Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-04-30T21:21:09.950Z Has data issue: false hasContentIssue false

60 - Neurofibromatosis type I

from Part 3.2 - Molecular pathology: cancers of the nervous system

Published online by Cambridge University Press:  05 February 2015

Rachel S. Darken
Affiliation:
Department of Neurology,Washington University School of Medicine, St. Louis, MO, USA
David H. Gutmann
Affiliation:
Department of Neurology,Washington University School of Medicine, St. Louis, MO, USA
Edward P. Gelmann
Affiliation:
Columbia University, New York
Charles L. Sawyers
Affiliation:
Memorial Sloan-Kettering Cancer Center, New York
Frank J. Rauscher, III
Affiliation:
The Wistar Institute Cancer Centre, Philadelphia
Get access

Summary

Introduction

The neurofibromatoses are composed of several related tumor predisposition syndromes, and include neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), and segmental forms of NF1 and NF2. NF2 affects ~1:38 000 individuals worldwide. Individuals with NF2 harbor Schwann-cell tumors called schwannomas that affect cranial and peripheral nerves, as well as meningiomas and ependymomas.

NF1, also known as Von Recklinghausen disease, is one of the most common neurogenetic disorders, affecting 1 in ~2500 people worldwide (1,2). It is an autosomal dominant cancer syndrome with complete penetrance, but variable phenotypic expression. In this regard, individuals within the same family may exhibit different clinical features and associated medical problems. Although NF1 is frequently inherited from a parent with NF1, 30–50% of affected individuals lack a family history of NF1. Non-tumor features of the syndrome include axillary and groin (skinfold) freckling, hyperpigmented macules (café-au-lait spots), bony abnormalities (skeletal dysplasias, dystrophic scoliosis, and tibial pseudarthrosis), and hamartomas of the iris (Lisch nodules), as well as cognitive impairment (3–5).

Type
Chapter
Information
Molecular Oncology
Causes of Cancer and Targets for Treatment
, pp. 679 - 685
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Friedman, JM. Epidemiology of neurofibromatosis type 1. American Journal of Medical Genetics 1999;89:1–6.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Huson, SM, Harper, PS, Compston, DA.Von Recklinghausen neurofibromatosis: a clinical and population study in south-east Wales. Brain 1988;111:1355–81.CrossRefGoogle Scholar
Alwan, S, Tredwell, SJ, Friedman, JM.Is osseous dysplasia a primary feature of neurofibromatosis 1 (NF1)? Clinical Genetics 2005;67:378–90.CrossRefGoogle Scholar
North, KN, Riccardi, VM, Samango-Sprouse, C, et al. Cognitive function and academic performance in neurofibromatosis 1: consensus statement from the NF1 Cognitive Disorders Task Force. Neurology 1997;48:1121–7.CrossRefGoogle ScholarPubMed
De Schepper, S, Boucneau, J, Lambert, J, Messiaen, L, Naeyaert, JM.Pigment cell-related manifestations in neurofibromatosis type 1: an overview. Pigment Cell Research 2005;18:13–24.CrossRefGoogle ScholarPubMed
Korf, BR.Plexiform neurofibromas. American Journal of Medical Genetics 1999;89:31–7.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Ferner, RE, Gutmann, DH.International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Research 2002;62:1573–7.Google ScholarPubMed
Listernick, R, Charrow, J, Greenwald, MJ, Esterly, NB.Optic gliomas in children with neurofibromatosis type 1. Journal of Pediatrics 1989;114:788–92.CrossRefGoogle ScholarPubMed
Listernick, R, Charrow, J, Greenwald, M, Mets, M.Natural history of optic pathway tumors in children with neurofibromatosis type 1: a longitudinal study. Journal of Pediatrics 1994;125:63–6.CrossRefGoogle ScholarPubMed
Listernick, R, Ferner, RE, Liu, GT, Gutmann, DH.Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Annals of Neurology 2007;61:189–98.CrossRefGoogle ScholarPubMed
Habiby, R, Silverman, B, Listernick, R, Charrow, J.Precocious puberty in children with neurofibromatosis type 1. Journal of Pediatrics 1995;126:364–7.CrossRefGoogle ScholarPubMed
Sharif, S, Ferner, R, Birch, JM, et al. Second primary tumors in neurofibromatosis 1 patients treated for optic glioma: substantial risks after radiotherapy. Journal of Clinical Oncology 2006;24:2570–5.CrossRefGoogle ScholarPubMed
Hyman, SL, Gill, DS, Shores, EA, et al. Natural history of cognitive deficits and their relationship to MRI T2-hyperintensities in NF1. Neurology 2003;60:1139–45.CrossRefGoogle ScholarPubMed
Erem, C, Onder Ersoz, H, Ukinc, K, et al. Neurofibromatosis type 1 associated with pheochromocytoma: a case report and a review of the literature. Journal of Endocrinological Investigation 2007;30:59–64.CrossRefGoogle Scholar
Korf, BR.Malignancy in neurofibro-matosis type 1. Oncologist 2000;5:477–85.CrossRefGoogle Scholar
Sorensen, SA, Mulvihill, JJ, Nielsen, A.Long-term follow-up of von Recklinghausen neurofibromatosis: survival and malignant neoplasms. New England Journal of Medicine 1986;314:1010–15.CrossRefGoogle Scholar
Neurofibromatosis: Conference statement. National Institutes of Health Consensus Development Conference, 1988. Archives of Neurology 1988;45:575–8.
Gutmann, DH, Aylsworth, A, Carey, JC, et al. The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. Journal of the American Medical Association 1997;278:51–7.CrossRefGoogle ScholarPubMed
Wallace, MR, Marchuk, DA, Andersen, LB, et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 1990;249:181–6.CrossRefGoogle ScholarPubMed
Viskochil, D, Buchberg, AM, Xu, G, et al. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 1990;62:187–92.CrossRefGoogle Scholar
Cawthon, RM, Weiss, R, Xu, GF, et al. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 1990;62:193–201.CrossRefGoogle Scholar
DeClue, JE, Cohen, BD, Lowy, DR.Identification and characterization of the neurofibromatosis type 1 protein product. Proceedings of the National Academy of Sciences USA 1991;88:9914–8.CrossRefGoogle ScholarPubMed
Gutmann, DH, Wood, DL, Collins, FS. Identification of the neurofibromatosis gene type 1 product. Proceedings of the National Academy of Sciences USA 1991;88:9658–62.CrossRefGoogle Scholar
Knudson, AG, Jr. Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences USA 1971;68:820–3.CrossRefGoogle ScholarPubMed
DeClue, JE, Papageorge, AG, Fletcher, JA, et al. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibro-matosis. Cell 1992;69:265–73.CrossRefGoogle Scholar
Basu, TN, Gutmann, DH, Fletcher, JA, et al. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 1992;356:713–15.CrossRefGoogle ScholarPubMed
Lau, N, Feldkamp, MM, Roncari, L, et al. Loss of neurofibromin is associated with activation of RAS/MAPK and PI3-K/AKT signaling in a neurofibromatosis 1 astrocytoma. Journal of Neuropathology and Experimental Neurology 2000;59:759–67.CrossRefGoogle Scholar
Gutmann, DH, Donahoe, J, Brown, T, James, CD, Perry, A.Loss of neurofibromatosis 1 (NF1) gene expression in NF1-associated pilocytic astrocytomas. Neuropathology and Applied Neurobiology 2000;26:361–7.CrossRefGoogle ScholarPubMed
Shannon, KM, O’Connell, P, Martin, GA, et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. New England Journal of Medicine 1994;330:597–601.CrossRefGoogle ScholarPubMed
Gutmann, D, Cole, JL, Stone, WJ, et al. Loss of neurofibromin in adrenal gland tumors from patients with neurofibromatosis type 1. Genes, Chromosomes and Cancer 1994;10:55–8.CrossRefGoogle Scholar
Largaespada, DA, Brannan, CI, Jenkins, NA, Copeland, NG.Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nature Genetics 1996;12:137–43.CrossRefGoogle ScholarPubMed
Jacks, T, Shih, TS, Schmitt, EM, et al. Tumour predisposition in mice heterozygous for a targeted mutation in NF1. Nature Genetics 1994;7:353–61.CrossRefGoogle ScholarPubMed
Side, L, Taylor, B, Cayouette, M, et al. Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. New England Journal of Medicine 1997;336:1713–20.CrossRefGoogle ScholarPubMed
Cichowski, K, Shih, TS, Schmitt, E, et al. Mouse models of tumor development in neurofibromatosis type 1. Science 1999;286:2172–6.CrossRefGoogle ScholarPubMed
Zhu, Y, Ghosh, P, Charnay, P, Burns, DK, Parada, LF.Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 2002;296:920–2.CrossRefGoogle ScholarPubMed
Bajenaru, ML, Hernandez, MR, Perry, A, et al. Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Research 2003;63:8573–7.Google ScholarPubMed
Xu, GF, O’Connell, P, Viskochil, D, et al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 1990;62:599–608.CrossRefGoogle ScholarPubMed
Xu, GF, Lin, B, Tanaka, K, et al. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 1990;63:835–41.CrossRefGoogle ScholarPubMed
Bollag, G, Clapp, DW, Shih, S, et al. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nature Genetics 1996;12:144–8.CrossRefGoogle ScholarPubMed
Dasgupta, B, Li, W, Perry, A, Gutmann, DH.Glioma formation in neurofibromatosis 1 reflects preferential activation of K-RAS in astrocytes. Cancer Research 2005;65:236–45.Google ScholarPubMed
Khalaf, WF, Yang, FC, Chen, S, et al. K-ras is critical for modulating multiple c-kit-mediated cellular functions in wild-type and Nf1+/– mast cells. Journal of Immunology 2007;178:2527–34.CrossRefGoogle ScholarPubMed
Morgan, KJ, Rowley, MA, Wiesner, SM, et al. The GAP-related domain of neurofibromin attenuates proliferation and downregulates N- and K-Ras activation in Nf1-negative AML cells. Leukemia Research 2007;31:1107–13.CrossRefGoogle ScholarPubMed
Abraham, RT, Eng, CH.Mammalian target of rapamycin as a therapeutic target in oncology. Expert Opinion on Therapeutic Targets 2008;12:209–22.CrossRefGoogle Scholar
Kopelovich, L, Fay, JR, Sigman, CC, Crowell, JA.The mammalian target of rapamycin pathway as a potential target for cancer chemoprevention. Cancer Epidemiology, Biomarkers and Prevention 2007;16:1330–40.CrossRefGoogle ScholarPubMed
Johannessen, CM, Reczek, EE, James, MF, et al. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proceedings of the National Academy of Sciences USA 2005;102:8573–8.CrossRefGoogle ScholarPubMed
Dasgupta, B, Yi, Y, Chen, DY, Weber, JD, Gutmann, DH.Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. Cancer Research 2005;65:2755–60.CrossRefGoogle ScholarPubMed
Guo, HF, The, I, Hannan, F, et.al. Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuropeptides. Science 1997;276:795–8.CrossRefGoogle ScholarPubMed
Tong, J, Hannan, F, Zhu, Y, Bernards, A, Zhong, Y.Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nature Neuroscience 2002;5:95–6.CrossRefGoogle ScholarPubMed
Dasgupta, B, Dugan, LL, Gutmann, DH.The neurofibromatosis 1 gene product neurofibromin regulates pituitary adenylate cyclase-activating polypeptide-mediated signaling in astrocytes. Journal Neuroscience 2003;23:8949–54.CrossRefGoogle ScholarPubMed
Hegedus, B, Dasgupta, B, Shin, J, et al. Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell 2007;1:443–57.CrossRefGoogle ScholarPubMed
Warrington, NM, Woerner, BM, Daginakatte, GC, et al. Spatiotemporal differences in CXCL12 expression and cyclic AMP underlie the unique pattern of optic glioma growth in neurofibromatosis type 1. Cancer Research 2007;67:8588–95.CrossRefGoogle ScholarPubMed
Menon, AG, Anderson, KM, Riccardi, VM, et al. Chromosome 17p deletions and p53 gene mutations associated with the formation of malignant neurofibrosarcomas in von Recklinghausen neurofibromatosis. Proceedings of the National Academy of Sciences USA 1990;87:5435–9.CrossRefGoogle ScholarPubMed
Nielsen, GP, Stemmer-Rachamimov, AO, Ino, Y, et al. Malignant transformation of neurofibromas in neurofibromatosis 1 is associated with CDKN2A/p16 inactivation. American Journal of Pathology 1999;155:1879–84.CrossRefGoogle ScholarPubMed
Zhou, H, Coffin, CM, Perkins, SL, et al. Malignant peripheral nerve sheath tumor: a comparison of grade, immunophenotype, and cell cycle/growth activation marker expression in sporadic and neurofibromatosis 1-related lesions. American Journal of Surgical Pathology 2003;27:1337–45.CrossRefGoogle ScholarPubMed
Vogel, KS, Klesse, LJ, Velasco-Miguel, S, et al. Mouse tumor model for neurofibromatosis type 1. Science 1999;286:2176–9.CrossRefGoogle ScholarPubMed
Bajenaru, ML, Zhu, Y, Hedrick, NM, et al. Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Molecular and Cellular Biology 2002;22:5100–13.CrossRefGoogle ScholarPubMed
Yang, FC, Chen, S, Clegg, T, et al. Nf1+/– mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Human Molecular Genetics 2006;15:2421–37.CrossRefGoogle ScholarPubMed
Bajenaru, ML, Garbow, JR, Perry, A, Hernandez, MR, Gutmann, DH.Natural history of neurofibromatosis 1-associated optic nerve glioma in mice. Annals of Neurology 2005;57:119–27.CrossRefGoogle ScholarPubMed
Roggendorf, W, Strupp, S, Paulus, W.Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathologica (Berlin) 1996;92:288–93.CrossRefGoogle ScholarPubMed
Badie, B, Schartner, JM.Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery 2000;46:957–61; discussion 61–2.Google ScholarPubMed
Daginakatte, GC, Gutmann, DH.Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Human Molecular Genetics 2007;16:1098–112.CrossRefGoogle ScholarPubMed
Rubin, JB, Kung, AL, Klein, RS, et al. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proceedings of the National Academy of Sciences USA 2003;100:13 513–8.CrossRefGoogle ScholarPubMed
Easton, DF, Ponder, MA, Huson, SM, Ponder, BA.An analysis of variation in expression of neurofibromatosis (NF) type 1 (NF1): evidence for modifying genes. American Journal of Human Genetics 1993;53:305–13.Google ScholarPubMed
Reilly, KM, Loisel, DA, Bronson, RT, McLaughlin, ME, Jacks, T.Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nature Genetics 2000;26:109–13.Google ScholarPubMed
Reilly, KM, Tuskan, RG, Christy, E, et al. Susceptibility to astrocytoma in mice mutant for Nf1 and Trp53 is linked to chromosome 11 and subject to epigenetic effects. Proceedings of the National Academy of Sciences USA 2004;101:13 008–13.CrossRefGoogle ScholarPubMed
Reilly, KM, Broman, KW, Bronson, RT, et al. An imprinted locus epistatically influences Nstr1 and Nstr2 to control resistance to nerve sheath tumors in a neurofibromatosis type 1 mouse model. Cancer Research 2006;66:62–8.CrossRefGoogle Scholar
Gutmann, D, Hunter-Schaedle, K, Shannon, K.Harnessing preclinical mouse models to inform human clinical cancer trials. Journal of Clinical Investigation 2006;116:847–52.CrossRefGoogle ScholarPubMed
Hancock, JF, Magee, AI, Childs, JE, Marshall, CJ.All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 1989;57:1167–77.CrossRefGoogle ScholarPubMed
Jackson, JH, Cochrane, CG, Bourne, JR, et al. Farnesol modification of Kirsten-ras exon 4B protein is essential for transformation. Proceedings of the National Academy of Sciences USA 1990;87:3042–6.CrossRefGoogle ScholarPubMed
Sebti, SM, Adjei, AA.Farnesyltransferase inhibitors. Seminars in Oncology 2004;31:28–39.CrossRefGoogle ScholarPubMed
Kieran, MW, Packer, RJ, Onar, A, et al. Phase I and pharmacokinetic study of the oral farnesyltransferase inhibitor lonafarnib administered twice daily to pediatric patients with advanced central nervous system tumors using a modified continuous reassessment method: a Pediatric Brain Tumor Consortium Study. Journal of Clinical Oncology 2007;25:3137–43.CrossRefGoogle ScholarPubMed
Karp, JE, Lancet, JE.Development of farnesyltransferase inhibitors for clinical cancer therapy: focus on hematologic malignancies. Cancer Invesigation 2007;25:484–94.CrossRefGoogle ScholarPubMed
Harousseau, JL.Farnesyltransferase inhibitors in hematologic malignancies. Blood Reviews 2007;21:173–82.CrossRefGoogle ScholarPubMed
Mesa, RA.Tipifarnib: farnesyl transferase inhibition at a crossroads. Expert Review of Anticancer Therapy 2006;6:313–19.CrossRefGoogle Scholar
Widemann, BC, Salzer, WL, Arceci, RJ, et al. Phase I trial and pharmacokinetic study of the farnesyltransferase inhibitor tipifarnib in children with refractory solid tumors or neurofibromatosis type I and plexiform neurofibromas. Journal of Clinical Oncology 2006;24:507–16.CrossRefGoogle ScholarPubMed
Hindler, K, Cleeland, CS, Rivera, E, Collard, CD.The role of statins in cancer therapy. Oncologist 2006;11:306–15.CrossRefGoogle ScholarPubMed
Li, W, Cui, Y, Kushner, SA, et al. The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Current Biology 2005;15:1961–7.CrossRefGoogle Scholar
Teachey, DT, Obzut, DA, Axsom, K, et al. Rapamycin improves lymphoproliferative disease in murine autoimmune lymphoproliferative syndrome (ALPS). Blood 2006;108:1965–71.CrossRefGoogle Scholar
Namba, R, Young, LJ, Abbey, CK, et al. Rapamycin inhibits growth of premalignant and malignant mammary lesions in a mouse model of ductal carcinoma in situ. Clinical Cancer Research 2006;12:2613–21.CrossRefGoogle Scholar
Fan, QW, Knight, ZA, Goldenberg, DD, et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 2006;9:341–9.CrossRefGoogle ScholarPubMed
Franz, DN, Leonard, J, Tudor, C, et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Annals of Neurology 2006;59:490–8.CrossRefGoogle ScholarPubMed
Johannessen, CM, Johnson, BW, Williams, SM, et al. TORC1 is essential for NF1-associated malignancies. Current Biology 2008;18:56–62.CrossRefGoogle ScholarPubMed
Hegedus, B, Banerjee, D, Yeh, TH, et al. Preclinical cancer therapy in a mouse model of neurofibromatosis-1 optic glioma. Cancer Research 2008;68:1520–8.CrossRefGoogle Scholar
Fang, FC, Ingram, DA, Chen, S, et al. Nf1-dependent tumors require a microenvironment containing Nf1+/– and c-kit-dependent bone marrow. Cell 2008;135:437–48.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×