. 63: 1499–1503, 1975.Google Scholar
[1053] J. B., Anderson, “Quantum chemistry by random walk,J. Chem. Phys. 65: 4121–4127, 1976.Google Scholar
[1054] D. M., Ceperley, “The simulation of quantum systems with random walks: A new algorithm for charged systems,J. Comput. Phys. 51: 404, 1983.Google Scholar
[1055] H. F., Trotter, “On the product of semi-groups of operators,Proc. Am. Math. Soc. 10: 545–551, 1959.Google Scholar
[1056] E., Nelson, “Feynman integrals and the Schrödinger equation,J. Math. Phys. 5: 332–343, 1964.Google Scholar
[1057] M., Caffarel and P., Claverie, “Development of a pure diffusion quantum Monte Carlo method using a full generalized Feynman–Kac formula. I. Formalism,J. Chem. Phys. 88:1088– 1099, 1988.
[1058] R. C., Grimm and R. G., Storer, “Monte Carlo solution of Schrödinger's equation,J. Comput. Phys. 7: 134–156, 1971.Google Scholar
[1059] P. J., Reynolds, D. M., Ceperley, B. J., Alder, and W. A., Lester, “Fixed-node quantum Monte Carlo for molecules,J. Chem. Phys. 77: 5593, 1982.Google Scholar
[1060] D. M., Ceperley, M. H., Kalos, and J. L., Lebowitz, “The computer simulation of the static and dynamic properties of a polymer chain,Macromolecules 14: 1472, 1981.Google Scholar
[1061] C. J., Umrigar, M. P., Nightingale, and K. J. Runge, “A diffusion Monte Carlo algorithm with very small time-step errors,J. Chem. Phys. 99: 2865–2890, 1993.Google Scholar
[1062] J. T., Krogel and D. M., Ceperley, in Advances in Quantum Monte Carlo, edited by S., Rothstein, S., Tanaka, and W. A., Lester Jr., ACS Symposium Series, Washington, D.C., 2012, Vol. 1094, Ch. 3, pp. 13–26.Google Scholar
[1063] M. A., Lee, K. E., Schmidt, M. H., Kalos, and G. V., Chester, “Green's function Monte Carlo method for liquid 3He,Phys. Rev. Lett. 46: 728–731, 1981.Google Scholar
[1064] D. M., Arnow, M. H., Kalos, M. A., Lee, and K. E., Schmidt, “Green's function Monte Carlo for few fermion problems,J. Chem. Phys. 77: 5562–5572, 1982.Google Scholar
[1065] G. H., Booth, A. J. W., Thom, and A., Alavi, “Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space,J. Chem. Phys. 131: 054106, 2009.Google Scholar
[1066] D. M., Ceperley, “Fermion nodes,J. Stat. Phys. 63: 1237, 1991.Google Scholar
[1067] D. J., Klein and H. M., Pickett, “Nodal hypersurfaces and Anderson's random-walk simulation of the Schrödinger equation,J. Chem. Phys. 64: 4811–4812, 1976.Google Scholar
[1068] L., Mitas, “Structure of fermion nodes and nodal cells,Phys. Rev. Lett. 96: 240402, 2006.Google Scholar
[1069] G., Ortiz, D. M., Ceperley, and R. M., Martin, “New stochastic method for systems with broken time-reversal symmetry – 2d fermions in a magnetic field,Phys. Rev. Lett. 71: 2777–2780, 1993.Google Scholar
[1070] W. M. C., Foulkes, R. Q., Hood, and R. J., Needs, “Symmetry constraints and variational principles in diffusion quantum Monte Carlo calculations of excited-state energies,Phys. Rev. B 60: 4558–4570, 1999.Google Scholar
[1071] D. M., Ceperley and B. J., Alder, “QuantumMonte Carlo for molecules: Green's function and nodal release,J. Chem. Phys. 81: 5833, 1984.Google Scholar
[1072] M. D., Jones, G., Ortiz, and D. M., Ceperley, “Released-phase quantum Monte Carlo.Phys. Rev. E 55: 6202–6210, 1997.Google Scholar
[1073] D. F. B., ten Haaf, H. J. M., van Bemmel, J. M. J., van Leeuwen, W., van Saarloos, and D. M., Ceperley, “Fixed-node QMC method for lattice fermions,Phys. Rev. B 51: 13039, 1995.Google Scholar
[1074] R., Assaraf and M., Caffarel, “Zero-variance zero-bias principle for observables in quantum Monte Carlo: Application to forces,J. Chem. Phys. 119: 10536–10552, 2003.Google Scholar
[1075] L., Reatto, “Structure of the ground-state wave function of quantum fluids and ‘exact’ numerical methods,Phys. Rev. B 26: 130–137, 1982.Google Scholar
[1076] K. S., Liu, M. H., Kalos, and G. V., Chester, “Quantum hard spheres in a channel,Phys. Rev. A 10: 303–308, 1974.Google Scholar
[1077] D. M., Ceperley and B. J., Alder, “Muon alpha sticking probability in muon catalyzed fusion,Phys. Rev. A 31: 1999, 1985.Google Scholar
[1078] S., Chiesa, D. M., Ceperley, and S.-W., Zhang, “Accurate, efficient and simple forces with quantum Monte Carlo methods,Phys. Rev. Lett. 94:036404: 1–4, 2005.Google Scholar
[1079] M. M., Hurley and P. A., Christiansen, “Relativistic effective potentials in quantum Monte Carlo calculations,J. Chem. Phys. 86: 1069–1070, 1987.Google Scholar
[1080] M., Casula, “Beyond the locality approximation in the standard diffusion Monte Carlo method,Phys. Rev. B 74: 161102, 2006.Google Scholar
[1081] M., Casula, S., Moroni, S., Sorella, and C., Filippi, “Size-consistent variational approaches to nonlocal pseudopotentials: Standard and lattice regularized diffusion Monte Carlo methods revisited,J. Chem. Phys. 132: 154113, 2010.Google Scholar
[1082] G., Sugiyama and S. E., Koonin, Ann. Phys. N. Y. 168: 1, 1986.
[1083] S. B., Fahy and D. R., Hamann, “Positive-projection Monte Carlo simulation: A new variational approach to strongly interacting fermion systems,Phys. Rev. Lett. 65: 3437–3440, 1990.Google Scholar
[1084] S., Zhang, J., Carlson, and J. E., Gubernatis, “Constrained path Monte Carlo method for fermion ground states,Phys. Rev. B 55: 7464–7477, 1997.Google Scholar
[1085] S., Zhang and H., Krakauer, “Quantum Monte Carlo method using phase-free random walks with Slater determinants,Phys. Rev. Lett. 90: 136401, 2003.Google Scholar
[1086] S., Zhang, in Emergent Phenomena in Correlated Matter: Lecture Notes of the Autumn School 2013, Forschungszentrum Julich, edited by E., Pavarini, E., Koch, and U., Schollwock, Forschungszentrum Juelich GmbH and Institute for Advanced Simulations, Juelich, Germany, 2013.Google Scholar
[1087] R. L., Stratonovich, “On a method of calculating quantum distribution functions [translation: Soviet phys. doklady 2: 416, 1958],Doklady Akad. Nauk S.S.S.R. 115: 1097, 1957.Google Scholar
[1088] M., Suewattana, W., Purwanto, S., Zhang, H., Krakauer, and E. J., Walter, “Phaseless auxiliary-field quantum Monte Carlo calculations with plane waves and pseudopotentials: Applications to atoms and molecules,Phys. Rev. B 75: 245123, 2007.Google Scholar
[1089] W., Purwanto, H., Krakauer, Y., Virgus, and S., Zhang, “Assessing weak hydrogen binding on Ca+ centers: An accurate many-body study with large basis sets,J. Chem. Phys. 135: 164105, 2011.Google Scholar
[1090] J., Carlson, J. E., Gubernatis, G., Ortiz, and S., Zhang, “Issues and observations on applications of the constrained-path Monte Carlo method to many-fermion systems,Phys. Rev. B 59: 12788–12798, 1999.Google Scholar
[1091] J. J., Shepherd, G. H., Booth, and A., Alavi, “Investigation of the full configuration interaction quantum Monte Carlo method using homogeneous electron gas models,J. Chem. Phys. 136: 244101, 2012.Google Scholar
[1092] C.-C., Chang and S., Zhang, “Spin and charge order in the doped Hubbard model: Longwavelength collective modes,Phys. Rev. Lett. 104: 116402, 2010.Google Scholar
[1093] C.-C., Chang and S., Zhang, “Spatially inhomogeneous phase in the two-dimensional repulsive Hubbard model,Phys. Rev. B 78: 165101, 2008.Google Scholar
[1094] E., Wigner and H. B., Huntington, “On the possibility of a metallic modification of hydrogen,J. Chem. Phys. 3: 764, 1935.Google Scholar
[1095] D. M., Ceperley and B. J., Alder, “Ground state of solid hydrogen at high pressures,Phys. Rev. B 36: 2092, 1987.Google Scholar
[1096] V., Natoli, R. M., Martin, and D. M., Ceperley, “Crystal structure of atomic hydrogen,Phys. Rev. Lett. 70: 1952–1955, 1993.Google Scholar
[1097] V., Natoli, R. M., Martin, and D. M., Ceperley, “Crystal structure of molecular hydrogen at high pressure,Phys. Rev. Lett. 74: 1601–1604, 1995.Google Scholar
[1098] J. M., McMahon, M. A., Morales, C., Pierleoni, and D. M., Ceperley, “The properties of hydrogen and helium under extreme conditions,Rev. Mod. Phys. 84: 1607–1653, 2012.Google Scholar
[1099] R. C., Clay, J., McMinis, J. M., McMahon, C., Pierleoni, D. M., Ceperley, and M. A. Morales, “Benchmarking exchange–correlation functionals for hydrogen at high pressures using quantum Monte Carlo,Phys. Rev. B 89: 184106, 2014.Google Scholar
[1100] K. P., Esler, R. E., Cohen, B., Militzer, J., Kim, R. J., Needs, and M. D., Towler, “Fundamental high-pressure calibration from all-electron quantum Monte Carlo calculations,Phys. Rev. Lett. 104: 185702, 2010 (see also Supplemental Material).Google Scholar
[1101] H. K., Mao, J., Xu, and P. M., Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions,J. Geophys. Res.: Solid Earth 91: 4673–4676, 1986.Google Scholar
[1102] A. J., Williamson, R. Q., Hood, R. J., Needs, and G., Rajagopal, “Diffusion quantum Monte Carlo calculations of the excited states of silicon,Phys. Rev. B 57: 12140–12144, 1998.Google Scholar
[1103] N., Nemec, “Diffusion Monte Carlo: Exponential scaling of computational cost for large systems,Phys. Rev. B 81: 035119, 2010.Google Scholar
[1104] S., Baroni and S. Moroni, “Reptation quantum Monte Carlo: A method for unbiased groundstate averages and imaginary-time correlations,Phys. Rev. Lett. 82: 4745–4748, 1999.Google Scholar
[1105] C., Pierleoni, B., Bernu, D. M., Ceperley, and W. R., Magro, “Equation of state of the hydrogen plasma by path integral Monte Carlo simulation.Phys. Rev. Lett. 73: 2145–2148, 1994.Google Scholar
[1106] E. W., Brown, B. K., Clark, J. L., DuBois, and D. M., Ceperley, “Path-integral Monte Carlo simulation of the warm dense homogeneous electron gas,Phys. Rev. Lett. 110: 146405, 2013.Google Scholar
[1107] E. W., Brown, J. L., DuBois, M., Holzmann, and D. M., Ceperley, “Exchange-correlation energy for the three-dimensional homogeneous electron gas at arbitrary temperature,Phys. Rev. B 88: 081102, 2013.Google Scholar
[1108] E. L., Pollock and D. M., Ceperley, “Simulation of quantum many-body systems by path integral methods,Phys. Rev. B 30: 2555, 1984.Google Scholar
[1109] I., Kylänpää and T. T., Rantala, “Finite temperature quantum statistics of H+ 3 molecular ion,J. Chem. Phys. 133: 044312, 2010.Google Scholar
[1110] D. M., Ceperley, “Path integrals in the theory of condensed helium,Rev. Mod. Phys. 67: 279, 1995.Google Scholar
[1111] M. F., Herman, E. J., Bruskin, and B. J., Berne, “On path integral Monte Carlo simulations,J. Chem. Phys. 76: 5150–5155, 1982.Google Scholar
[1112] M. E., Tuckerman, Statistical Mechanics: Theory and Molecular Simulation, Oxford University Press, Oxford, 2010.Google Scholar
[1113] M., Ceriotti, D. E., Manolopoulos, and M., Parrinello, “Accelerating the convergence of path integral dynamics with a generalized Langevin equation,J. Chem. Phys. 134: 084104, 2011.Google Scholar
[1114] L., Candido, P., Phillips, and D. M., Ceperley, “Single and paired point defects in a 2DWigner crystal,Phys. Rev. Lett. 86: 492–495, 2000.Google Scholar
[1115] B., Militzer and D. M., Ceperley, “Path integral Monte Carlo simulation of the low-density hydrogen plasma,Phys. Rev. E 63: 66404, 2001.Google Scholar
[1116] C., Pierleoni, D. M., Ceperley, and M., Holzmann, “Coupled electron ion Monte Carlo calculations of dense metallic hydrogen,Phys. Rev. Lett. 93:146402: 1–4, 2004.Google Scholar
[1117] K., Delaney, C., Pierleoni, and D. M., Ceperley, “QuantumMonte Carlo simulation of the high pressure molecular–atomic transition in fluid hydrogen,Phys. Rev. Lett. 97, 2006.
[1118] J. A., Morrone and R., Car, “Nuclear quantum effects in water,Phys. Rev. Lett. 101: 017801, 2008.Google Scholar
[1119] C., Filippi and D. M., Ceperley, “Path integral Monte Carlo calculation of the kinetic energy of condensed lithium.Phys. Rev. B 57: 252–257, 1998.Google Scholar
[1120] C. H, Bennett, “Efficient estimation of free energy differences from Monte Carlo data,J. Comput. Phys. 22: 245–268, 1976.Google Scholar
[1121] D. M., Ceperley and G., Jacucci, “The calculation of exchange frequencies in bcc 3He with path integral Monte Carlo method.Phys. Rev. Lett. 58: 1648–1651, 1987.Google Scholar
[1122] B., Bernu and D., Ceperley, in Quantum Monte Carlo Methods in Physics and Chemistry, edited by M. P., Nightingale and C. J., Umrigar, Kluwer, Dordrecht, 1999, pp. 161–182.Google Scholar
[1123] D. J., Thouless, “Exchange in solid 3He and the Heisenberg hamiltonian,Proc. Phys. Soc. London 86: 893, 1965.Google Scholar
[1124] P. A. M., Dirac, “Quantum mechanics of many-electron systems,Proc. Roy. Soc. London, Ser. A 123: 714–733, 1929.Google Scholar
[1125] M., Roger, “Multiple-spin exchange in strongly correlated fermion systems,J. Low Temp. Phys. 162: 625–637, 2011.Google Scholar
[1126] E. L., Pollock and D.M., Ceperley, “Path-integral computations of superfluid densities,Phys. Rev. B 36: 8343, 1987.Google Scholar
[1127] M., Boninsegni, N. V., Prokof'ev, and B. V., Svistunov, “Worm algorithm and diagrammatic Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations,Phys. Rev. E 74: 036701, 2006.Google Scholar
[1128] R. P., Feynman and A. R., Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965.Google Scholar
[1129] D. M., Ceperley, in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, edited by K., Binder and G., Ciccotti, Editrice Compositori, Bologna, 1996.Google Scholar
[1130] J. D., Jackson, Classical Electrodynamics, Wiley, New York, 1962.Google Scholar
[1131] D. M., Ceperley, “Path integral calculations of normal liquid 3He,Phys. Rev. Lett. 69: 331, 1992.Google Scholar
[1132] M., Boninsegni and D. M., Ceperley, “Density fluctuations in liquid 4He: Path integrals and maximum entropy,J. Low Temp. Phys. 104: 339, 1996.Google Scholar
[1133] F., Krüger and J., Zaanen, “Fermionic quantum criticality and the fractal nodal surface,Phys. Rev. B 78: 035104, 2008.Google Scholar
[1134] B., Militzer and E. L., Pollock, “Variational density matrix method for warm, condensed matter: Application to dense hydrogen,Phys. Rev. E 61: 3470–3482, 2000.Google Scholar
[1135] B., Militzer, D. M., Ceperley, J. D., Kress, J. D., Johnson, L. A., Collins, and S., Mazevet, “Calculation of a deuterium double shock Hugoniot from ab initio simulations,Phys. Rev. Lett. 87: 275502, 2001.Google Scholar
[1136] A., Sarsa, K. E., Schmidt, and W. R., Magro, “A path integral ground state method,J. Chem. Phys. 113: 1366–1371, 2000.Google Scholar
[1137] C., Pierleoni and D. M., Ceperley, “Computational methods in coupled electron ion Monte Carlo,ChemPhysChem 6: 1–8, 2005, (arXiv:physics/0501013).Google Scholar
[1138] S., Moroni, A., Sarsa, S., Fantoni, K. E., Schmidt, and S., Baroni, “Structure, rotational dynamics, and superfluidity of small OCS-doped He clusters,Phys. Rev. Lett. 90: 143401, 2003.Google Scholar
[1139] G., Carleo, S., Moroni, F., Becca, and S., Baroni, “Itinerant ferromagnetic phase of the Hubbard model,Phys. Rev. B 83: 060411, 2011.Google Scholar
[1140] P., Gori-Giorgi, S., Moroni, and G. B., Bachelet, “Pair-distribution functions of the twodimensional electron gas,Phys. Rev. B 70: 115102, 2004.Google Scholar
[1141] M. A., Morales, C., Pierleoni, E., Schwegler, and D. M., Ceperley, “Evidence for a first-order liquid–liquid transition in high-pressure hydrogen from ab initio simulations,Proc. Natl. Acad. Sci. 107: 12799–12803, 2010.Google Scholar
[1142] D., Ceperley, M., Dewing, and C., Pierleoni, in Bridging the Time Scales, edited by P., Nielaba, M., Mareschal, and G., Ciccotti, Springer-Verlag, Berlin, 2002, pp. 473–499.Google Scholar
[1143] C., Filippi and C. J., Umrigar, “Correlated sampling in quantum Monte Carlo: A route to forces,Phys. Rev. B 61:R16291–16294, 2000.Google Scholar
[1144] M. A., Morales, C., Pierleoni, and D. M., Ceperley, “Equation of state of metallic hydrogen from coupled electron–ion Monte Carlo simulations,Phys. Rev. E 81: 021202, 2010.Google Scholar
[1145] M. A., Morales, J. M., McMahon, C., Pierleoni, and D. M., Ceperley, “Towards a predictive first-principles description of solid molecular hydrogen with density functional theory,Phys. Rev. B 87: 184107, 2013.Google Scholar
[1146] J. E., Hirsch, R. L., Sugar, D. J., Scalapino, and R., Blankenbecler, “Monte Carlo simulations of one-dimensional fermion systems,Phys. Rev. B 26: 5033–5055, 1982.Google Scholar
[1147] F. F., Assaad and H. G., Evertz, in Computational Many-Particle Physics, edited by H., Fehske, R., Schneider, and A., Weisse, Springer-Verlag, New York, 2008, pp. 277–356.Google Scholar
[1148] E. C., Svensson, P., Martel, V. F., Sears, and A. D. B., Woods, “Neutron scattering studies of the dynamic structure of liquid 4He,Can. J. Phys. 54: 2178–2192, 1976.Google Scholar
[1149] M., Jarrell and J. E., Gubernatis, “Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data,Phys. Rep. 269: 133–195, 1996.Google Scholar
[1150] J., Shumway and D. M., Ceperley, “Quantum Monte Carlo treatment of elastic exciton– exciton scattering,Phys. Rev. E B63: 165209–165215, 2001.Google Scholar
[1151] M., Caffarel and D. M., Ceperley, “A Bayesian analysis of Green's function Monte Carlo correlation functions,J. Chem. Phys. 97: 8415, 1992.Google Scholar
[1152] Y., Kwon, D. M., Ceperley, and R. M., Martin, “Transient estimate Monte Carlo in the twodimensional electron gas,Phys. Rev. B 53: 7376–7382, 1996.Google Scholar
[1153] L. D., Landau and E. M., Lifshitz, Mechanics, Pergamon Press, Oxford, 1969.Google Scholar
[1154] J. L., Safko, H., Goldstein, and C. P., Poole, Classical Mechanics, 3rd Ed., Addison-Wesley, Boston, MA, 2001.Google Scholar
[1155] G., Green, An Essay on the Application of Mathematical Analysis to the Theory of Electricity and Magnetism, Printed for the author by T., Wheelhouse, London. Sold by Hamilton, Adams & Co., Nottingham, 1828. Reprinted in three parts in J. reine abgewand. Math. 39: 73, 1850; 44: 356, 1852; and 47: 161, 1854.Google Scholar
[1156] G., Baym and N. D., Mermin, “Determination of thermodynamic Green's functions,J. Math. Phys. 2: 232–234, 1961.Google Scholar
[1157] L. V., Keldysh, “Diagram technique for nonequilibrium processes (translation of Zh. Eksp. Teor. Fiz., 47: 1515, 1965),Soviet Phys. JETP 20: 1018–1026, 1965.Google Scholar
[1158] G., Stefanucci, C.-O., Almbladh, R. van, Leeuwen, N. E., Dahlen, and U. von, Barth, “Introduction to the Keldysh formalism,Lecture Notes in Physics 706: 33, 2006.Google Scholar
[1159] G. C., Evans, Functionals and Their Applications, Dover, New York, 1964.Google Scholar
[1160] J., Matthews and R. L., Walker, Mathmatical Methods of Physics, W. A., Benjamin, New York, 1964.Google Scholar
[1161] R., Fukuda, M., Komachiya, S., Yokojima, Y., Suzuki, K., Okumura, and T., Inagaki, “Novel use of Legendre transformation in field theory and many particle systems,Prog. Theor. Phys. Suppl. 121: 1, 1995.Google Scholar
[1162] O., Hölder, “Über einen Mittelwerthsatz,Nachr. Ges. Wiss. Gottingen 4: 38–47, 1889.Google Scholar
[1163] M., Gatti, V., Olevano, L., Reining, and I. V., Tokatly, “Transforming nonlocality into a frequency dependence: A shortcut to spectroscopy,Phys. Rev. Lett. 99: 057401, 2007.Google Scholar
[1164] L. J., Sham and M., Schlüter, “Density-functional theory of the energy gap,Phys. Rev. Lett. 51: 1888–1891, 1983.Google Scholar
[1165] L. J., Sham, “Exchange and correlation in density-functional theory,Phys. Rev. B 32:3876– 3882, 1985.
[1166] R. van, Leeuwen, “The Sham–Schlüter equation in time-dependent density-functional theory,Phys. Rev. Lett. 76: 3610–3613, 1996.Google Scholar
[1167] I. V., Tokatly and O., Pankratov, “Many-body diagrammatic expansion in a Kohn–Sham basis: Implications for time-dependent density functional theory of excited states,Phys. Rev. Lett. 86: 2078–2081, 2001.Google Scholar
[1168] R. T., Sharp and G. K., Horton, “A variational approach to the unipotential many-electron problem,Phys. Rev. 90: 317, 1953.Google Scholar
[1169] J. D., Talman and W. F., Shadwick, “Optimized effective atomic central potential,Phys. Rev. A 14: 36–40, 1976.Google Scholar
[1170] A. J., Millis and S. N., Coppersmith, “Variational wave functions and the Mott transition,Phys. Rev. B 43: 13770–13773, 1991.Google Scholar
[1171] T., Ogawa, K., Kanda, and T., Matsubara, “Gutzwiller approximation for antiferromagnetism in Hubbard model,Prog. Theor. Phys. 53: 614–633, 1975.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Richard M. Martin, University of Illinois, Urbana-Champaign, Lucia Reining, École Polytechnique, Paris, David M. Ceperley, University of Illinois, Urbana-Champaign
  • Book: Interacting Electrons
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139050807.039
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Richard M. Martin, University of Illinois, Urbana-Champaign, Lucia Reining, École Polytechnique, Paris, David M. Ceperley, University of Illinois, Urbana-Champaign
  • Book: Interacting Electrons
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139050807.039
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Richard M. Martin, University of Illinois, Urbana-Champaign, Lucia Reining, École Polytechnique, Paris, David M. Ceperley, University of Illinois, Urbana-Champaign
  • Book: Interacting Electrons
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139050807.039
Available formats
×