Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T16:00:46.347Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2016

Sreerup Raychaudhuri
Affiliation:
Tata Institute of Fundamental Research, Mumbai, India
K. Sridhar
Affiliation:
Tata Institute of Fundamental Research, Mumbai, India
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] M., Jammer, Concepts of Space: The Histories of Theories of Space in Physics. Cambridge, MA: Harvard University Press, 1954.
[2] J., d'Alembert, ‘Dimension’ in Encyclopédie ou Dictionnaire Raissoné des Sciences, des Arts et Métiers. Paris: Briasson, 1751.
[3] J., Lagrange, Mécanique Analytique. Paris: Gauthier-Villars, 1888.
[4] E., Watkins (ed.), Kant: Natural Science. Cambridge: Cambridge University Press, 2012.
[5] P., Ehrenfest, ‘In what way does it become manifest in the fundamental laws of physics that space has three dimensions’, Proceedings of the Amsterdam Academy, vol. 20, pp. 200–9, 1917.Google Scholar
[6] M., Tegmark, ‘On the dimensionality of space-time’, Class. Quant. Grav., vol. 14, pp. L69–L75, 1997.Google Scholar
[7] H., More, Enchiridion Metaphysicum. Ed. and Intro. G. A. J., Rogers. Bristol: Thoemmes Press, 1997.
[8] J., Zollner, Transcendental Physics. Trans. C. C., Massey. London: W. H. Harrison, 1880.
[9] A. F., Mobius, Der Barycentrische Calcul. Leipzig: Johann Ambrosius Barth, 1827.
[10] L., Schlafli, Theorie der Vielfachen Kontinuität. Zurich: Zurcher & Furrer, 1852.
[11] W., Stringham, ‘Regular figures in n-dimensional space’, American Journal of Mathematics, vol. III, pp. 1–12, 1880.Google Scholar
[12] C. H., Hinton, The Fourth Dimension. London: Swann Sonnenschein & Co., 1904.
[13] G., Nordstrom, ‘On the possibility of unifying the electromagnetic and the gravitational fields’, Phys. Z., vol. 15, pp. 504–6, 1914.Google Scholar
[14] T., kaluza, ‘on the problem of unity in physics’, sitzungsber. preuss. akad. wiss. Berlin (Math.Phys.), vol. 1921, pp. 966–72, 1921.Google Scholar
[15] L. O, 'Raifeartaigh and N., Straumann, ‘Early history of gauge theories and Kaluza-Klein theories, hep-ph/9810524’. 1998.
[16] P., Jordan, ‘Formation of the stars and development of the universe’, Nature, vol. 164, pp. 637–40, 1949.Google Scholar
[17] O., Klein, ‘Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English)’, Z. Phys., vol. 37, pp. 895–906, 1926.Google Scholar
[18] O., Klein, ‘On the theory of charged fields’, Surveys High Energ. Phys., vol. 5, pp. 269–85, 1986.Google Scholar
[19] Y., Cho and P. G., Freund, ‘Nonabelian gauge fields in Nambu-Goldstone fields’, Phys.Rev., vol. D12, p. 1711, 1975.Google Scholar
[20] E., Cremmer and J., Scherk, ‘Spontaneous compactification of extra space dimensions’, Nucl.Phys., vol. B118, p. 61, 1977.Google Scholar
[21] E., Witten, ‘Search for a realistic Kaluza-Klein theory’, Nucl.Phys., vol. B186, p. 412, 1981.Google Scholar
[22] P. G., Freund and M. A., Rubin, ‘Dynamics of dimensional reduction’, Phys.Lett., vol. B97, pp. 233–5, 1980.Google Scholar
[23] M., Awada, M., Duff and C., Pope, ‘N=8 supergravity breaks down to N=1’, Phys.Rev.Lett., vol. 50, p. 294, 1983.Google Scholar
[24] J., Scherk and J. H., Schwarz, ‘Dual models for nonhadrons’, Nucl.Phys., vol. B81, pp. 118–44, 1974.Google Scholar
[25] N., Arkani-Hamed, S., Dimopoulos and G., Dvali, ‘The Hierarchy problem and new dimensions at a millimeter’, Phys.Lett., vol. B429, pp. 263–72, 1998.Google Scholar
[26] L., Randall and R., Sundrum, ‘A large mass hierarchy from a small extra dimension’, Phys.Rev.Lett., vol. 83, pp. 3370–3, 1999.Google Scholar
[27] S., Glashow, ‘Partial symmetries of weak interactions’, Nucl.Phys., vol. 22, pp. 579–88, 1961.Google Scholar
[28] S., Weinberg, ‘A model of leptons’, Phys.Rev.Lett., vol. 19, pp. 1264–6, 1967.Google Scholar
[29] A., Salam, ‘Weak and electromagnetic interactions’ in N., Svartholm (ed.), Elementary Particle Theory: Nobel Symposium, No. 8. Ed. N. Svartholm Stockholm: Almqvist and Wiksell, 1968.
[30] S., Weinberg, The Quantum Theory of Fields. Vol. 1: Foundations. Cambridge: Cambridge University Press, 1995.
[31] S., Weinberg, The Quantum Theory of Fields. Vol. 2: Modern Applications. Cambridge: Cambridge University Press, 1996.
[32] T., Cheng and L., Li, Gauge Theory of Elementary Particle Physics. Oxford: Clarendon (Oxford Science Publications), 1984.
[33] M. E., Peskin and D. V., Schroeder, An Introduction to Quantum Field Theory. Reading, USA: Addison-Wesley, 1995.
[34] E., Leader and E., Predazzi, An Introduction to Gauge Theories and Modern Particle Physics. Vols. 1 and 2. Cambridge: Cambridge University Press, 1996.
[35] V. D., Barger and R., Phillips, Collider Physics. Redwood City, USA: Addison-Wesley, 1987.
[36] E., Reya, ‘Perturbative quantum chromodynamics’, Phys.Rept., vol. 69, p. 195, 1981.Google Scholar
[37] A. J., Buras, ‘Asymptotic freedom in deep inelastic processes in the leading order and beyond’, Rev.Mod.Phys., vol. 52, p. 199, 1980.Google Scholar
[38] R. K., Ellis, W. J., Stirling and B., Webber, QCD and Collider Physics. Cambridge: Cambridge University Press, 1996.
[39] T., Muta, Foundations of Quantum Chromodynamics: An Introduction to Perturbative Methods in Gauge Theories. Singapore: World Scientific, 1998.
[40] J., Field, Applications of Perturbative QCD. New York: Perseus Books, 1989.
[41] P. W., Higgs, ‘Broken Symmetries and the Masses of Gauge Bosons’, Phys.Rev.Lett., vol. 13, pp. 508–9, 1964.Google Scholar
[42] P. W., Higgs, ‘Broken symmetries, massless particles and gauge fields’, Phys.Lett., vol. 12, pp. 132–3, 1964.Google Scholar
[43] F., Englert and R., Brout, ‘Broken symmetry and the mass of gauge vector mesons’, Phys.Rev.Lett., vol. 13, pp. 321–3, 1964.Google Scholar
[44] G., 't Hooft, ‘Renormalization of massless Yang-Mills fields’, Nucl.Phys., vol. B33, pp. 173–99, 1971.Google Scholar
[45] G., 't Hooft, ‘Renormalizable Lagrangians for massive Yang-Mills fields’, Nucl.Phys., vol. B35, pp. 167–88, 1971.Google Scholar
[46] G., 't Hooft and M., Veltman, ‘Regularization and renormalization of gauge fields’, Nucl.Phys., vol. B44, pp. 189–213, 1972.Google Scholar
[47] G., Altarelli, R., Barbieri and F., Caravaglios, ‘Electroweak precision tests: A concise review’, Int.J.Mod.Phys., vol. A13, pp. 1031–58, 1998.Google Scholar
[48] D., Bardin and G., Passarino, The Standard Model in the Making: Precision Study of the Electroweak Interactions. Oxford: Oxford University Press, 1999.
[49] J. D., Wells, ‘TASI lecture notes: Introduction to precision electroweak analysis’, in J., Terning, C. E. M., Wagner and D., Zeppenfield (eds.), Physics in D ≥4, Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, TASI 2004, pp. 41–64, 2005.
[50] K., Olive et al., ‘Review of particle physics’, Chin. Phys., vol. C38, p. 090001, 2014.Google Scholar
[51] G., Ross, Grand Unified Theories. Reading, USA: Benjamin/Cummings, 1984.
[52] R., Mohapatra, Unification and Supersymmetry: The Frontiers of Quark- Lepton Physics. New York: Springer-Verlag, 1986.
[53] S., Weinberg, The Quantum theory of Fields. Vol. 3: Supersymmetry. Cambridge: Cambridge University Press, 2000.
[54] Binetruy, Pierre, Supersymmetry: Theory, Experiment and Cosmology. Oxford: Oxford University Press, 2006.
[55] H. P., Nilles, ‘Supersymmetry, supergravity and particle physics’, Phys. Rept., vol. 110, pp. 1–162, 1984.Google Scholar
[56] H. E., Haber and G. L., Kane, ‘The search for supersymmetry: Probing physics beyond the Standard Model’, Phys.Rept., vol. 117, pp. 75–263, 1985.Google Scholar
[57] S. P., Martin, ‘TASI 2011 lectures notes: Two-component fermion notation and supersymmetry’, 2012.
[58] M. A., Luty, ‘2004 TASI lectures on supersymmetry breaking’, in J., Terning, C. E. M., Wagner and D., Zeppenfeld (eds.), Physics in D >=4, Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, TASI 2004, pp. 495–582, 2005.
[59] E., Farhi and L., Susskind, ‘Technicolor’, Phys.Rept., vol. 74, p. 277, 1981.Google Scholar
[60] R. K., Kaul, ‘Technicolor’, Rev.Mod.Phys., vol. 55, p. 449, 1983.Google Scholar
[61] R. S., Chivukula, ‘Models of electroweak symmetry breaking: Course’, 1998.
[62] N., Straumann, ‘On Pauli's invention of non-Abelian Kaluza-Klein theory in 1953, gr-qc/0012054’, pp. 1063–6, 2000.
[63] G., Veneziano, ‘Construction of a crossing-symmetric, Regge behaved amplitude for linearly rising trajectories’, Nuovo Cim., vol. A57, pp. 190–7, 1968.Google Scholar
[64] Y., Nambu, ‘Quark model and the factorization of the Veneziano amplitude in symmetries and quark models (ed. R. Chand p. 269)’, pp. 269–78, 1970.Google Scholar
[65] T., Goto, ‘Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model’, Prog.Theor.Phys., vol. 46, pp. 1560–9, 1971.Google Scholar
[66] J., Scherk, ‘An introduction to the theory of dual models and strings’, Rev.Mod.Phys., vol. 47, pp. 123–64, 1975.Google Scholar
[67] J. H., Schwarz, ‘Superstring theory’, Phys.Rept., vol. 89, pp. 223–322, 1982.Google Scholar
[68] M. B., Green, J., Schwarz and E., Witten, Superstring Theory. Vol. 1: Introduction. Cambridge: Cambridge University Press, 1987.
[69] M. B., Green, J., Schwarz and E., Witten, Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenomenology. Cambridge: Cambridge University Press, 1987.
[70] J., Polchinski, String Theory. Vol. 1: An Introduction to the Bosonic String. Cambridge: Cambridge University Press, 1998.
[71] J., Polchinski, String Theory. Vol. 2: Superstring Theory and Beyond. Cambridge: Cambridge University Press, 1998.
[72] C., Johnson, D-branes. Cambridge: Cambridge University Press, 2003.
[73] B., Zwiebach, A First Course in String Theory. Cambridge: Cambridge University Press, 2004.
[74] A. M., Polyakov, ‘Quantum geometry of bosonic strings’, Phys.Lett., vol. B103, pp. 207–10, 1981.Google Scholar
[75] L., Brink, P. Di, Vecchia and P. S., Howe, ‘A locally supersymmetric and reparametrization invariant action for the spinning string’, Phys.Lett., vol. B65, pp. 471–4, 1976.Google Scholar
[76] F., Gliozzi, J., Scherk and D. I., Olive, ‘Supersymmetry, supergravity theories and the dual spinor model’, Nucl.Phys., vol. B122, pp. 253–90, 1977.Google Scholar
[77] P., Ramond, ‘Dual theory for free fermions’, Phys.Rev., vol. D3, pp. 2415– 18, 1971.Google Scholar
[78] A., Neveu and J., Schwarz, ‘Factorizable dual model of pions’, Nucl.Phys., vol. B31, pp. 86–112, 1971.Google Scholar
[79] J. E., Paton and H.-M., Chan, ‘Generalized Veneziano model with isospin’, Nucl.Phys., vol. B10, pp. 516–20, 1969.Google Scholar
[80] M. B., Green and J. H., Schwarz, ‘Anomaly cancellation in supersymmetric D=10 gauge theory and superstring theory’, Phys.Lett., vol. B149, pp. 117– 22, 1984.Google Scholar
[81] D. J., Gross et al., ‘Heterotic string theory. 1. The free heterotic string’, Nucl.Phys., vol. B256, p. 253, 1985.Google Scholar
[82] D. J., Gross et al., ‘Heterotic string theory. 2. The interacting heterotic string’, Nucl.Phys., vol. B267, p. 75, 1986.Google Scholar
[83] P., Candelas et al., ‘Vacuum configurations for superstrings’, Nucl. Phys., vol. B258, pp. 46–74, 1985.Google Scholar
[84] L. J., Dixon et al., ‘Strings on orbifolds’, Nucl. Phys., vol. B261, pp. 678–86, 1985.Google Scholar
[85] L. J., Dixon et al., ‘Strings on orbifolds. 2’, Nucl. Phys., vol. B274, pp. 285– 314, 1986.Google Scholar
[86] R., Savit, ‘Duality in field theory and statistical systems’, Rev.Mod.Phys., vol. 52, p. 453, 1980.Google Scholar
[87] S. R., Coleman, ‘The quantum sine-Gordon equation as the massive Thirring model’, Phys.Rev., vol. D11, p. 2088, 1975.Google Scholar
[88] E., Bogomol'nyi, ‘Stability of classical solutions’, Sov. J. Nucl. Phys., vol. 24, p. 449, 1976.Google Scholar
[89] M., Prasad and C. M., Sommerfield, ‘An exact classical solution for the 't Hooft monopole and the Julia-Zee dyon’, Phys.Rev.Lett., vol. 35, pp. 760–62, 1975.Google Scholar
[90] N., Seiberg, ‘Exact results on the space of vacua of four-dimensional SUSY gauge theories’, Phys.Rev., vol. D49, pp. 6857–63, 1994.Google Scholar
[91] N., Seiberg and E., Witten, ‘Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD’, Nucl.Phys., vol. B431, pp. 484–550, 1994.Google Scholar
[92] N., Seiberg and E., Witten, ‘Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory’, Nucl.Phys., vol. B426, pp. 19–52, 1994.Google Scholar
[93] N., Seiberg, ‘Electric-magnetic duality in supersymmetric non-Abelian gauge theories’, Nucl.Phys., vol. B435, pp. 129–46, 1995.Google Scholar
[94] O., Aharony et al., ‘Large N field theories, string theory and gravity’, Phys.Rept., vol. 323, pp. 183–386, 2000.Google Scholar
[95] J. M., Maldacena, ‘TASI 2003 lectures on AdS / CFT’, in J. M., Maldacena (ed.), Progress in String Theory, Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, TASI 2003 (ed. J.M. Maldacena), pp. 155–203, 2003.Google Scholar
[96] J. G., Russo, ‘Large N field theories from superstrings’, PoS, vol. silafae-III, p. 044, 2000.Google Scholar
[97] P. Di, Vecchia, ‘Large N gauge theories and AdS / CFT correspondence’, hep-th/9908148 (1999).
[98] E., Imeroni, ‘The gauge / string correspondence towards realistic gauge theories’, hep-th/0312070 (2003).
[99] A. V., Manohar, ‘Large N QCD’, hep-ph/9802419 (1998).
[100] J. M., Maldacena, ‘The large N limit of superconformal field theories and supergravity’, Int. J. Theor. Phys., vol. 38, pp. 1113–33, 1999.Google Scholar
[101] S. S., Gubser, I. R., Klebanov and A. M., Polyakov, ‘Gauge theory correlators from noncritical string theory’, Phys. Lett., vol. B428, pp. 105–14, 1998.Google Scholar
[102] E., Witten, ‘Anti-de Sitter space and holography’, Adv. Theor. Math. Phys., vol. 2, pp. 253–91, 1998.Google Scholar
[103] H., Georgi, ‘Effective field theory’, Ann. Rev. Nucl. Part. Sci., vol. 43, pp. 209–52, 1993.Google Scholar
[104] J., Polchinski, ‘Effective field theory and the Fermi surface’, hepth/ 9210046 (1992).
[105] A. V., Manohar, ‘Effective field theories’, Lect. Notes Phys., vol. 479, pp. 311–62, 1997.Google Scholar
[106] D. B., Kaplan, ‘Effective field theories: Lectures given at the Seventh Summer School in Nuclear Physics: “Symmetries” at the Institute for Nuclear Theory, Seattle.’, 1995.
[107] I. Z., Rothstein, ‘TASI lectures on effective field theories’, hep-ph/0308266 (2003).
[108] W., Buchmuller and D., Wyler, ‘Effective Lagrangian analysis of new interactions and flavor conservation’, Nucl.Phys., vol. B268, pp. 621–53, 1986.Google Scholar
[109] R., Sundrum, ‘Effective field theory for a three-brane universe’, Phys.Rev., vol. D59, p. 085009, 1999.Google Scholar
[110] R., Sundrum, ‘Compactification for a three-brane universe’, Phys.Rev., vol. D59, p. 085010, 1999.Google Scholar
[111] V., Rubakov and M., Shaposhnikov, ‘Do we live inside a domain wall?’, Phys.Lett., vol. B125, pp. 136–8, 1983.Google Scholar
[112] K., Akama, ‘An early proposal of “brane world” ’, Lect. Notes Phys., vol. 176, pp. 267–71, 1982.Google Scholar
[113] V., Rubakov, ‘Large and infinite extra dimensions: An introduction’, Phys.Usp., vol. 44, pp. 871–93, 2001.Google Scholar
[114] G., Dvali and M. A., Shifman, ‘Domain walls in strongly coupled theories’, Phys.Lett., vol. B396, pp. 64–9, 1997.Google Scholar
[115] I., Antoniadis, ‘A possible new dimension at a few TeV’, Phys.Lett., vol. B246, pp. 377–84, 1990.Google Scholar
[116] I., Antoniadis, C., Munoz and M., Quiros, ‘Dynamical supersymmetry breaking with a large internal dimension’, Nucl.Phys., vol. B397, pp. 515–38, 1993.Google Scholar
[117] I., Antoniadis and K., Benakli, ‘Limits on extra dimensions in orbifold compactifications of superstrings’, Phys.Lett., vol. B326, pp. 69–78, 1994.Google Scholar
[118] I., Antoniadis, K., Benakli and M., Quiros, ‘Production of Kaluza-Klein states at future colliders’, Phys.Lett., vol. B331, pp. 313–20, 1994.Google Scholar
[119] I., Antoniadis et al., ‘New dimensions at a millimeter to a Fermi and superstrings at a TeV’, Phys.Lett., vol. B436, pp. 257–63, 1998.Google Scholar
[120] E. A., Mirabelli, M., Perelstein and M. E., Peskin, ‘Collider signatures of new large space dimensions’, Phys.Rev.Lett., vol. 82, pp. 2236–9, 1999.Google Scholar
[121] G. F., Giudice, R., Rattazzi and J. D., Wells, ‘Quantum gravity and extra dimensions at high-energy colliders’, Nucl.Phys., vol. B544, pp. 3–38, 1999.Google Scholar
[122] T., Han, J. D., Lykken and R.-J., Zhang, ‘On Kaluza-Klein states from large extra dimensions’, Phys.Rev., vol. D59, p. 105006, 1999.Google Scholar
[123] A., Einstein, ‘The foundation of the General Theory of Relativity’, Annalen Phys., vol. 49, pp. 769–822, 1916.Google Scholar
[124] S., Weinberg, Gravitation and Cosmology. New York: John Wiley & Sons, 1972.
[125] R., Contino et al., ‘Graviton loops and brane observables’, JHEP, vol. 0106, p. 005, 2001.Google Scholar
[126] N., Arkani-Hamed, S., Dimopoulos and G., Dvali, ‘Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity’, Phys.Rev., vol. D59, p. 086004, 1999.Google Scholar
[127] V. D., Barger et al., ‘Astrophysical constraints on large extra dimensions’, Phys.Lett., vol. B461, pp. 34–42, 1999.Google Scholar
[128] L. J., Hall and D., Tucker-Smith, ‘Cosmological constraints on theories with large extra dimensions’, Phys.Rev., vol. D60, p. 085008, 1999.Google Scholar
[129] M., Fairbairn, ‘Cosmological constraints on large extra dimensions’, Phys.Lett., vol. B508, pp. 335–9, 2001.Google Scholar
[130] S., Hannestad and G. G., Raffelt, Stringent neutron star limits on large extra dimensions', Phys.Rev.Lett., vol. 88, p. 071301, 2002.Google Scholar
[131] S., Chatrchyan et al., ‘Search for dark matter and large extra dimensions in monojet events in pp collisions at √ s = 7 TeV’, JHEP, vol. 1209, p. 094, 2012.Google Scholar
[132] J. L., Hewett, ‘Indirect collider signals for extra dimensions’, Phys.Rev.Lett., vol. 82, pp. 4765–8, 1999.Google Scholar
[133] P., Mathews, S., Raychaudhuri and K., Sridhar, ‘Getting to the top with extra dimensions’, Phys.Lett., vol. B450, pp. 343–7, 1999.Google Scholar
[134] P., Mathews, S., Raychaudhuri and K., Sridhar, ‘Large extra dimensions and deep inelastic scattering at HERA’, Phys.Lett., vol. B455, pp. 115–19, 1999.Google Scholar
[135] P., Mathews, S., Raychaudhuri and K., Sridhar, ‘Testing TeV scale quantum gravity using dijet production at the Tevatron’, JHEP, vol. 0007, p. 008, 2000.Google Scholar
[136] Charles W., Misner, K. S., Thorne and J. A., Wheeler, Gravitation. San Francisco: W. H. Freeman, 1973.
[137] R. M., Wald, General Relativity. Chicago: University of Chicago Press, 1984.
[138] J. B., Hartle, Gravity: An Introduction to Einstein's General Relativity. San Francisco: Addison-Wesley, 2003.
[139] Sean, Carroll, Spacetime and Geometry: An Introduction to General Relativity. San Francisco: Addison-Wesley, 2004.
[140] B. F., Schultz, A First Course in General Relativity. Cambridge: Cambridge University Press, 1985.
[141] T. P., Cheng, Relativity, Gravitation and Cosmology: A Basic Introduction. Oxford: Oxford University Press, 2005.
[142] T., Banks and W., Fischler, ‘A Model for high-energy scattering in quantum gravity’, hep-th/9906038 (1999).
[143] S. B., Giddings and S. D., Thomas, ‘High-energy colliders as black hole factories: The end of short distance physics’, Phys.Rev., vol. D65, p. 056010, 2002.Google Scholar
[144] R., Emparan, G. T., Horowitz and R. C., Myers, ‘Black holes radiate mainly on the brane’, Phys.Rev.Lett., vol. 85, pp. 499–502, 2000.Google Scholar
[145] S., Dimopoulos and G. L., Landsberg, ‘Black holes at the LHC’, Phys.Rev.Lett., vol. 87, p. 161602, 2001.Google Scholar
[146] P., Kanti, ‘Black holes in theories with large extra dimensions: A review’, Int.J.Mod.Phys., vol. A19, pp. 4899–951, 2004.Google Scholar
[147] P., Kanti, ‘Black holes at the LHC’, Lect. Notes Phys., vol. 769, pp. 387– 423, 2009.Google Scholar
[148] E., Winstanley, ‘Hawking radiation from rotating brane black holes’, arXiv:0708.2656 (2007).
[149] G. L., Landsberg, ‘Black holes at future colliders and beyond’, J. Phys., vol. G32, pp. R337–R365, 2006.Google Scholar
[150] P. D. D, 'Eath, Black Holes: Gravitational Interactions. Oxford: Oxford University Press, 1996.
[151] D. M., Eardley and S. B., Giddings, ‘Classical black hole production in high-energy collisions’, Phys.Rev., vol. D66, p. 044011, 2002.Google Scholar
[152] H., Yoshino and Y., Nambu, ‘High-energy headon collisions of particles and hoop conjecture’, Phys.Rev., vol. D66, p. 065004, 2002.Google Scholar
[153] H., Yoshino and Y., Nambu, ‘Black hole formation in the grazing collision of high-energy particles’, Phys.Rev., vol. D67, p. 024009, 2003.Google Scholar
[154] H., Yoshino and V. S., Rychkov, ‘Improved analysis of black hole formation in high-energy particle collisions’, Phys.Rev., vol. D71, p. 104028, 2005.Google Scholar
[155] M., Voloshin, ‘Semiclassical suppression of black hole production in particle collisions’, Phys.Lett., vol. B518, pp. 137–42, 2001.Google Scholar
[156] S. N., Solodukhin, ‘Classical and quantum cross-section for black hole production in particle collisions’, Phys.Lett., vol. B533, pp. 153–61, 2002.Google Scholar
[157] E., Kohlprath and G., Veneziano, ‘Black holes from high-energy beam–beam collisions’, JHEP, vol. 0206, p. 057, 2002.Google Scholar
[158] P., Kanti and J., March-Russell, ‘Calculable corrections to brane black hole decay. 1. The scalar case’, Phys.Rev., vol. D66, p. 024023, 2002.Google Scholar
[159] P., Kanti and J., March-Russell, ‘Calculable corrections to brane black hole decay. 2. Greybody factors for spin 1/2 and 1’, Phys.Rev., vol. D67, p. 104019, 2003.Google Scholar
[160] D., Ida, K.-y., Oda and S. C., Park, ‘Rotating black holes at future colliders: Greybody factors for brane fields’, Phys.Rev., vol. D67, p. 064025, 2003.Google Scholar
[161] L. A., Anchordoqui et al., ‘Inelastic black hole production and large extra dimensions’, Phys.Lett., vol. B594, pp. 363–7, 2004.Google Scholar
[162] P., Meade and L., Randall, ‘Black holes and quantum gravity at the LHC’, JHEP, vol. 0805, p. 003, 2008.Google Scholar
[163] X., Calmet, W., Gong and S. D., Hsu, ‘Colorful quantum black holes at the LHC’, Phys.Lett., vol. B668, pp. 20–3, 2008.Google Scholar
[164] P., Nicolini et al., ‘Production and evaporation of Planck scale black holes at the LHC’, pp. 2495–7, 2015.
[165] D. M., Gingrich, ‘Quantum black holes with charge, colour, and spin at the LHC’, J. Phys., vol. G37, p. 105008, 2010.Google Scholar
[166] C. M., Harris et al., ‘Exploring higher dimensional black holes at the large hadron collider’, JHEP, vol. 05, p. 053, 2005.Google Scholar
[167] S., Chatrchyan et al., ‘Search for microscopic black holes in pp collisions at sqrt(s) = 8 TeV’, JHEP, vol. 1307, p. 178, 2013.Google Scholar
[168] S., Chatrchyan √ et al., ‘Search for microscopic black holes in pp collisions at s = 7 TeV’, JHEP, vol. 1204, p. 061, 2012.Google Scholar
[169] V., Khachatryan et al., ‘Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at √ s = 8 TeV’, Phys.Rev., vol. D91, no. 5, p. 052009, 2015.Google Scholar
[170] S., Chatrchyan et al., ‘Search for narrow resonances and quantum black h√oles in inclusive and b-tagged dijet mass spectra from pp collisions at s = 7 TeV’, JHEP, vol. 01, p. 013, 2013.Google Scholar
[171] G., Aad et al., ‘Search for microscopic black holes and string balls in final states with leptons and jets with the ATLAS detector at sqrt(s) = 8 TeV’, JHEP, vol. 1408, p. 103, 2014.Google Scholar
[172] K., Kong, ‘Phenomenology of universal extra dimensions, Report no. UMI- 32-28761’, 2006.
[173] H.-C., Cheng, K. T., Matchev, and M., Schmaltz, ‘Radiative corrections to Kaluza-Klein masses’, Phys.Rev., vol. D66, p. 036005, 2002.Google Scholar
[174] G., Bhattacharyya et al., ‘Power law blitzkrieg in universal extra dimension scenarios’, Nucl.Phys., vol. B760, pp. 117–27, 2007.Google Scholar
[175] M., Blennow et al., ‘RG running in a minimal UED model in light of recent LHC Higgs mass bounds’, Phys.Lett., vol. B712, pp. 419–24, 2012.Google Scholar
[176] A., Datta and S., Raychaudhuri, ‘Vacuum stability constraints and LHC searches for a model with a universal extra dimension’, Phys.Rev., vol. D87, no. 3, p. 035018, 2013.Google Scholar
[177] D., Hooper and S., Profumo, ‘Dark matter and collider phenomenology of universal extra dimensions’, Phys.Rept., vol. 453, pp. 29–115, 2007.Google Scholar
[178] G., Servant, ‘Status report on universal extra dimensions after LHC8,arXiv:1401.4176 [hep-ph]’, Mod. Phys. Lett. vol. A30, 1540011, 2015.Google Scholar
[179] K., Agashe, N., Deshpande, and G., Wu, ‘Universal extra dimensions and b —> s gamma’, Phys.Lett., vol. B514, pp. 309–14, 2001.Google Scholar
[180] A. J., Buras et al., ‘The impact of universal extra dimensions on B —> X(s) gamma, B —> X(s) gluon, B —> X(s) mu+ mu-, K(L) —> pi0 e+ e- and epsilon-prime / epsilon’, Nucl.Phys., vol. B678, pp. 455–90, 2004.Google Scholar
[181] I., Gogoladze and C., Macesanu, ‘Precision electroweak constraints on Universal Extra Dimensions revisited’, Phys.Rev., vol. D74, p. 093012, 2006.Google Scholar
[182] J., Oliver, J., Papavassiliou and A., Santamaria, ‘Universal extra dimensions and Z —> b anti-b’, Phys.Rev., vol. D67, p. 056002, 2003.Google Scholar
[183] A., Datta, A., Patra, and S., Raychaudhuri, ‘Higgs boson decay constraints on a model with a universal extra dimension’, Phys.Rev., vol. D89, no. 9, p. 093008, 2014.Google Scholar
[184] G., Belanger et al., ‘Testing minimal universal extra dimensions using Higgs boson searches at the LHC’, Phys.Rev., vol. D87, no. 1, p. 016008, 2013.Google Scholar
[185] G., Belanger, M., Kakizaki and A., Pukhov, ‘Dark matter in UED: The role of the second KK level’, JCAP, vol. 1102, p. 009, 2011.Google Scholar
[186] O., Lahav and A. R., Liddle, ‘The cosmological parameters 2014, arXiv:1401.1389 [astro-ph.CO]’, 2014.
[187] B., Bhattacherjee et al., ‘Boosted top quark signals for heavy vector boson excitations in a universal extra dimension model’, Phys.Rev., vol. D82, p. 055006, 2010.Google Scholar
[188] L., Edelhauser, T., Flacke and M., Kramer, ‘Constraints on models with universal extra dimensions from dilepton searches at the LHC’, JHEP, vol. 1308, p. 091, 2013.Google Scholar
[189] T., Flacke, K., Kong and S. C., Park, ‘A review on non-minimal universal extra dimensions’, Mod.Phys.Lett., vol. A30, no. 05, p. 1530003, 2015.Google Scholar
[190] D., Choudhury et al., ‘Exploring two universal extra dimensions at the CERN LHC’, JHEP, vol. 1204, p. 057, 2012.Google Scholar
[191] L., Randall and R., Sundrum, ‘An alternative to compactification’, Phys.Rev.Lett., vol. 83, pp. 4690–3, 1999.Google Scholar
[192] J. P., Conlon, F., Quevedo and K., Suruliz, ‘Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking’, JHEP, vol. 0508, p. 007, 2005.Google Scholar
[193] V., Balasubramanian et al., ‘Systematics of moduli stabilisation in Calabi- Yau flux compactifications’, JHEP, vol. 0503, p. 007, 2005.Google Scholar
[194] J., Conlon et al., ‘Sparticle spectra and LHC signatures for large volume string compactifications’, JHEP, vol. 0708, p. 061, 2007.Google Scholar
[195] T., Gherghetta, ‘TASI lectures on a holographic view of beyond the Standard Model physics’, in C., Csaki and S., Dodelson (eds.), Physics of the Large and the Small, Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, TASI 2009, 2010.
[196] R., Sundrum, ‘To the fifth dimension and back’, TASI 2004 lectures, 2005.
[197] C., Csaki, ‘TASI lectures on extra dimensions and branes’, in J., Terning, C. E. E., Wagner and D., Zeppenfeld (eds.), Physics in D >=4, Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, TASI 2004, pp. 605–98, 2004.
[198] C., Csaki, J., Hubisz, and P., Meade, ‘TASI lectures on electroweak symmetry breaking from extra dimensions’, in H. E., Haber and A. E., Nelson (eds.), Particle Physics and Cosmology: The Quest for Physics Beyond the Standard Model(s), Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, TASI 2002, pp. 703–76, 2005.
[199] R., Rattazzi, ‘Cargese lectures on extra-dimensions’, in D., Kazakov and G., Smajda (eds.), Particle Physics and Cosmology: The Interface, Proceedings of the NATO Advanced Study Institute – Cargese 2003, pp. 461–517, 2003.
[200] C., Csaki, J., Erlich and J., Terning, ‘The effective Lagrangian in the Randall-Sundrum model and electroweak physics’, Phys.Rev., vol. D66, p. 064021, 2002.Google Scholar
[201] W. D., Goldberger and M. B., Wise, ‘Bulk fields in the Randall-Sundrum compactification scenario’, Phys.Rev., vol. D60, p. 107505, 1999.Google Scholar
[202] T., Gherghetta and A., Pomarol, ‘Bulk fields and supersymmetry in a slice of AdS’, Nucl.Phys., vol. B586, pp. 141–62, 2000.Google Scholar
[203] P., Breitenlohner and D. Z., Freedman, ‘Positive energy in anti-de Sitter backgrounds and gauged extended supergravity’, Phys.Lett., vol. B115, p. 197, 1982.Google Scholar
[204] P., Breitenlohner and D. Z., Freedman, ‘Stability in gauged extended supergravity’, Annals Phys., vol. 144, p. 249, 1982.Google Scholar
[205] Y., Grossman and M., Neubert, ‘Neutrino masses and mixings in nonfactorizable geometry’, Phys.Lett., vol. B474, pp. 361–71, 2000.Google Scholar
[206] S., Chang et al., ‘Bulk standard model in the Randall-Sundrum background’, Phys.Rev., vol. D62, p. 084025, 2000.Google Scholar
[207] H., Davoudiasl, J., Hewett and T., Rizzo, ‘Bulk gauge fields in the Randall- Sundrum model’, Phys.Lett., vol. B473, pp. 43–9, 2000.Google Scholar
[208] A., Pomarol, ‘Gauge bosons in a five-dimensional theory with localized gravity’, Phys.Lett., vol. B486, pp. 153–57, 2000.Google Scholar
[209] K., Skenderis and P. K., Townsend, ‘Gravitational stability and renormalization group flow’, Phys.Lett., vol. B468, pp. 46–51, 1999.Google Scholar
[210] A., Chamblin and G., Gibbons, ‘Supergravity on the brane’, Phys.Rev.Lett., vol. 84, pp. 1090–3, 2000.Google Scholar
[211] C., Csaki et al., ‘Universal aspects of gravity localized on thick branes’, Nucl.Phys., vol. B581, pp. 309–38, 2000.Google Scholar
[212] D., Buchholz and K., Fredenhagen, ‘Dilations and interaction’, J. Math. Phys., vol. 18, pp. 1107–11, 1977.Google Scholar
[213] G. F., Dell' Antonio, ‘On dilatation invariance and the Wilson expansion’, Nuovo Cim., vol. A12, pp. 756–62, 1972.Google Scholar
[214] J. T., Lopuszanski, ‘On the supersymmetry charges in the theory of scalar and spinor free fields’, Rept. Math. Phys., vol. 9, pp. 301–7, 1976.Google Scholar
[215] S., Weinberg, ‘Minimal fields of canonical dimensionality are free’, Phys. Rev., vol. D86, p. 105015, 2012.Google Scholar
[216] G., Mack, ‘All unitary ray representations of the conformal group SU(2,2) with positive energy’, Commun. Math. Phys., vol. 55, p. 1, 1977.Google Scholar
[217] S., Coleman, Aspects of Symmetry: Selected Erice Lectures. Cambridge: Cambridge University Press, 1985.
[218] N., Arkani-Hamed, M., Porrati and L., Randall, ‘Holography and phenomenology’, JHEP, vol. 0108, p. 017, 2001.Google Scholar
[219] R., Rattazzi and A., Zaffaroni, ‘Comments on the holographic picture of the Randall-Sundrum model’, JHEP, vol. 0104, p. 021, 2001.Google Scholar
[220] M., Perez-Victoria, ‘Randall-Sundrum models and the regularized AdS / CFT correspondence’, JHEP, vol. 0105, p. 064, 2001.Google Scholar
[221] R., Contino and A., Pomarol, ‘Holography for fermions’, JHEP, vol. 0411, p. 058, 2004.Google Scholar
[222] B., Batell and T., Gherghetta, ‘Holographic mixing quantified’, Phys.Rev., vol. D76, p. 045017, 2007.Google Scholar
[223] B., Batell and T., Gherghetta, ‘Warped phenomenology in the holographic basis’, Phys.Rev., vol. D77, p. 045002, 2008.Google Scholar
[224] S., Kumar Rai and S., Raychaudhuri, ‘Single photon signals for warped quantum gravity at a linear e+ e- collider’, JHEP, vol. 0310, p. 020, 2003.Google Scholar
[225] W. D., Goldberger and M. B., Wise, ‘Modulus stabilization with bulk fields’, Phys.Rev.Lett., vol. 83, pp. 4922–5, 1999.Google Scholar
[226] W. D., Goldberger and M. B., Wise, ‘Phenomenology of a stabilized modulus’, Phys.Lett., vol. B475, pp. 275–9, 2000.Google Scholar
[227] O. DeWolfe et al., ‘Modeling the fifth-dimension with scalars and gravity’, Phys.Rev., vol. D62, p. 046008, 2000.
[228] D., Freedman et al., ‘Renormalization group flows from holography supersymmetry and a c theorem’, Adv. Theor. Math. Phys., vol. 3, pp. 363–417, 1999.Google Scholar
[229] C., Csaki, M. L., Graesser and G. D., Kribs, ‘Radion dynamics and electroweak physics’, Phys.Rev., vol. D63, p. 065002, 2001.Google Scholar
[230] G. F., Giudice, R., Rattazzi and J. D., Wells, ‘Graviscalars from higher dimensional metrics and curvature Higgs mixing’, Nucl.Phys., vol. B595, pp. 250–76, 2001.Google Scholar
[231] K.-m., Cheung, ‘Phenomenology of radion in Randall-Sundrum scenario’, Phys.Rev., vol. D63, p. 056007, 2001.Google Scholar
[232] U., Mahanta, ‘Unitarity bound on the radion mass in the Randall-Sundrum model, hep-ph/0004128’, 2000.
[233] U., Mahanta, ‘New physics, precision electroweak data and an upper bound on Higgs mass, hep-ph/0009096’, 2000.
[234] M., Frank, B., Korutlu and M., Toharia, ‘Radion phenomenology with 3 and 4 generations’, Phys.Rev., vol. D84, p. 115020, 2011.Google Scholar
[235] N., Desai, U., Maitra and B., Mukhopadhyaya, ‘An updated analysis of radion-higgs mixing in the light of LHC data’, JHEP, vol. 1310, p. 093, 2013.Google Scholar
[236] K., Agashe, G., Perez and A., Soni, ‘B-factory signals for a warped extra dimension’, Phys.Rev.Lett., vol. 93, p. 201804, 2004.Google Scholar
[237] K., Agashe, G., Perez and A., Soni, ‘Flavor structure of warped extra dimension models’, Phys.Rev., vol. D71, p. 016002, 2005.Google Scholar
[238] S. J., Huber, ‘Flavor violation and warped geometry’, Nucl.Phys., vol. B666, pp. 269–88, 2003.Google Scholar
[239] G., Burdman, ‘Constraints on the bulk standard model in the Randall- Sundrum scenario’, Phys.Rev., vol. D66, p. 076003, 2002.Google Scholar
[240] G., Burdman, ‘Flavor violation in warped extra dimensions and CP asymmetries in B decays’, Phys.Lett., vol. B590, pp. 86–94, 2004.Google Scholar
[241] S., Casagrande et al., ‘Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests’, JHEP, vol. 0810, p. 094, 2008.Google Scholar
[242] M., Bauer et al., ‘Flavor physics in the Randall-Sundrum model: II. Treelevel weak-interaction processes’, JHEP, vol. 1009, p. 017, 2010.Google Scholar
[243] S. J., Huber and Q., Shafi, ‘Higgs mechanism and bulk gauge boson masses in the Randall-Sundrum model’, Phys.Rev., vol. D63, p. 045010, 2001.Google Scholar
[244] K., Agashe et al., ‘RS1, custodial isospin and precision tests’, JHEP, vol. 0308, p. 050, 2003.Google Scholar
[245] K., Agashe and R., Contino, ‘The minimal composite Higgs model and electroweak precision tests’, Nucl.Phys., vol. B742, pp. 59–85, 2006.Google Scholar
[246] M., Carena et al., ‘Precision electroweak data and unification of couplings in warped extra dimensions’, Phys.Rev., vol. D68, p. 035010, 2003.Google Scholar
[247] K., Agashe et al., ‘A custodial symmetry for Zb anti-b’, Phys.Lett., vol. B641, pp. 62–6, 2006.Google Scholar
[248] M., Carena et al., ‘Warped fermions and precision tests’, Phys.Rev., vol. D71, p. 015010, 2005.Google Scholar
[249] H., Davoudiasl et al., ‘Warped 5-dimensional models: Phenomenological status and experimental prospects’, New J. Phys., vol. 12, p. 075011, 2010.Google Scholar
[250] R., Barbieri et al., ‘Electroweak symmetry breaking after LEP-1 and LEP- 2’, Nucl.Phys., vol. B703, pp. 127–46, 2004.Google Scholar
[251] J. A., Cabrer, G., von Gersdorff and M., Quiros, ‘Warped electroweak breaking without custodial symmetry’, Phys.Lett., vol. B697, pp. 208–14, 2011.Google Scholar
[252] M., Carena et al., ‘Electroweak constraints on warped models with custodial symmetry’, Phys.Rev., vol. D76, p. 035006, 2007.Google Scholar
[253] K., Agashe et al., ‘LHC signals from warped extra dimensions’, Phys.Rev., vol. D77, p. 015003, 2008.Google Scholar
[254] B., Lillie, L., Randall and L.-T., Wang, ‘The bulk RS KK-gluon at the LHC’, JHEP, vol. 0709, p. 074, 2007.Google Scholar
[255] G., Aad et al., ‘Search for t?t resonances in the lepton plus jets final state with ATLAS using 4.7 fb-1 of pp collisions at √ s = 7 TeV’, Phys.Rev., vol. D88, no. 1, p. 012004, 2013.Google Scholar
[256] M., Guchait, F., Mahmoudi and K., Sridhar, ‘Associated production of a Kaluza-Klein excitation of a gluon with a t anti-t pair at the LHC’, Phys.Lett., vol. B666, pp. 347–51, 2008.Google Scholar
[257] B. C., Allanach et al., ‘Gluon-initiated production of a Kaluza-Klein gluon in a bulk Randall-Sundrum model’, JHEP, vol. 1003, p. 014, 2010.Google Scholar
[258] K., Agashe et al., ‘LHC signals for warped electroweak neutral gauge bosons’, Phys.Rev., vol. D76, p. 115015, 2007.Google Scholar
[259] K., Agashe et al., ‘LHC signals for warped electroweak charged gauge bosons’, Phys.Rev., vol. D80, p. 075007, 2009.Google Scholar
[260] C., Dennis et al., ‘Multi-W events at LHC from a warped extra dimension with custodial symmetry’, hep-ph/0701158 (2007).
[261] R., Contino and G., Servant, ‘Discovering the top partners at the LHC using same-sign dilepton final states’, JHEP, vol. 0806, p. 026, 2008.Google Scholar
[262] R., Contino, Y., Nomura and A., Pomarol, ‘Higgs as a holographic pseudo- Goldstone boson’, Nucl.Phys., vol. B671, pp. 148–74, 2003.Google Scholar
[263] K., Agashe, R., Contino and A., Pomarol, ‘The minimal composite Higgs model’, Nucl.Phys., vol. B719, pp. 165–87, 2005.Google Scholar
[264] R., Contino and A., Pomarol, ‘The holographic composite Higgs’, Comptes Rendus Physique, vol. 8, pp. 1058–67, 2007.Google Scholar
[265] R., Contino, L., Da Rold and A., Pomarol, ‘Light custodians in natural composite Higgs models’, Phys.Rev., vol. D75, p. 055014, 2007.Google Scholar
[266] N., Arkani-Hamed and M., Schmaltz, ‘Hierarchies without symmetries from extra dimensions’, Phys. Rev., vol. D61, p. 033005, 2000.Google Scholar
[267] N., Arkani-Hamed, Y., Grossman and M., Schmaltz, ‘Split fermions in extra dimensions and exponentially small cross-sections at future colliders’, Phys. Rev., vol. D61, p. 115004, 2000.Google Scholar
[268] J. N., Ng, ‘Neutrino mass models in extra dimensions’, J. Korean Phys. Soc., vol. 45, pp. S341–S346, 2004.Google Scholar
[269] T., Gherghetta, ‘Dirac neutrino masses with Planck scale lepton number violation’, Phys. Rev. Lett., vol. 92, p. 161601, 2004.Google Scholar
[270] G., Perez and L., Randall, ‘Natural neutrino masses and mixings from warped geometry’, JHEP, vol. 01, p. 077, 2009.Google Scholar
[271] A. M., Iyer and S. K., Vempati, ‘Bulk Majorana mass terms and Dirac neutrinos in the Randall-Sundrum model’, Phys. Rev., vol. D88, no. 7, p. 073005, 2013.Google Scholar
[272] K. R., Dienes, E., Dudas and T., Gherghetta, ‘Extra space-time dimensions and unification’, Phys. Lett., vol. B436, pp. 55–65, 1998.Google Scholar
[273] K. R., Dienes, E., Dudas and T., Gherghetta, ‘Grand unification at intermediate mass scales through extra dimensions’, Nucl. Phys., vol. B537, pp. 47–108, 1999.Google Scholar
[274] K., Agashe, A., Delgado and R., Sundrum, ‘Grand unification in RS1’, Annals Phys., vol. 304, pp. 145–64, 2003.Google Scholar
[275] E., Shuster, ‘Killing spinors and supersymmetry on AdS’, Nucl. Phys., vol. B554, pp. 198–214, 1999.Google Scholar
[276] P., Brax, C. van de, Bruck and A.-C., Davis, ‘Brane world cosmology’, Rept. Prog. Phys., vol. 67, pp. 2183–232, 2004.Google Scholar
[277] M., Sasaki, ‘Brane-world cosmology and inflation’, Pramana, vol. 63, pp. 785–96, 2004.Google Scholar
[278] D., Lust, ‘Intersecting brane worlds: A path to the standard model?’, Class. Quant. Grav., vol. 21, pp. S1399–S1424, 2004.Google Scholar
[279] M., Berkooz, M. R., Douglas and R. G., Leigh, ‘Branes intersecting at angles’, Nucl. Phys., vol. B480, pp. 265–78, 1996.Google Scholar
[280] W. A., Bardeen and R. B., Pearson, ‘Local gauge invariance and the bound state nature of hadrons’, Phys. Rev., vol. D14, p. 547, 1976.Google Scholar
[281] N., Arkani-Hamed, A. G., Cohen and H., Georgi, ‘(De)constructing dimensions’, Phys. Rev. Lett., vol. 86, pp. 4757–61, 2001.Google Scholar
[282] N., Arkani-Hamed, A. G., Cohen and H., Georgi, ‘Electroweak symmetry breaking from dimensional deconstruction’, Phys. Lett., vol. B513, pp. 232– 40, 2001.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Sreerup Raychaudhuri, Tata Institute of Fundamental Research, Mumbai, India, K. Sridhar, Tata Institute of Fundamental Research, Mumbai, India
  • Book: Particle Physics of Brane Worlds and Extra Dimensions
  • Online publication: 05 July 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045650.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Sreerup Raychaudhuri, Tata Institute of Fundamental Research, Mumbai, India, K. Sridhar, Tata Institute of Fundamental Research, Mumbai, India
  • Book: Particle Physics of Brane Worlds and Extra Dimensions
  • Online publication: 05 July 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045650.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Sreerup Raychaudhuri, Tata Institute of Fundamental Research, Mumbai, India, K. Sridhar, Tata Institute of Fundamental Research, Mumbai, India
  • Book: Particle Physics of Brane Worlds and Extra Dimensions
  • Online publication: 05 July 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045650.018
Available formats
×