Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T10:15:05.837Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2014

Arnold F. Moene
Affiliation:
Wageningen University
Jos C. van Dam
Affiliation:
Wageningen University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboukhaled, A., Alfaro, A. A., and Smith, M. (1982). Lysimeters. Irrigation and Drainage Paper 39, FAO, Rome.
Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998). Crop evapotranspiration. Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56, FAO, Rome.
Ament, F., and Simmer, C. (2008). Improved representation of land-surface heterogeneity in a non-hydrostatic numerical weather prediction model. Boundary-Layer Meteorology, 121, 153–174.CrossRefGoogle Scholar
Andreas, E.L., and Hicks, B.B. (2002). Comments on ‘Critical test of the validity of Monin–Obukhov similarity during convective conditions’. Journal of Atmospheric Sciences, 59, 2605–2607.2.0.CO;2>CrossRefGoogle Scholar
Andreas, E.L, Claffey, K.J., Jordan, R.E., Fairall, C.W., Guest, P.S., Persson, P.O.G., and Grachev, A.A. (2006). Evaluations of the von Kármán constant in the atmospheric surface layer. Journal of Fluid Mechanics, 559, 117–149.CrossRefGoogle Scholar
Arain, M.A., Michaud, J., Shuttleworth, W.J., and Dolman, A.J. (1996). Testing of vegetation parameter aggregation rules applicable to the biosphere-atmosphere transfer scheme (BATS) and the FIFE site. Journal of Hydrology, 177, 1–22.CrossRefGoogle Scholar
Arnfield, A.J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23, 1–26.CrossRefGoogle Scholar
Araújo, A.C. de, Kruijt, B., Nobre, A.D., Dolman, A.J., Waterloo, M.J., Moors, E.J., and de Souza, J.S. (2008). Nocturnal accumulation of CO2 underneath a tropical forest canopy along a topographical gradient. Ecological Applications, 18, 1406–1419.CrossRefGoogle ScholarPubMed
Ashton, G.D. (2011). River and lake ice thickening, thinning, and snow ice formation. Cold Regions Science and Technology, 68, 3–19.CrossRefGoogle Scholar
Avissar, R. (1992). Conceptual aspects of a statistical-dynamical approach to represent landscape subgrid-scale heterogeneities in atmospheric models. Journal of Geophysical Research, 97D, 2729–2742.CrossRefGoogle Scholar
Avissar, R., and Pielke, R.A. (1989). A parameterization of heterogeneous land surfaces for atmospheric models and its impact on regional meteorology. Monthly Weather Review, 117, 2113–2134.2.0.CO;2>CrossRefGoogle Scholar
Baas, P., Steeneveld, G.J., van de Wiel, B.J.H., and Holtslag, A.A.M. (2006). Exploring self-correlation in flux–gradient relationships for stably stratified conditions. Journal of the Atmospheric Sciences, 63, 3045–3054.CrossRefGoogle Scholar
Baker, C.J. (2010). Discussion of ‘The macro-meteorological spectrum – A preliminary study’ by Harris, R.I.. Journal of Wind Engineering and Industrial Aerodynamics, 98, 945–947.CrossRefGoogle Scholar
Baldocchi, D. (2008). ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany, 56, 1–26.CrossRefGoogle Scholar
Baldocchi, D.D., Luxmoore, R.J., and Hatfield, J.L. (1991). Discerning the forest from the trees: An essay on scaling canopy stomatal conductance. Agricultural and Forest Meteorology, 54, 197–226.CrossRefGoogle Scholar
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, Ch., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S. (2001). FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82, 2415–2434.2.3.CO;2>CrossRefGoogle Scholar
Ball, J.T. (1987). Calculations related to gas exchange. In: Zeiger, E., Farquhar, G.D., and Cowan, I.R. (eds.), Stomatal function (pp. 445–476). Stanford: Stanford University Press.Google Scholar
Balsamo, G., Viterbo, P., Beljaars, A., van den Hurk, B., Hirschi, M., Betts, A.K., and Scipal, K. (2009). A revised Hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. Journal of Hydrometeorology, 10, 623–643.CrossRefGoogle Scholar
Balsamo, G., Pappenberger, F., Dutra, E., Viterbo, P., and van den Hurk, B. (2011). A revised land hydrology in the ECMWF model: A step towards daily water flux prediction in a fully-closed water cycle. Hydrological Processes, 25, 1046–1054.CrossRefGoogle Scholar
Bartholomeus, R.P., Witte, J.P.M., van Bodegom, P.M., van Dam, J.C., and Aerts, R. (2008). Critical soil conditions for oxygen stress to plant roots: Substituting the Feddes-function by a process-based model. Journal of Hydrology, 360, 147–165.CrossRefGoogle Scholar
Bastiaanssen, W.G.M., Noordman, E.J.M., Pelgrum, H., Davids, G., Thoreson, B.P., and Allen, R.G. (2005). SEBAL model with remotely sensed data to improve water resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131, 85–93.CrossRefGoogle Scholar
Basu, S., Holtslag, A.A.M., van de Wiel, B.J.H., Moene, A.F., and Steeneveld, G.J. (2008). An inconvenient ‘truth’ about using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta Geophysica, 56, 88–99.CrossRefGoogle Scholar
Bear, J. (1972). Dynamics of fluids in porous media. New York: Elsevier.Google Scholar
Beljaars, A. C. M., and Holtslag, A.A.M. (1991). Flux parameterization over land surfaces for atmospheric models. Journal of Applied Meteorology, 30, 327–341.2.0.CO;2>CrossRefGoogle Scholar
Belmans, C., Wesseling, J.G., and Feddes, R.A. (1983). Simulation model of the water balance of a cropped soil. Journal of Hydrology, 63, 271–286.CrossRefGoogle Scholar
Beltman, W.H.J., Boesten, J.J.T.I., and van der Zee, S.E.A.T.M. (1995). Analytical modelling of pesticide transport from the soil surface to a drinking water well. Journal of Hydrology, 169, 209–228.CrossRefGoogle Scholar
Bessembinder, J.J.E., Dhindwal, A.S., Leffelaar, P.A., Ponsioen, T., and Singh, Sher (2003). Analysis of crop growth. In van Dam, J.C. and Malik, R.S. (eds.), Water productivity of irrigated crops in Sirsa district, India. Integration of remote sensing, crop and soil models and geographical information systems (pp. 59–83). Wageningen: WATPRO Final Report.Google Scholar
Best, M., Beljaars, A., Polcher, J., and Viterbo, P. (2004). A proposed structure for coupling tiled surfaces with the planetary boundary layer. Journal of Hydrometeorology, 5, 1271–1278.CrossRefGoogle Scholar
Bethune, M.G., and Wang, Q.J. (2004). Simulating the water balance of border-check irrigated pasture on a cracking soil. Australian Journal of Experimental Agriculture, 44, 163–171.CrossRefGoogle Scholar
Bhumralkar, C.M. (1975). Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. Journal of Applied Meteorology, 14, 1246–1258.2.0.CO;2>CrossRefGoogle Scholar
Bierhuizen, J.F., and Slayter, R.O. (1965). Effect of atmospheric concentration of water vapor and CO2 in determining transpiration – photosynthesis relationships of cotton leaves. Agricultural Meteorology, 2, 259–270.CrossRefGoogle Scholar
Biggar, J.W., and Nielsen, D.R. (1967). Miscible displacement and leaching phenomena. Agronomy, 11, 254–274.Google Scholar
Bird, R.E., and Riordan, C. (1986). Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres. Journal of Applied Meteorology, 25, 87–97.2.0.CO;2>CrossRefGoogle Scholar
Black, T.A., Gardner, W.R., and Thurtell, G.W. (1969). The prediction of evaporation, drainage, and soil water storage for a bare soil. Soil Science Society of America Journal, 33, 655–660.CrossRefGoogle Scholar
Boast, C.W., and Robertson, T.M. (1982). A micro-lysimeter method for determining evaporation from bare soil: Description and laboratory evaluation. Soil Science Society of America Journal, 46, 689–696.CrossRefGoogle Scholar
Boesten, J.J.T.I., and Stroosnijder, L. (1986). Simple model for daily evaporation from fallow tilled soil under spring conditions in a temperate climate. Netherlands Journal of Agricultural Science, 34, 75–90.Google Scholar
Boesten, J.J.T.I., and van der Linden, A.M.A. (1991). Modeling the influence of sorption and transformation on pesticide leaching and persistence. Journal of Environmental Quality, 20, 425–435.CrossRefGoogle Scholar
Bolt, G.H. (1979). Soil chemistry. Part B. Physico-chemical models. Amsterdam: Elsevier.Google Scholar
Bonan, G.B. (1995). Land–atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model. Journal of Geophysical Research, 100, 2817–2831.CrossRefGoogle Scholar
Bonan, G.B., Pollard, D., and Thompson, S.L. (1993). Influence of subgrid-scale heterogeneity in leaf area index, stomatal resistance, and soil moisture on grid-scale land–atmosphere interactions. Journal of Climate, 6, 1882–1897.2.0.CO;2>CrossRefGoogle Scholar
Boone, A., de Rosnay, P., Basalmo, G., Beljaars, A., Chopin, F., Decharme, B., Delire, C., Ducharne, A., Gascoin, S., Grippa, M., Guichard, F., Gusev, Y., Harris, P., Jarlan, L., Kergoat, L., Mougin, E., Nasonova, O., Norgaard, A., Orgeval, T., Ottlé, C., Poccard-Leclercq, I., Polcher, J., Sandholt, I., Saux-Picart, S., Taylor, C., and Xue, Y. (2009). The AMMA land surface model intercomparison project. Bulletin of the American Meteorological Society, 90, 1865–1880.CrossRefGoogle Scholar
Bosveld, F.C., and Bouten, W. (2001). Evaluation of transpiration models with observations over a Douglas-fir forest. Agricultural and Forest Meteorology, 108, 247–264.CrossRefGoogle Scholar
Bouma, J., Belmans, C., Dekker, L.W., and Jeurissen, W.J.M. (1983). Assessing the suitability of soils with macropores for subsurface liquid waste disposal. Journal of Environmental Quality, 12, 305–311.CrossRefGoogle Scholar
Braam, M., Bosveld, F.C., and Moene, A.F. (2012). On Monin-Obukhov scaling in and above the atmospheric surface layer: The complexities of elevated scintillometer measurementsBoundary-Layer Meteorology, 144, 157–177.CrossRefGoogle Scholar
Braden, H. (1985). Energiehaushalts- und Verdunstungsmodell für Wasser- und Stoffhaushalts-untersuchungen landwirtschaftlich genutzter Einzugsgebiete. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 42, 254–299.Google Scholar
Brion, J., Chakir, A., Daumont, D., Malicet, J., and Parisse, C. (1993). High-resolution laboratory absorption cross section of O3. Temperature effect. Chemical Physics Letters, 213, 610–612.CrossRefGoogle Scholar
Brunt, D. (1932). Notes on radiation in the atmosphere. I. Quarterly Journal of the Royal Meteorological Society, 58, 389–420.CrossRefGoogle Scholar
Businger, J., Wyngaard, J., Izumi, Y., and Bradley, E. (1971). Flux-profile relationships in the atmospheric surface layer. Journal of Atmospheric Science, 28, 181–189.2.0.CO;2>CrossRefGoogle Scholar
Byrd, G.T., Sage, R.F., and Brown, R.H. (1992). A comparison of dark respiration between C3 and C4 plants. Plant Physiology, 100, 191–198.CrossRefGoogle Scholar
Calvet, J.-C., Noilhan, J., Roujean, J.-L., Bessemoulin, P., Cabelguenne, M., Olioso, A., and Wigneron, J.-P. (1998). An interactive vegetation SVAT model tested against data from six contrasting sites. Agricultural and Forest Meteorology, 92, 73–95.CrossRefGoogle Scholar
Cardon, G.E., and Letey, J. (1992). Plant water uptake terms evaluated for soil water and solute movement models. Soil Science Society of America Journal, 32, 1876–1880.CrossRefGoogle Scholar
Carsel, R.F., and Parrish, R.S. (1988). Developing joint probability distributions of soil water characteristics. Water Resources Research, 24, 755–769.CrossRefGoogle Scholar
Carlson, T.N., and Ripley, D.A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62, 241–252.CrossRefGoogle Scholar
Carslaw, H.S., and Jaeger, J.C. (1959). Conduction of heat in solids. Oxford: Oxford University Press.Google Scholar
Celia, M.A., Bouloutas, E.T., and Zarba, R.L. (1990). A general mass-conservative numerical solution for the unsaturated flow equation. Water Resources Research, 26, 1483–1496.CrossRefGoogle Scholar
Chehbouni, A., Njoku, E.G., Lhomme, J.-P., and Kerr, Y.H. (1995). Approaches for averaging surface parameters and fluxes over heterogeneous terrain. Journal of Climate, 8, 1386–1393.2.0.CO;2>CrossRefGoogle Scholar
Chen, F., and Dudhia, J. (2001). Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Monthly Weather Review, 129, 587–604.2.0.CO;2>CrossRefGoogle Scholar
Collatz, G.J., Ball, J.T., Grivet, C., and Berry, J.A. (1991). Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54, 107–136.CrossRefGoogle Scholar
Cook, F.J. (1995). One-dimensional oxygen diffusion into soil with exponential respiration: Analytical and numerical solutions. Ecological Modeling, 78, 277–283.CrossRefGoogle Scholar
Crawford, T.M., and Duchon, C.E. (1999). An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. Journal of Applied Meteorology, 38, 473–480.2.0.CO;2>CrossRefGoogle Scholar
Crescimanno, G., and Garofalo, P. (2005). Application and evaluation of the SWAP model for simulating water and solute transport in a cracking clay soil. Soil Science Society of America Journal, 69, 1943–1954.CrossRefGoogle Scholar
Crescimanno, G., and Garofalo, P. (2006). Management of irrigation with saline water in cracking clay soils. Soil Science Society of America Journal, 70, 1774–1787.CrossRefGoogle Scholar
Davies, W.J., and Zhang, J. (1991). Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 55–76.CrossRefGoogle Scholar
DeBruin, H.A.R. (1981). The determination of (reference crop) evapotranspiration from routine weather data. In Evaporation in relation to hydrology (pp. 25–37). The Hague: Commission of Hydrological Research TNO Proceedings and Information, Vol. 28.Google Scholar
DeBruin, H. A. R. (1982). The energy balance of the Earth’s surface: A practical approach. Unpublished Ph.D thesis, Wageningen Agricultural.
DeBruin, H.A.R. (1983). A model for the Priestley–Taylor parameter α. Journal of Climate and Applied Meteorology, 22, 572–578.2.0.CO;2>CrossRefGoogle Scholar
DeBruin, H.A.R. (1987). From Penman to Makkink. In Hooghart, J. C. (ed.), Evaporation and Weather, Committee on Hydrological Research. TNO, Den Haag, Proceedings and Information, 39: 5–30.Google Scholar
DeBruin, H.A.R. (1999). A note on Businger’s derivation of nondimensional wind and temperature profiles under unstable conditions. Journal of Applied Meteorology, 38, 626–628.2.0.CO;2>CrossRefGoogle Scholar
DeBruin, H.A.R., and Holtslag, A.A.M. (1982). A simple parameterization of the surface fluxes of sensible and latent heat during daytime compared with the Penman–Monteith concept. Journal of Applied Meteorology, 21, 1610–1621.2.0.CO;2>CrossRefGoogle Scholar
DeBruin, H.A.R., and Moore, C.J. (1985). Zero-plane displacement and roughness length for tall vegetation derived from a simple mass conservation hypothesis. Boundary-Layer Meteorology, 31, 39–49.CrossRefGoogle Scholar
DeBruin, H.A.R., and Wessels, H.R.A. (1988). A model for the formation and melting of ice on surface waters. Journal of Applied Meteorology, 27, 164–173.2.0.CO;2>CrossRefGoogle Scholar
DeBruin, H.A.R., and Lablans, W.N. (1998). Reference crop evapotranspiration determined with a modified Makkink equation. Hydrological Processes, 12, 1053–1062.3.0.CO;2-E>CrossRefGoogle Scholar
DeBruin, H.A.R., and Stricker, J.N.M. (2000). Evaporation of grass under non-restricted soil moisture conditions. Hydrological Sciences, 45, 391–406.CrossRefGoogle Scholar
DeBruin, H.A.R., Kohsiek, W., and van den Hurk, B.J.J.M (1993). A verification of some methods to determine the fluxes of momentum, sensible heat, and water vapour using standard deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorology, 63, 231–257.CrossRefGoogle Scholar
DeBruin, H.A.R., Ronda, R.J., and van de Wiel, B.J.H (2000). Approximate solutions for the Obukhov length and the surface fluxes in terms of bulk Richardson numbers. Boundary-Layer Meteorology, 95, 145–157.CrossRefGoogle Scholar
DeBruin, H.A.R., Trigo, I.F., Jitan, M.A., Enku, N. Temesgen, van der Tol, C., and Gieske, A.S.M. (2010). Reference crop evapotranspiration derived from geo-stationary satellite imagery: A case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan. Hydrology and Earth System Sciences, 14, 2219–2228.CrossRefGoogle Scholar
De Jong van Lier, Q., Metselaar, K., and van Dam, J.C. (2006). Root water extraction and limiting soil hydraulic conditions estimated by numerical simulation. Vadose Zone Journal, 5, 1264–1277.CrossRefGoogle Scholar
De Jong van Lier, Q., van Dam, J.C., Metselaar, K., de Jong, R., and Duijnisveld, W.H.M. (2008). Macroscopic root water uptake distribution using a matric flux potential approach. Vadose Zone Journal, 7, 1065–1078.CrossRefGoogle Scholar
De Vries, D.A. (1963). Thermal properties of soils. In van Wijk, W.R. (ed.), Physics of plant environment (pp. 210–235). Amsterdam: North-Holland.CrossRefGoogle Scholar
De Vries, D.A. (1975). Heat transfer in soils. In De Vries, D.A., and Afgan, N.H. (eds.), Heat and mass transfer in the biosphere. I. Transfer processes in plant environment (pp. 5–28). Washington, DC: Scripts.Google Scholar
De Willigen, P., Nielsen, N.E., and Claassen, N. (2000). Modelling water and nutrient uptake. In Smit, A.L., Bengough, A.G., and Engels, C. (eds.), Root methods: A handbook (pp. 509–544). Berlin: Springer.Google Scholar
Della-Marta, P.M., Haylock, M.R., Luterbacher, J., and Wanner, H. (2007). Doubled length of western European summer heat waves since 1880. Journal of Geophysical Research, 112, D15103.CrossRefGoogle Scholar
Denmead, O.T., and Bradley, E.F. (1987). On scalar transport in plant canopies. Irrigation Science, 8, 131–149.CrossRefGoogle Scholar
Desborough, C.E. (1997). The impact of root weighting on the response of transpiration to moisture stress in land surface schemes. Monthly Weather Review, 125, 1920–1930.2.0.CO;2>CrossRefGoogle Scholar
Desborough, C.E. (1999). Surface energy balance complexity in GCM land surface models. Climate Dynamics, 15, 389–403.CrossRefGoogle Scholar
Dickinson, R.E., Henderson-Sellers, A., Kennedy, P.J., and Wilson, M.F. (1986). Biosphere/atmosphere transfer scheme (BATS) for the NCAR community climate model. NCAR Technical Note TN275. Boulder, CO: National Center for Atmospheric Research, 69 pp.Google Scholar
Dingman, S.L. (2002). Physical hydrology. Long Grove: Waveland Press.Google Scholar
Dirksen, C. (1979). Flux-controlled sorptivity measurements to determine soil hydraulic property functions. Soil Science Society of America Journal, 43, 827–834.CrossRefGoogle Scholar
Dirksen, C. (1991). Unsaturated hydraulic conductivity. In Smith, K.A. and Mullins, C.E. (eds.), Soil analysis, Physical methods (pp. 209–269). New York: Marcel Dekker.Google Scholar
Dirksen, C. (1999). Soil physics measurements. Reiskirchen: Catena Verlag.Google Scholar
Dirksen, C., and Dasberg, S. (1993). Improved calibration of time domain reflectrometry soil water content measurements. Soil Science Society of America Journal, 57, 660–667.CrossRefGoogle Scholar
Dirksen, C., and Matula, S. (1994). Automatic atomized water spray system for soil hydraulic conductivity measurements. Soil Science Society of America Journal, 58, 319–325.CrossRefGoogle Scholar
Dirmeyer, P.A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki, N. (2006). GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bulletin of the American Meteorological Society, 87, 1381–1397.CrossRefGoogle Scholar
Doorenbos, J., and Pruitt, W.O. (1977). Guidelines for predicting crop water requirements. Irrigation and Drainage Paper, 24, 2nd ed. Rome: FAO.Google Scholar
Droogers, P., Kite, G., and Murray-Rust, H. (2000). Use of simulation models to evaluate irrigation performance including water productivity, risk and system analysis. Irrigation Science, 19, 139–145.CrossRefGoogle Scholar
Droogers, P., van Dam, J.C., Hoogeveen, J., and Loeve, R. (2004). Adaptation strategies to climate change to sustain food security. In Aerts, J.C.J.H. and Droogers, P. (eds.), Climate change in contrasting river basins (pp. 49–74). London: CABI.Google Scholar
Drusch, M., and Viterbo, P. (2007). Assimilation of screen-level variables in ECMWF’s integrated forecast system: A study on the impact on the forecast quality and analyzed soil moisture. Monthly Weather Review, 135, 300–314.CrossRefGoogle Scholar
Duffy, C.J., and Lee, D.H. (1992). Base flow response from nonpoint source contamination: Simulated spatial variability in source, structure and initial condition. Water Resources Research, 28, 905–914.CrossRefGoogle Scholar
Dupont, S., and Patton, E.G. (2012). Influence of stability and seasonal canopy changes on micrometeorology within and above an orchard canopy: The CHATS experimentAgricultural and Forest Meteorology, 157, 11–29.CrossRefGoogle Scholar
Dyer, A. J. (1974). A review of flux-profile-relationships. Boundary-Layer Meteorology, 7, 363–372.CrossRefGoogle Scholar
Dyer, A.J., and Hicks, B.B. (1970). Flux-gradient relationships in the constant flux layer. Quarterly Journal of Royal Meteorological Society, 96, 715–721.CrossRefGoogle Scholar
ECMWF (2009). IFS documentation CY31r1. (Accessed February 16, 2009).
Edwards, D. P. (1992). GENLN2: A general line-by-line atmospheric transmittance and radiance model, Version 3.0 description and users guide. NCAR/TN-367-STR. Boulder, CO: National Center for Atmospheric Research.Google Scholar
Ehlers, W., and Goss, M. (2003). Water dynamics in plant production. Wallingford: CABI.CrossRefGoogle Scholar
Ek, M.B., and Holtslag, A.A.M. (2005). Evaluation of a land-surface scheme at Cabauw. Theoretical and Applied Climatology, 80, 213–227.CrossRefGoogle Scholar
Farahani, H.J., Howell, T.A., Shuttlewort, W.J., and Bausch, W.C. (2007). Evapotranspiration: Progress in measurement and modeling in agriculture. Transactions of the ASABE, 50, 1627–1638.CrossRefGoogle Scholar
Farouki, O. T. (1986). Thermal properties of soils. Series on Rock and Soil Mechanics. Transactions Technical, 11.Google Scholar
Farquhar, G.D., and Sharkey, T.D. (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33, 317–345.CrossRefGoogle Scholar
Feddes, R.A. (1971). Water, heat and crop growth. Unpublished PhD thesis, Wageningen Agricultural University.Google Scholar
Feddes, R.A. (1987). Crop factors in relation to Makkink’s reference crop evapotranspiration. In Evaporation and weather (pp. 33–45). The Hague: Commission of Hydrological Research TNO Proceedings and Information, Vol. 39.Google Scholar
Feddes, R.A., and Raats, P.A.C. (2004). Parameterizing the soil-water-plant-root system. In Feddes, R.A., de Rooij, G.H. and van Dam, J.C. (eds.), Unsaturated zone modeling, Progress, Challenges and Applications (pp. 95–144). Dordrecht: Kluwer Academic.Google Scholar
Feddes, R.A., Kowalik, P.J., and Zaradny, H. (1978). Simulation of field water use and crop yield. Simulation Monographs. Wageningen: Pudoc.Google Scholar
Feddes, R.A., Kabat, P., van Bakel, P.J.T., Bronswijk, J.J.B., and Halbertsma, J. (1988). Modelling soil water dynamics in the unsaturated zone: State of the art. Journal of Hydrology, 100, 69–111.CrossRefGoogle Scholar
Finnigan, J. (2000). Turbulence in plant canopies. Annual Review of Fluid Mechanics, 32, 519–571.CrossRefGoogle Scholar
Finnigan, J.J., Clement, R., Mahli, Y., Leuning, R., and Cleugh, H.A. (2002). A re-evaluation of long-term flux measurement techniques. Part I: Averaging and coordinate rotation. Boundary-Layer Meteorology, 107, 1–48.CrossRefGoogle Scholar
Flexas, J., Ribas-Carbó, M., Diaz-Espejo, A., Galmés, J., and Medrano, H. (2008). Mesophyll conductance to CO2: Current knowledge and future prospects. Plant, Cell & Environment, 31, 602–621.CrossRefGoogle ScholarPubMed
Foken, T (2006). 50 years of Monin-Obukhov similarity theory. Boundary-Layer Meteorology, 119, 431–447.CrossRefGoogle Scholar
Forsythe, W.E. (1954). Smithsonian physical tables (9th revised edition). Washington, DC: Smithsonian Institution.Google Scholar
Frich, P.Alexander, L.V., Della-Marta, P., Gleason, B., Haylock, M., Tank, A.M.G. Klein, and Peterson, T. (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19, 193–212.CrossRefGoogle Scholar
Gardner, W.R. (1960). Dynamic aspects of water availability to plants. Soil Science, 89, 63–73.CrossRefGoogle Scholar
Gardner, W.R. (1986). Water content. In Klute, A. (ed.), Methods of soil analysis. Part 1 (pp. 493–544). Madison: American Society of Agronomy, Monograph 9.Google Scholar
Garrat, J.R. (1992). The atmospheric boundary layer. Cambridge Atmospheric and Space Science series. Cambridge: Cambridge University Press.Google Scholar
Garrat, J.R., and Segal, M. (1988). On the contribution of atmospheric moisture to dew formation. Boundary-Layer Meteorology, 45, 209–236.CrossRefGoogle Scholar
Gash, J.H.C. (1979). An analytical model of rainfall interception by forests. Quarterly Journal of Royal Meteorological Society, 105, 43–55.CrossRefGoogle Scholar
Gash, J.H.C., Lloyd, C.R., and Lachaud, G. (1995). Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology, 170, 79–86.CrossRefGoogle Scholar
Gates, D.M. (1980). Biophysical ecology. New York: Springer-Verlag.CrossRefGoogle Scholar
Gerber, S., Hedin, L.O., Oppenheimer, M., Pacala, S.W., and Shevliakov, E. (2010). Nitrogen cycling and feedbacks in a global dynamic land model. Global Biogeochemical Cycles, 24, GB1001.CrossRefGoogle Scholar
Gerrits, M. (2010). The role of interception in the hydrological cycle. Unpublished PhD. thesis, Delft Technical University.Google Scholar
Giard, D., and Bazile, E. (2000). Implementation of a new assimilation scheme for soil and surface variables in a global NWP model. Monthly Weather Review, 128, 997–1015.2.0.CO;2>CrossRefGoogle Scholar
Goudriaan, J. (1977). Crop meteorology: A simulation study. Simulation Monographs. Wageningen: Pudoc.Google Scholar
Goudriaan, J. (1986). A simple and fast numerical method for the computation of daily total of canopy photosynthesis. Agricultural and Forest Meteorology, 43, 251–255.Google Scholar
Goudriaan, J., van Laar, H.H., van Keulen, H., and Louwerse, W. (1985). Photosynthesis, CO2 and plant production. In Day, W. & Atkin, R.K. (eds.), Wheat growth and modelling (pp. 107–122). NATO ASI Series, Series A: Life Sciences Vol. 86. New York: Plenum Press.CrossRefGoogle Scholar
Grachev, A. A., Andreas, E.L., Fairall, C.W., Guest, P.S., and Persson, P.O.G. (2007). On the turbulent Prandtl number in the stable atmospheric boundary layer. Boundary-Layer Meteorology, 125, 329–341.CrossRefGoogle Scholar
Graefe, J. (2004). Roughness layer corrections with emphasis on SVAT model applications. Agricultural and Forest Meteorology, 124, 237–251.CrossRefGoogle Scholar
Graf, A., Schüttemeyer, D., Geiß, H., Knaps, A., Möllmann-Coers, M., Schween, J.H., Kollet, S., Neininger, B., Herbst, M., and Vereecken, H.. (2010). Boundedness of turbulent temperature probability distributions, and their relation to the vertical profile in the convective boundary layer. Boundary-Layer Meteorology, 134, 459–486.CrossRefGoogle Scholar
Grimmond, C.S.B., Blackett, M., Best, M.J., Baik, J.-J., Belcher, S.E., Beringer, J., Bohnenstengel, S.I., Calmet, I., Chen, F., Coutts, A., Dandou, A., Fortuniak, K., Gouvea, M.L., Hamdi, R., Hendry, M., Kanda, M., Kawai, T., Kawamoto, Y., Kondo, H., Krayenhoff, E.S., Lee, S.-H., Loridan, T., Martilli, A., Masson, V., Miao, S., Oleson, K., Ooka, R., Pigeon, G., Porson, A., Ryu, Y.-H., Salamanca, F., Steeneveld, G., Tombrou, M., Voogt, J.A., Young, D.T., and Zhang, N. (2011). Initial results from Phase 2 of the international urban energy balance model comparison. International Journal of Climatology, 31, 244–272.CrossRefGoogle Scholar
Grinsven, J.J.M. van, Dirksen, C., and Bouten, W. (1985). Evaluation of hot air method for measuring soil water diffusivity. Soil Science Society of America Journal, 49, 1093–1099.CrossRefGoogle Scholar
Groen, K.P. (1997). Pesticide leaching in polders. Field and model studies on cracked clays and loamy sand. Unpublished PhD thesis, Wageningen Agricultural University.Google Scholar
Gryning, S-E., Bactchvarova, E., and DeBruin, H.A.R. (2001). Energy balance of a sparse coniferous high-latitude forest under winter conditions. Boundary-Layer Meteorology, 99, 465–488.CrossRefGoogle Scholar
Gueymard, C.A. (1998). Turbidity determination from broadband irradiance measurements: A detailed multicoefficient approach. Journal of Applied Meteorology, 37, 414–435.2.0.CO;2>CrossRefGoogle Scholar
Gueymard, C.A. (2001). Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Solar Energy, 71, 325–346.CrossRefGoogle Scholar
Gueymard, C.A. (2004). The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy, 76, 423–453.CrossRefGoogle Scholar
Gueymard, C.A., and Myers, D.R. (2008). Solar radiation measurement: Progress in radiometry for improved modeling. In Badescu, V. (ed.), Modeling solar radiation at the earth’s surface: Recent advances (pp. 1–27). Berlin: Springer-Verlag.Google Scholar
Hagemann, S. (2002). An improved land surface parameter dataset for global and regional climate models. Hamburg: Max-Plank Institute for Meteorologie, Report 336.Google Scholar
Hagemann, S, Machenhauer, B., Jones, R., Christensen, O. B., Déqué, M., Jacob, D., and Vidale, P. L. (2004). Evaluation of water and energy budgets in regional climate models applied over Europe. Climate Dynamics, 23, 547–567.CrossRefGoogle Scholar
Hainsworth, J.M., and Aylmore, L.A.G. (1986). Water extraction by single plant roots. Soil Science Society of America Journal, 50, 841–848.CrossRefGoogle Scholar
Hale, G.M., and Querry, M. R. (1973). Optical constants of water in the 200 nm to 200 µm wavelength region. Applied Optics, 12, 555–563.CrossRefGoogle ScholarPubMed
Hall, F.G, Townshend, J. R., and Engman, E.T. (1995). Status of remote sensing algorithms for estimation of land surface state parameters. Remote Sensing of Environment, 51, 138–156.CrossRefGoogle Scholar
Halldin, S., and Lindroth, A. (1992). Errors in net radiometry: Comparison and evaluation of six radiometer designs. Journal of Atmospheric and Oceanic Technology, 9, 762–783.2.0.CO;2>CrossRefGoogle Scholar
Hamaker, J.W. (1972). Decomposition: quantitative aspects. In Goring, C.A.I. and Hamaker, M. (eds.), Organic chemicals in the soil environment (pp. 253–340). New York: Marcel Dekker.Google Scholar
Hargreaves, G.L., and Samani, Z.A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1, 96–99.CrossRefGoogle Scholar
Hartogensis, O.K., and DeBruin, H.A.R. (2005). Monin–Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Boundary-Layer Meteorology, 116, 253–276.CrossRefGoogle Scholar
Hayes, W.M., ed. (2011). CRC handbook of chemistry and physics. Boca Raton, FL: CRC Press.Google Scholar
Hecht, E. (1987). Optics. 2nd ed. Reading, MA: Addison-Wesley.Google Scholar
Heinen, M. (2001). FUSSIM2: Brief description of the simulation model and application to fertigation scenarios. Agronomie, 21, 285–296.CrossRefGoogle Scholar
Henderson-Sellers, A., Pitman, A.J., Love, P.K., Irannejad, P., and Chen, T.H. (1995). The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3. Bulletin of the American Meteorological Society, 76, 489–503.2.0.CO;2>CrossRefGoogle Scholar
Hendriks, D.M.D., Dolman, A. J., van der Molen, M. K., and van Huissteden, J. (2008). A compact and stable eddy covariance set-up for methane measurements using off-axis integrated cavity output spectroscopy. Atmospheric Chemical Physics, 8, 431–443.CrossRefGoogle Scholar
Herkelrath, W.N., Miller, E.E., and Gardner, W.R. (1977). Water uptake by plants: I. Divided root experiments, II. The root contact model. Soil Science Society of America Journal, 41, 1033–1043.CrossRefGoogle Scholar
Hetherington, A.M., and Woodward, F.I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 901–908.CrossRefGoogle ScholarPubMed
Heus, T., van Heerwaarden, C.C., Jonker, H.J J., Siebesma, A.P., Axelsen, S., van den Dries, K., Geoffroy, O., Moene, A F., Pino, D., de Roode, S.R., and Vila-Guerau de Arellano, J. (2010). Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications. Geoscientific Model Development, 3, 415–444.CrossRefGoogle Scholar
Heusinkveld, B.G.Jacobs, A.F.G., Holtslag, A.A.M., and Berkowicz, S.M. (2004). Surface energy balance closure in an arid region: Role of soil heat flux. Agricultural and Forest Meteorology, 122, 21–37.CrossRefGoogle Scholar
Heusinkveld, B.G., Berkowicz, S.M., Jacobs, A.F.G., Holtslag, A.A.M., and Hillen, W.C.A.M. (2006). An automated microlysimeter to study dew formation and evaporation in arid and semiarid regions. Journal of Hydrometeorology, 7, 825–832.CrossRefGoogle Scholar
Heusinkveld, B.G., Jacobs, A.F.G., and Holtslag, A.A.M. (2008). Effect of open-path gas analyzer wetness on eddy covariance flux measurements: A proposed solution. Agricultural and Forest Meteorology, 148, 1563–1573.CrossRefGoogle Scholar
Hill, R.J. (1989). Implications of Monin-Obukhov similarity theory for scalar quantities. Journal of Atmospheric Sciences, 46, 2236–2251.2.0.CO;2>CrossRefGoogle Scholar
Hillel, D. (1980). Uptake of soil moisture by plants. In Applications of soil physics (pp. 163–166). London: Academic Press.Google Scholar
Hillel, D. (1998). Environmental soil physics. London: Academic Press.Google Scholar
Hillel, D. (2008). Soil in the environment: Crucible of terrestrial life. London: Academic Press.Google Scholar
Hodur, R.M. (1997). The Naval Research Laboratory’s coupled ocean/atmosphere mesoscale prediction system (COAMPS). Monthly Weather Review, 125, 1414–1430.2.0.CO;2>CrossRefGoogle Scholar
Högström, U. (1988). Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Boundary-Layer Meteorology, 42, 55–78.CrossRefGoogle Scholar
Högström, U. (1996). Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorology, 78, 215–246.CrossRefGoogle Scholar
Holt, T.R., Niyogi, D., Chen, F., Manning, K., LeMone, M.A., and Qureshi, A. (2006). Effect of land-atmosphere interactions on the IHOP 24–25 May 2002 convection case. Monthly Weather Review, 134, 113–133.CrossRefGoogle Scholar
Hopmans, J.W., and Stricker, J.N.M. (1989). Stochastic analysis of soil water regime in a watershed. Journal of Hydrology, 105, 57–84.CrossRefGoogle Scholar
Hopmans, J.W., Šimůnek, J., Romano, N., and Durner, W. (2002). Inverse methods. In Dane, J. H. and Topp, G. C. (eds.), Methods of soil analysis. Part 4 – Physical methods. Madison, WI: Soil Science Society of America Book Series 5.Google Scholar
Horst, T.W., and Weil, J.C. (1994). How far is far enough?: The fetch requirements for micrometeorological measurements of surface fluxes. Journal of Atmospheric and Oceanic Technology, 11, 1018–1025.2.0.CO;2>CrossRefGoogle Scholar
Horton, R.E. (1933). The role of infiltration in the hydrological cycle. Transaction of American Geophysical Union, 14th Annual Meeting, pp. 446–460.CrossRefGoogle Scholar
Horton, R.E. (1939). Analysis of runoff – plot experiments with varying infiltration capacity. Transaction of American Geophysical Union, 20th Annual Meeting, pp. 693–694.CrossRefGoogle Scholar
Horton, R., Wierenga, P.J., and Nielsen, D.R. (1983). Evaluation of methods for determining the apparent thermal diffusivity of soil near the surface. Soil Science Society of America Journal, 47, 25–32.CrossRefGoogle Scholar
Huber, L., and Gillespie, T.J. (1992). Modeling leaf wetness in relation to plant-disease epidemiology. Annual Review of Phytopathology, 30, 553–577.CrossRefGoogle Scholar
Huete, A, Didan, K., Miura, T., Rodriguez, E.P., Gao, X., and Ferreira, L.G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213.CrossRefGoogle Scholar
Hughes, R.N., and Brimblecombe, P. (1994). Dew and guttation: Formation and environmental significance. Agricultural and Forest Meteorology, 67, 173–190.CrossRefGoogle Scholar
Hupet, F., van Dam, J.C., and Vanclooster, M. (2004). Impact of within-field variability in soil hydraulic properties on transpiration fluxes and crop yields: A numerical study. Vadose Zone Journal, 3, 1367–1379.Google Scholar
Hurk van den, B.J.J.M., Viterbo, P., Beljaars, A.C.M., and Betts, A.K. (2000). Offline validation of the ERA40 surface scheme. ECMWF Technical Memo, 295.Google Scholar
Hurk van den, B.J.J.M., Viterbo, P., and Los, S.O. (2003). Impact of leaf area index seasonality on the annual land surface evaporation in a global circulation model. Journal of Geophysical Research, 108, 4191.CrossRefGoogle Scholar
Iqbal, M (1983). An introduction to solar radiation. Toronto: Academic Press.Google Scholar
Ittersum, M.K. van, Leffelaar, P.A., van Keulen, H., Kropff, M.J., Bastiaans, L., and Goudriaan, J. (2003). On approaches and applications of the Wageningen crop models. European Journal of Agronomy, 18, 201–234.CrossRefGoogle Scholar
IWMI (2007). Water for food. Water for Life. A comprehensive assessment of water management in agriculture. Colombo: International Water Management Institute.Google Scholar
Ineichen, P., and Perez, R. (2002). A new airmass independent formulation for the Linke turbidity coefficient. Solar Energy, 73, 151–157.CrossRefGoogle Scholar
Intsiful, J., and Kunstmann, H. (2008). Upscaling of land-surface parameters through inverse stochastic SVAT-modelling. Boundary Layer Meteorology, 129, 137–58.CrossRefGoogle Scholar
Itier, B. (1982). Révision d’une methode simplififieé du flux de chaleur sensible. Journal de Recherches Atmosphériques, 16, 85–90.Google Scholar
Jackson, P.S. (1981). On the displacement height in the logarithmic velocity profile. Journal of Fluid Mechanics, 111, 15–25.CrossRefGoogle Scholar
Jacobs, C.M.J. (1994). Direct impact of atmospheric CO2 enrichment on regional transpiration. Ph.D. thesis. Agricultural University, Wageningen.
Jacobs, A.F.G., and van Pul, W.A.J. (1990). Seasonal changes in the albedo of a maize crop during two seasons. Agricultural and Forest Meteorology, 49, 351–360.CrossRefGoogle Scholar
Jacobs, C.M.J., and de Bruin, H.A.R. (1992). The sensitivity of regional transpiration to land-surface characteristics: Significance of feedback. Journal of Climate, 5, 683–698.2.0.CO;2>CrossRefGoogle Scholar
Jacobs, A.F.G., van Pul, W.A.J., and van Dijken, A. (1990). Similarity moisture dew profiles within a corn canopy. Journal of Applied Meteorology, 29, 1300–1306.2.0.CO;2>CrossRefGoogle Scholar
Jacobs, A.F.G., van Boxel, J.H., and El-Kilani, R.M.M. (1995). Vertical and horizontal distribution of wind speed and air temperature in a dense vegetation canopy. Journal of Hydrology, 166, 313–326.CrossRefGoogle Scholar
Jacobs, A.F.G., van Boxel, J.H., and Nieveen, J. (1996). Nighttime exchange processes near the soil surface of a maize canopy. Agricultural and Forest Meteorology, 82, 155–169.CrossRefGoogle Scholar
Jacobs, C.M.J., van den Hurk, B.J.J.M., and de Bruin, H.A.R. (1996). Stomata1 behaviour and photosynthetic rate of unstressed grapevines in semi-arid conditions. Agricultural and Forest Meteorology, 80, 111–134.CrossRefGoogle Scholar
Jacobs, A.F.G, Heusinkveld, B.G., and Berkowicz, S.M. (2000). Dew measurements along a longitudinal sand dune transect, Negev Desert, Israel. International Journal of Biometeorology, 43, 184–190.CrossRefGoogle ScholarPubMed
Jacobs, A.F.G, Heusinkveld, B.G., and Klok, E.J. (2005). Leaf wetness within a lily canopy. Meteorological Applications, 12, 193–198.CrossRefGoogle Scholar
Jacobs, A.F.G., Heusinkveld, B.G., Kruit, R.J. Wichink, and Berkowicz, S.M. (2006). Contribution of dew to the water budget of a grassland area in the Netherlands. Water Resources Research, 42, W03415.CrossRefGoogle Scholar
Jacovides, C.P. (1997). Model comparison for the calculation of Linke’s turbidity factor. International Journal of Climatology, 17, 551–563.3.0.CO;2-C>CrossRefGoogle Scholar
Jacovides, C.P., Tymvios, F.S., Assimakopoulos, V.D., and Kaltsounides, N.A. (2007). The dependence of global and diffuse PAR radiation components on sky conditions at Athens, Greece. Agricultural and Forest Meteorology, 143, 277–287CrossRefGoogle Scholar
Jacquemoud, S., and Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra. Remote Sensing of Environment, 34, 75–91.CrossRefGoogle Scholar
Jarlan, L., Balsamo, G., Lafont, S., Beljaars, A., Calvet, J.C., and Mougin, E. (2007). Analysis of Leaf Area Index in the ECMWF land surface scheme and impact on latent heat and carbon fluxes: Applications to West Africa. ECMWF Technical Memorandum, 544.Google Scholar
Jarvis, A.J., and Davies, W.J. (1998). The coupled response of stomatal conductance to photosynthesis and transpiration. Journal of Experimental Botany, 49, 399–406.CrossRefGoogle Scholar
Jarvis, P. (1976). The interpretation of the variations in leafwater potentials and stomatal conductances found in canopies in the field. Philosophical Transactions of Royal Society, 273, 593–610.CrossRefGoogle Scholar
Jarvis, P., and McNaughton, K.G. (1986). Stomatal control of transpiration: Scaling up from leaf to region. In MacFadyen, A. and Ford, E.D. (eds.), Advances in Ecological Research 15, 1–49.CrossRefGoogle Scholar
Javaux, M., Schröder, Tom, Vanderborght, Jan, and Vereecken, Harry (2008). Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone Journal, 7, 1079–1088.CrossRefGoogle Scholar
Jensen, M.E. (1968). Water consumption by agricultural plants. In Kozlowski, T.T. (pp. 1–22). Plant water consumption and response: Water deficits and plant growth, Vol. II. New York: Academic Press.Google Scholar
Jensen, M.E., Burman, R.D., and Allen, R.G. (1990). Evapotranspiration and irrigation water requirements. New York: ASCE Manuals and Reports on Engineering Practice, 70.Google Scholar
Jhorar, R.K., Dhindwal, A.S., Kumar, Ranvir, Jhorar, B.S., Bhatto, M.S., and Dharampal, (2003). Water management and crop production in Sirsa Irrigation Circle. In van Dam, J.C. and Malik, R.S. (eds.), Water productivity of irrigated crops in Sirsa district, India: Integration of remote sensing, crop and soil models and geographical information systems (pp. 21–28). Wageningen: WATPRO final report.Google Scholar
Jhorar, R.K., van Dam, J.C., Bastiaanssen, W.M.G., and Feddes, R.A. (2004). Calibration of effective soil hydraulic parameters of heterogeneous soil profiles. Journal of Hydrology, 285, 233–247.CrossRefGoogle Scholar
Jiménez, J.I., Alados-Arboledas, L., Castro-Diez, Y., and Ballester, G. (1987). On the estimation of long-wave radiation flux from clear skies. Theoretical and Applied Climatology, 38, 37–42.Google Scholar
Jiménez, P. A., and Dudhia, J. (2012). Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. Journal of Applied Meteorology and Climatology, 51, 300–316.CrossRefGoogle Scholar
Jungk, A.O. (2002). Dynamics of nutrient movement at the soil-root interface. In Waisel, Y., Eshel, A., and Kafkafi, U. (eds.), Plant root: The hidden half, 3rd ed. (pp. 587–616). New York: Marcel Dekker.Google Scholar
Jungk, A.O., and Claassen, N. (1989). Availability in soil and acquisition by plants as the basis for phosphorus and potassium supply to plants. Zeitschrift für Pflanzenernährung und Bodenkunde, 152, 151–157.CrossRefGoogle Scholar
Jury, W.A. (1982). Simulation of solute transport using a transfer function mode. Water Resources Research, 18, 363–368.CrossRefGoogle Scholar
Jury, W.A., and Sposito, G. (1985). Field calibration and validation of solute transport models for the unsaturated zone. Soil Science Society of America Journal, 49, 1331–1341.CrossRefGoogle Scholar
Jury, W.A., Gardner, W.R., and Gardner, W.H. (1991). Soil physics, 5th ed. New York: John Wiley & Sons.Google Scholar
Kasten, F. (1996). The Linke turbidity factor based on improved values of the integral Rayleigh optical thickness. Solar Energy, 56, 239–244.CrossRefGoogle Scholar
Kasten, F., and Young, A.T. (1989). Revised optical air mass tables and approximation formula. Applied Optics, 28, 4735–4738.CrossRefGoogle ScholarPubMed
Katul, G., Cava, D., Poggi, D., Albertson, J. and Mahrt, L. (2005). Stationarity, homogeneity, and ergodicity in canopy turbulence. In Lee, X., Massman, W., and Law, B. (eds.), Handbook of micrometeorology: A guide for surface flux measurement and analysis (pp. 161–180). New York: Kluwer Academic.CrossRefGoogle Scholar
Katul, G.G., Sempreviva, A.M., and Cava, D. (2008). The temperature–humidity covariance in the marine surface layer: A one-dimensional analytical model. Boundary-Layer Meteorology, 126, 263–278.CrossRefGoogle Scholar
Kelliher, F.M., Leuning, R., and Schulze, E.-D. (1993). Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologica, 95, 153–163.CrossRefGoogle ScholarPubMed
Kelliher, F.M., Leuning, R., Raupach, M.R., and Schulze, E.-D. (1995). Maximum conductances for evaporation from global vegetation types. Agricultural and Forest Meteorology, 73, 1–16.CrossRefGoogle Scholar
Kim, C.P. (1995). The water budget of heterogeneous areas: Impact of soil and rainfall variability. Unpublished PhD thesis, Wageningen University.Google Scholar
Kimball, B.A., and Jackson, R.D. (1975). Soil heat flux determination: A null-alignment method. Agricultural Meteorology, 15, 1–9.CrossRefGoogle Scholar
Kirkham, M.B. (2005). Principles of soil and plant water relations. San Diego: Elsevier Academic Press.Google Scholar
Klein Tank, A.M.G., et al. (2002). Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology, 22, 1441–1453.CrossRefGoogle Scholar
Klipp, C.L., and Mahrt, L. (2004). Flux–gradient relationship, self-correlation and intermittency in the stable boundary layer. Quarterly Journal of the Royal Meteorological Society, 130, 2087–2103.CrossRefGoogle Scholar
Klute, A. (1986). Water retention: Laboratory methods. In Klute, A. (eds.), Methods of soil analysis; Part 1: Physical and mineralogical methods (pp. 635–662). Madison, WI: American Society of Agronomy, Agronomy series, 9.Google Scholar
Klute, A., and Dirksen, C. (1986). Hydraulic conductivity and diffusivity: Laboratory methods. In Klute, A. (ed.), Methods of soil analysis; Part 1: Physical and mineralogical methods (pp. 687–734). Madison, WI: American Society of Agronomy, Agronomy series, 9.Google Scholar
Kohsiek, W., Liebethal, C., Foken, T., Vogt, R., Oncley, S.P., Bernhofer, Ch., and De Bruin, H.A.R. (2007). The Energy Balance Experiment EBEX-2000. Part III: Behaviour and quality of the radiation measurements. Boundary Layer Meteorology, 123, 55–75.CrossRefGoogle Scholar
Kollet, S., Cvijanovic, I., Schüttemeyer, D., Moene, A.F., and Bayer, P. (2009). The influence of the sensible heat of rain, subsurface heat convection and the lower temperature boundary condition on the energy balance at the land surface. Vadose Zone Journal, 8, 846–857CrossRefGoogle Scholar
Kondo, J., Kanechika, O., and Yasuda, N. (1978). Heat and momentum transfers under strong stability in the atmospheric surface layer. Journal of the Atmospheric Sciences, 35, 1012–1021.2.0.CO;2>CrossRefGoogle Scholar
Konrad, W., Roth-Nebelsick, A., and Grein, M. (2008). Modelling of stomatal density response to atmospheric CO2. Journal of Theoretical Biology, 253, 638–658.CrossRefGoogle ScholarPubMed
Koorevaar, P., Menelik, G., and Dirksen, C. (1983). Elements of soil physics. Amsterdam: Elsevier.Google Scholar
Kopp, G., and Lean, J. (2011). A new, lower value of total solar irradiance: Evidence and climate significance. Geophysical Research Letters, 38, L01706.CrossRefGoogle Scholar
Kormann, R., and Meixner, F.X. (2001). An analytical footprint model for non-neutral stratification. Boundary Layer Meteorology, 99, 207–224.CrossRefGoogle Scholar
Kroes, J.G., and Roelsma, J. (1997). User’s Guide ANIMO 3.5; input instructions and technical programme description. Wageningen: DLO Winand Staring Centre, Technical Document 46.Google Scholar
Kroes, J.G., van Dam, J.C., Groenendijk, P., Hendriks, R.F.A., and Jacobs, C.M.J. (2008). SWAP version 3.2. Theory description and user manual. Wageningen: Alterra, Report 1649.Google Scholar
Lahou, F., Saïd, F., Lothon, M., Durand, P., and Sarça, D. (2010). Impact of boundary-layer processes on near-surface turbulence within the West African monsoon. Boundary-Layer Meteorology, 136, 1–23CrossRefGoogle Scholar
Lambers, H., Chapin, F. Stuart, and Pons, T.L. (2008). Plant physiological ecology, 2nd ed. New York: Springer Science+Business Media.CrossRefGoogle Scholar
Launiainen, J. (1995). Derivation of the relationship between the Obukhov stability parameter and the bulk Richardson number for flux-profile studies. Boundary-Layer Meteorology, 76, 165–179.CrossRefGoogle Scholar
Lee, R. (1978). Forest micrometeorology. New York: Columbia University Press.Google Scholar
Lee, X., Massman, W., and Law, B., Eds. (2004). Handbook of micrometeorology: A guide for surface flux measurement and analysis. Dordrecht, The Netherlands: Kluwer Academic,.Google Scholar
Leij, F.J., Alves, W.J., van Genuchten, M. Th., and Williams, J.R. (1996). The UNSODA unsaturated soil hydraulic database. User’s manual Version 1.0. Riverside, CA: US Salinity Laboratory.Google Scholar
Leistra, M., van der Linden, A.M.A., Boesten, J.J.T.I., Tiktak, A., and van den Berg, F. (2001). PEARL model for pesticide behaviour and emissions in soil-plant systems. Description of processes. Wageningen: Alterra report, 13.Google Scholar
Lenschow, D.H., Mann, J., and Kristensen, L. (1994). How long is long enough when measuring fluxes and other turbulence statistics. Journal of Atmospheric and Oceanic Technology, 11, 661–673.2.0.CO;2>CrossRefGoogle Scholar
Lesieur, M. (1993). Turbulence in fluids, 2nd ed. Dordrecht: Kluwer.Google Scholar
Lettau, H.H. (1979). Wind and temperature profile prediction surface layer including strong inversion cases. Boundary Layer Meteorology, 17, 443–464.CrossRefGoogle Scholar
Leuning, R. (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant, Cell & Environment, 18, 339–355.CrossRefGoogle Scholar
Levis, S. (2010). Modeling vegetation and land use in models of the Earth System. Wiley Interdisciplinary Reviews: Climate Change, 1, 840–856.Google Scholar
Li, D. E. Bou-Zeid, and DeBruin, H.A.R. (2012). Monin–Obukhov similarity functions for the structure parameters of temperature and humidity. Boundary-Layer Meteorology, 145, 45–67.CrossRefGoogle Scholar
Lloyd, C.R., Gash, J.H.C., Shuttleworth, W.H., and Marques, A.O. (1988). The measuring and modelling of rainfall interception by Amazonian rainforests. Agricultural and Forest Meteorology, 43, 277–294.CrossRefGoogle Scholar
Lloyd, J., and Taylor, J.T. (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315–323.Google Scholar
Maas, E.V. (1990). Crop salt tolerance. In Tanji, K.K. (ed.), Agricultural salinity assessment and management (pp. 262–304). New York: ASCE Manuals and Reports on Engineering Practice, no. 71.Google Scholar
Maas, E.V., and Hoffman, G.J. (1977). Crop salt tolerance-current assessment. Journal of the Irrigation and Drainage Divisions, 103, 115–134.Google Scholar
Mahfouf, J.-F. (2010). Assimilation of satellite-derived soil moisture from ASCAT in a limited-area NWP model. Quarterly Journal of the Royal Meteorological Society, 136, 784–798.Google Scholar
Mahrt, L. (1987). Grid-averaged surface fluxes. Monthly Weather Review, 115, 1550–1560.2.0.CO;2>CrossRefGoogle Scholar
Mahrt, L. (1996). The bulk aerodynamic formulation over heterogeneous surfaces. Boundary Layer Meteorology, 78, 87–l19.CrossRefGoogle Scholar
Makkink, G.F. (1957). Testing the Penman formula by means of lysimeters. Journal of International Water Engineering, 11, 277–288.Google Scholar
Malhi, Y. (1996). The behaviour of the roughness length for temperature over heterogeneous surfaces. Quarterly Journal of the Royal Meteorological Society, 122, 1095–1125.CrossRefGoogle Scholar
Manabe, S. (1969). Climate and the ocean circulation: 1, the atmospheric circulation and the hydrology of the Earth’s surface. Monthly Weather Review, 97, 739–805.2.3.CO;2>CrossRefGoogle Scholar
Marsily, G. de (1986). Quantitative hydrogeology. Groundwater hydrology for engineers. New York: Academic Press.Google Scholar
Massman, W.J. (1997). An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure. Boundary Layer Meteorology, 83, 407–421.CrossRefGoogle Scholar
Masson, V., Champeaux, J.-L., Chauvin, F., Meriguet, C., and Lacaze, R. (2003). A global database of land surface parameters at 1-km resolution in meteorological and climate models. Journal of Climate, 16, 1261–1282.CrossRefGoogle Scholar
Mauder, M., Liebethal, C., Göckede, M., Leps, J.-P., Beyrich, F., and Foken, T. (2006). Processing and quality control of flux data during LITFASS-2003. Boundary Layer Meteorology, 121, 67–88.CrossRefGoogle Scholar
McCaughey, J.H., Mullins, D.W., and Publicover, M. (1987). Comparative performance of two reversing Bowen ratio measurement systems. Journal of Atmospheric and Oceanic Technology, 4, 724–730.2.0.CO;2>CrossRefGoogle Scholar
McNaughton, K. G., Clement, R.J., and Moncrieff, J. B. (2007). Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer. Nonlinear Processes in Geophysics, 14, 257–271.CrossRefGoogle Scholar
Metselaar, K., and De Jong van Lier, Q. (2007). The shape of the transpiration reduction function under plant water stress. Vadose Zone Journal, 6, 124–139.CrossRefGoogle Scholar
Meyers, T.P., and Hollinger, S.E. (2004). An assessment of storage terms in the surface energy balance of maize and soybean. Agricultural and Forest Meteorology, 125, 105–115.CrossRefGoogle Scholar
Moene, A.F., and Schüttemeyer, D. (2008). The effect of surface heterogeneity on the temperature–humidity correlation and the relative transport efficiency. Boundary-Layer Meteorology, 129, 99–113.CrossRefGoogle Scholar
Moene, A.F., Schüttemeyer, D., and Hartogensis, O.K. (2006). Scalar similarity functions: The influence of surface heterogeneity and entrainment. Paper presented at the 17th Boundary-Layer and Turbulence Conference, 22–25 May 2006, San Diego. American Meteorological Society, Boston, p 5.1Google Scholar
Mogensen, V.O. (1970). The calibration factor of heat flux meters in relation to the thermal conductivity of the surrounding medium. Agricultural Meteorology, 7, 401–410.CrossRefGoogle Scholar
Molden, D., Murray-Rust, H., Sakthivadivel, R., and Makin, I. (2003). A water-productivity framework for understanding and action. In Kijne, J.W., Barker, R. and Molden, D. (eds.), Water productivity in agriculture: Limits and opportunities for improvement (pp. 1–18). Wallingford: CABI.Google Scholar
Molz, F.J. (1981). Models of water transport in the soil-plant system: A review. Water Resources Research, 17, 1245–1260.CrossRefGoogle Scholar
Moncrieff, J.B., Massheder, J.M., de Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., and Verhoef, A. (1997). A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology, 188–189, 589–611.CrossRefGoogle Scholar
Monin, A.S., and Obukhov, A.M. (1954). Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geophiz. Inst. 24, 163–187 (translation edited by McNaughton, K. G., available from (Accessed February 25, 2013).Google Scholar
Monin, A.S., and Yaglom, A.S. (1971). Statistical fluid mechanics: Mechanics of turbulence, Vol. I. Cambridge, MA: MIT Press.Google Scholar
Monteith, J.L. (1965). Evaporation and the Environment. In Fogg, G.E. (ed.), The state and movement of water in living organisms (pp. 205–234). Cambridge: Cambridge University Press.Google Scholar
Monteith, J.L. (1995). A reinterpretation of stomatal responses to humidity. Plant, Cell and Environment, 18, 357–364.CrossRefGoogle Scholar
Monteith, J.L., and Unsworth, M.H. (2008). Principles of environmental physics, 3rd ed. Burlington: Academic Press.Google Scholar
Moors, E. (2002). Hydrologische woordenlijst. Zeist: NHV (Dutch Hydrological Society), in Dutch.Google Scholar
Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12, 513–522.CrossRefGoogle Scholar
Mundel, G. (1992). Untersuchungen zur Evapotranspiration von Silomaisbeständen in Lysimetern. Archiv für Acker- und Pflanzenbau und Bodenkunde, 36, 35–44.Google Scholar
Muzylo, A., Llorens, P., Valente, F., Keizer, J.J., Domingo, F., and Gash, J.H.C. (2009). A review of rainfall interception modelling. Journal of Hydrology, 370, 191–206.CrossRefGoogle Scholar
Nielsen, D.R., van Genuchten, M.Th., and Biggar, J.W. (1986). Water flow and solute transport in the unsaturated zone. Water Resources Research, 22 (Supplement), 89S–108S.CrossRefGoogle Scholar
Nimmo, J.R., Rubin, J., and Hammermeister, D.P. (1987). Unsaturated flow in a centrifugal field: measurement of hydraulic conductivity and testing of Darcy’s law. Water Resources Research, 32, 124–134.CrossRefGoogle Scholar
Ochsner, E.T., Horton, R., and Ren, T. (2001). A new perspective on soil thermal properties. Soil Science Society of America Journal, 65, 1641–1647.CrossRefGoogle Scholar
O’Donnell, J.A., Romanovsky, V.E., Harden, J.W., and McGuire, A.D. (2009). The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior Alaska. Soil Science, 174, 646–651CrossRefGoogle Scholar
Ommen, H.C. van (1988). Transport from diffuse sources of contamination and its application to a coupled unsaturated-saturated system. Unpublished PhD thesis, Wageningen University.Google Scholar
Oke, T.R. (1987). Boundary layer climates, 2nd ed. London: Methuen.Google Scholar
Papaioannou, G., Nikolidakis, G., Asimakopoulos, D., and Retalis, D. (1996). Photosynthetically active radiation in Athens. Agricultural and Forest Meteorology, 81, 287–298.CrossRefGoogle Scholar
Paulson, C.A. (1970). The mathematical representation of wind speed and temperature profiles in the unstable atmospheric-surface layer. Journal of Applied Meteorology, 9, 857–861.2.0.CO;2>CrossRefGoogle Scholar
Pauwels, V.R.N., Verhoest, N.E.C., De Lannoy, G.J.M., Guissard, V., Lucau, C., and Defourny, P. (2007). Optimization of a coupled hydrology – crop growth model through the assimilation of observed soil moisture and leaf area index values using an ensemble Kalman filter. Water Resources Research, 43, W04421, doi:.CrossRefGoogle Scholar
Paw, U, K.T., Qiu, J., Su, H.B., Watanabe, T., and Brunet, Y. (1995). Surface renewal analysis: A new method to obtain scalar fluxes without velocity data. Agricultural and ForestMeteorology, 74, 119–137.Google Scholar
Penning de Vries, F.W.T., and van Laar, H.H. (1982). Simulation of plant growth and crop production. Wageningen: Pudoc.Google Scholar
Peters-Lidard, C.D., Blackburn, E., Liang, X., and Wood, E.F. (1998). The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. Journal of Atmosperic Science, 55, 1209–1224.2.0.CO;2>CrossRefGoogle Scholar
Petty, G.W. (2004). A first course in atmospheric radiation. Madison, WI: Sundog Publishing.Google Scholar
Philippon, N., Jarlan, L., Martiny, N., Camberlin, P., and Mougin, E., (2007). Characterization of the interannual and intraseasonal variability of West African vegetation between 1982 and 2002 by means of NOAA AVHRR NDVI data. Journal of Climate, 20, 1202–1218.CrossRefGoogle Scholar
Pitman, A.J. (2003). The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology, 23, 479–510.CrossRefGoogle Scholar
Priestley, C.H.B., and Taylor, R.J. (1972). On the assessment of surface heat flux and evaporation using large scale parameters. Monthly Weather Review, 100, 81–92.2.3.CO;2>CrossRefGoogle Scholar
Prinn, R.G., Weiss, R.F., Fraser, P.J., Simmonds, P.G., Cunnold, D.M., Alyea, F.N., O’Doherty, S., Salameh, P., Miller, B.R., Huang, J., Wang, R.H.J., Hartley, D.E., Harth, C., Steele, L.P., Sturrock, G., Midgley, P.M., and McCulloch, A. (2000). A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. Journal of Geophysical Research, 105, 17751–17792.CrossRefGoogle Scholar
Raats, P.A.C. (1975). Distribution of salts in the crop root zone. Journal of Hydrology, 27, 237–248.CrossRefGoogle Scholar
Radcliffe, E.R., and Šimůnek, J. (2010). Soil physics with HYDRUS: Modeling and applications. Boca Raton, FL: CRC Press.Google Scholar
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11, 1424–1439.CrossRefGoogle Scholar
Reynolds, O. (1895). On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of Royal Society, 186, 123–161.CrossRefGoogle Scholar
Rhoades, J.D., Kandiah, A., and Mashali, A.M. (1992). The use of saline water for crop production. Rome: FAO, Irrigation and Drainage Paper 48.Google Scholar
Rijtema, P.E. (1965). An analysis of actual evapotranspiration. Agricultural Research Report 659. Wageningen: Pudoc.Google Scholar
Rijtema, P.E., Groenendijk, P., and Kroes, J.G. (1997). ANIMO, a dynamic simulation model for transport and transformation of nutrients and organic materials in soils. Wageningen: DLO Winand Staring Centre, Report 30.Google Scholar
Riou, C. (1982). Une expression analytique du flux de chaleur sensible en conditions suradiabatiques à partir de mesures du vent et de la température à deux niveaux. Journal de Recherches Atmosphériques, 16, 15–22.Google Scholar
Riseborough, D., Shiklomanov, N., Etzelmüller, B., Gruber, S., and Marchenko, S. (2008). Recent advances in Permafrost modelling. Permafrost and Periglacial Processes, 19, 137–156.CrossRefGoogle Scholar
Ritsema, C.J., van Dam, J.C., Dekker, L.W., and Oostindie, K. (2005). A new modeling approach to simulate preferential flow and transport in water repellent porous media: Model structure and validation. Australian Journal of Soil Research, 43, 361–369.CrossRefGoogle Scholar
Ritzema, H.P. (1994). Drainage principles and applications, 2nd ed. Wageningen: ILRI, Publication 16.Google Scholar
Rodriguez-Iturbe, I., and Porporato, A. (2004). Ecohydrology of water-controlled ecosystems: soil moisture and plant dynamics. Cambridge: Cambridge University Press.Google Scholar
Ronda, R.J., de Bruin, H.A.R., and Holtslag, A.A.M. (2001). Representation of the canopy conductance in modeling the surface energy budget for low vegetation. Journal of Applied Meteorology, 40, 1431–14442.0.CO;2>CrossRefGoogle Scholar
Roth, C.H., Malicki, M.A., and Plagge, R. (1992). Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR. Journal of Soil Science, 43, 1–13.CrossRefGoogle Scholar
Rothman, L.S., et al. (2009). The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 533–572.CrossRefGoogle Scholar
Rutter, A., Morton, A., and Robins, P. (1975). A predictive model of rainfall interception in forests. II Generalization of the model and comparison with observations in some coniferous and hardwood stands. Journal of Applied Ecology, 12, 367–380.CrossRefGoogle Scholar
Santanello, J.A., and Friedl, M.A. (2003). Diurnal covariation in soil heat flux and net radiation. Journal of Applied Meteorology, 42, 851–862.2.0.CO;2>CrossRefGoogle Scholar
Sarwar, A., Bastiaanssen, W.M.G., Boers, Th.M., and van Dam, J.C. (2000). Evaluating drainage design parameters for the fourth drainage project, Pakistan by using the SWAP model: Part 1: Calibration. Irrigation and Drainage Systems, 14, 257–280.CrossRefGoogle Scholar
Sauer, T.J., Meek, D.W., Ochsner, T.E., Harris, A R., and Horton, R. (2003). Errors in heat flux measurement by flux plates of contrasting design and thermal conductivity. Vadose Zone Journal, 2, 580–588.CrossRefGoogle Scholar
Schaik, N.L.M.B., Hendriks, R.F.A., and van Dam, J.C. (2010). Parameterization of macropore flow using dye-tracer infiltration patterns in the SWAP model. Vadose Zone Journal, 9, 95–106.CrossRefGoogle Scholar
Schalkwijk, J., Bosveld, F., and Siebesma, A. (2010). Timescales and structures in vertical transport in the atmospheric boundary layer. Technical Report WR-2010–02, KNMI.
Scharmer, K., and Greif, J., eds. (2000). The European solar radiation atlas, Vol. 2: Database and exploitation software. Paris: Les Presses de l’ École des Mines.Google Scholar
Schmid, H.P. (1997). Experimental design for flux measurements: Matching scales of observations and fluxes. Agricultural and Forest Meteorology, 87, 179–200.CrossRefGoogle Scholar
Schmidt, W. (1921). Wird die Luft durch Konvektion von der Erdoberfllche her erwarmt?Meterologikal Zeitschrift, 38, 262.Google Scholar
Schröder, T., Javaux, M., Vanderborght, J., Körfgen, B., and Vereecken, H. (2009). Implementation of a microscopic soil-root hydraulic conductivity drop function in a three dimensional soil-root architecture water transfer model. Vadose Zone Journal, 8, 783–792.CrossRefGoogle Scholar
Schüttemeyer, D., Moene, A.F., Holtslag, A.A.M., de Bruin, H.A.R., and van de Giesen, N. (2006). Surface fluxes and characteristics of drying semi-arid terrain in West Africa. Boundary Layer Meteorology, 118, 583–612.CrossRefGoogle Scholar
Schüttemeyer, D., Schillings, Ch., Moene, A.F., and de Bruin, H.A.R. (2007). Satellite-based actual evapotranspiration over drying semiarid terrain in West-Africa. Journal of Applied Meteorology and Climatology, 46, 97–111.CrossRefGoogle Scholar
Schuurmans, J., Troch, P.A., Veldhuizen, A., Bastiaanssen, W.G.M., and Bierkens, M., (2003). Assimilation of remotely sensed latent heat flux in a distributed hydrological model. Advanced Water Resources, 26, 151–159.CrossRefGoogle Scholar
Scott, H.D. (2000). Soil physics: Agricultural and environmental applications. Ames: Iowa State University Press.Google Scholar
Sellers, P.J. (1985). Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing, 6, 1335–1372.CrossRefGoogle Scholar
Sellers, P.J., Randall, D.A., Collatz, G.J., Berry, J.A., Field, C.B., Dazlich, D.A., Zhang, C., Collelo, G.D., and Bounoua, L. (1996). A revised land surface parameterization (SiB2) for atmospheric GCMS. Part I: Model formulation. Journal of Climate, 9, 676–705.2.0.CO;2>CrossRefGoogle Scholar
Sellers, P.J., Dickinson, R.E., Randall, D.A., Betts, A.K., Hall, F.G., Berry, J.A., Collatz, G.J., Denning, A.S., Mooney, H.A., Nobre, C.A., Sato, N., Field, C.B., and Henderson-Sellers, A. (1997). Modelling the exchanges of energy, water and carbon between continents and the atmosphere. Science, 275, 502–509.CrossRefGoogle Scholar
Seneviratne, S.I., Lüthi, D., Litschi, M., and Schär, C. (2006). Land–atmosphere coupling and climate change in Europe, Nature, 443, 205–209.CrossRefGoogle Scholar
Seth, A., Giorgi, F., and Dickinson, R.E. (1994). Simulating fluxes from heterogeneous land surface: Explicit subgrid method employing the biosphere-atmosphere transfer scheme (BATS). Journal of Geophysical Research, 99, 18651–18667.CrossRefGoogle Scholar
Shuttleworth, W.J., and Wallace, J.S. (1985). Evaporation from sparse crops – an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 111, 839–855.CrossRefGoogle Scholar
Šimůnek, J., Sejna, M., and van Genuchten, M.Th. (1998a). The HYDRUS-1D software package for simulating one-dimensional water, heat, and multiple solutes in variably saturated media, Version 2.0. Riverside, CA: US Salinity Laboratory.Google Scholar
Šimůnek, J., Angula-Jaramillo, R., Schaap, M.G., Vabdervaere, J.-P, and van Genuchten, M.Th. (1998b). Using an inverse method to estimate the hydraulic properties of crusted soils from tension disc infiltrometer data. Geoderma, 86, 61–81.CrossRefGoogle Scholar
Šimůnek, J., van Genuchten, M.Th., Sejna, M., Toride, N., and Leij, F.J. (1999). The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Riverside, CA: US Salinity Laboratory.Google Scholar
Singh, R. (2005). Water productivity from field to regional scale: Integration of crop and soil modelling, remote sensing and geographical information. Unpublished PhD thesis, Wageningen University.Google Scholar
Singh, R., Kroes, J.G., van Dam, J.C., and Feddes, R.A. (2006a). Distributed ecohydrological modelling to evaluate the performance of irrigation system in Sirsa district, India. I. Current water management and its productivity. Journal of Hydrology, 329, 692–713.CrossRefGoogle Scholar
Singh, R., Jhorar, R.K., van Dam, J.C., and Feddes, R.A. (2006b). Distributed ecohydrological modelling to evaluate the performance of irrigation system in Sirsa district, India. II. Impact of alternative water management scenarios. Journal of Hydrology, 329, 714–723.CrossRefGoogle Scholar
Skaggs, T.H., van Genuchten, M.T., Shouse, P.J., and Poss, J.A. (2006). Macroscopic approaches to root water uptake as a function of water and salinity stress. Agricultural Water Management, 86, 140–149.CrossRefGoogle Scholar
Smith, M. (1992). CROPWAT: A computer program for irrigation planning and management. Rome, FAO, Irrigation and Drainage Paper 46.Google Scholar
Smith, R.E. (2002). Infiltration theory for hydrologic applications. Washington, DC: American Geophysical Union, Water Resources Monograph 15.CrossRefGoogle Scholar
Smits, K.M., Sakaki, T., Limsuwat, A., and Illangasekare, T.H. (2010). Thermal conductivity of sands under varying moisture and porosity in drainage–wetting cycles. Vadose Zone Journal, 9, 1–9.CrossRefGoogle Scholar
Spitters, C.J.T., van Keulen, H., and van Kraalingen, D.G.W. (1989). A simple and universal crop growth simulator: SUCROS 87. In Rabbinge, R., Ward, S.A. and van Laar, H.H. (eds.), Simulation and systems management in crop protection (pp. 147–181). Wageningen: Pudoc.Google Scholar
Stanhill, G., Cox, J.T.H., and Moreshet, S. (1968). The effect of crop and climatic factors on the radiation balance of an irrigated maize crop. Journal of Applied Ecology, 5, 707.CrossRefGoogle Scholar
Stefan, J., (1889). Über die Theorien des Eisbildung insbesondere über die Eisbildung in Polarmeere. Annalen der Physik, 278, 269–286.CrossRefGoogle Scholar
Stewart, J. B. (1988). Modeling surface conductance of pine forest. Agricultural and Forest Meteorology, 43, 19–35.CrossRefGoogle Scholar
Stewart, J.B., Kustas, W.P., Humes, K.S., Nichols, W.D., Moran, M.S., and de Bruin, H.A.R. (1994). Sensible heat flux-radiometric surface temperature relationship for eight semiarid areas. Journal of Applied Meteorology, 33, 1110–1117.2.0.CO;2>CrossRefGoogle Scholar
Stull, R.B. (1988). An introduction to boundary-layer meteorology. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
Supit, I., Hooyer, A.A., and van Diepen, C.A. (1994). System description of the WOFOST 6.0 crop simulation model implemented in CGMS. Vol. 1: Theory and algorithms. Luxembourg: Agricultural series, EUR publication 15956.Google Scholar
Tappeiner, U., and Cernusca, A. (1989). Canopy structure and light climate of different alpine plant communities: Analysis by means of a model. Theoretical and Applied Climatology, 40, 81–92.CrossRefGoogle Scholar
Ten Berge, H.F.M. (1986). Heat and water transfer at the bare soil surface: Aspects affecting thermal images. Unpublished PhD thesis, Wageningen University.Google Scholar
Tennekes, H., and Lumley, J.L. (1972). A first course in turbulence. Cambridge, MA: MIT Press.Google Scholar
Teuling, A.J., Seneviratne, S.I., Williams, C., and Troch, P.A. (2006). Observed timescales of evapotranspiration response to soil moisture. Geophysical Research Letters, 33, L23403.CrossRefGoogle Scholar
Teuling, A.J., Hirschi, M., Ohmura, A., Wild, M., Reichstein, M., Ciais, P., Buchmann, N., Ammann, C., Montagnani, L., Richardson, A. D., Wohlfahrt, G., and Seneviratne, S. I. (2009). A regional perspective on trends in continental evaporation. Geophysical Research Letters, 36, L02404.CrossRefGoogle Scholar
Teuling, A.J., Seneviratne, S.I., Stöckli, R., Reichstein, M., Moors, E., Ciais, P., Luyssaert, S., van den Hurk, B., Ammann, C., Bernhofer, C., Dellwik, E., Gianelle, D., Gielen, B., Grünwald, T., Klumpp, K., Montagnani, L., Moureaux, C., Sottocornola, M., and Wohlfahrt, G. (2010). Contrasting response of European forest and grassland energy exchange to heatwaves. Nature Geosciences, 3, 722–727.CrossRefGoogle Scholar
Thom, A.S. (1971). Momentum absorption by vegetation. Quarterly Journal of the Royal Meteorological Society, 97, 414–428.CrossRefGoogle Scholar
Tiktak, A., van den Berg, F., Boesten, J.J.T.I., Leistra, M., van der Linden, A.M.A., and van Kraalingen, D. (2000). Pesticide Emission at Regional and Local scales: Pearl version 1.1 User Manual. Zeist: RIVM report 711401008.Google Scholar
Tol, C. van der (2000). Soil evaporation and plant transpiration as simulated with the FAO 56-method and the agrohydrological model SWAP. Unpublished MSc thesis, Wageningen University.Google Scholar
Topp, G.C., Davis, J.L., and Annan, A.P. (1980). Electromagnetic determination of soil water content: Measurement in coaxial transmission lines. Water Resources Research, 16, 574–582.CrossRefGoogle Scholar
Trier, S.B., Chen, F., Manning, K.W., LeMone, M.A., and Davis, C.A. (2008). Sensitivity of the PBL and precipitation in 12-day simulations of warm-season convection using different land surface models and soil wetness conditions. Monthly Weather Review, 136, 2321–2343.CrossRefGoogle Scholar
Utset, A., Imma, F., Martinez-Cob, A., and Cavero, J. (2004). Comparing Penman-Monteith and Priestley-Taylor as reference evapotranspiration inputs for modeling maize water use under Mediterranean conditions. Agricultural Water Management, 66, 205–219.CrossRefGoogle Scholar
Valente, F., Daid, J.S., and Gash, J.H.C. (1997). Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models. Journal of Hydrology, 190, 141–162.CrossRefGoogle Scholar
Van Dam, J.C., and Feddes, R.A. (2000). Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards’ equation. Journal of Hydrology, 233, 72–85.CrossRefGoogle Scholar
Van Dam, J.C., and Malik, R.S. (2003). Water productivity of irrigated crops in Sirsa district, India. Integration of remote sensing, crop and soil models and geographical information systems. Wageningen: WATPRO final report.Google Scholar
Van Dam, J.C., Stricker, J.N.M., and Droogers, P. (1994). Inverse method to determine soil hydraulic functions from multi-step outflow experiments. Soil Science Society of America Journal, 58, 647–652.CrossRefGoogle Scholar
Van Dam, J.C., Groenendijk, P., Hendriks, R.F.A., and Kroes, J.G. (2008). Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone Journal, 7, 640–653.CrossRefGoogle Scholar
Van de Berg, F., and Boesten, J.J.T.I. (1998). Pesticide leaching and accumulation model (PESTLA) version 3.4; description and user’s guide. Wageningen: Alterra Green World Research, Technical Document 43.Google Scholar
Van de Pol, R.M., Wierenga, P.J., and Nielsen, D.R. (1977). Solute movement in a field soil. Soil Science Society of America Journal, 41, 10–13.CrossRefGoogle Scholar
Van de Wiel, B.J.H., Moene, A.F., Steeneveld, G.J., Hartogensis, O.K., and Holtslag, A.A.M. (2007). Predicting the collapse of turbulence in stably stratified boundary layers. Flow, Turbulence and Combustion, 79, 251 – 274.CrossRefGoogle Scholar
Van de Wiel, B.J.H., Moene, A.F., de Ronde, W.H., and Jonker, H.J.J. (2008). Local similarity in the stable boundary layer and mixing-length approaches: Consistency of concepts. Boundary-Layer Meteorology, 128, 103–116.CrossRefGoogle Scholar
Van de Wiel, B.J.H., Moene, A.F., and Jonker, H.J.J. (2012a). The cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. Journal of the Atmospheric Science, 69, 3097–3115.CrossRefGoogle Scholar
Van de Wiel, B.J.H., Moene, A.F. and Jonker, H.J.J., Baas, P., Basu, S., Donda, J.M.M, Sun, J., and Holtslag, A.A.M. (2012b). The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. Journal of Atmospheric Sciences, 69, 3116–3127.CrossRefGoogle Scholar
Van der Zee, S.E.A.T.M., and van Riemsdijk, W.H. (1987). Transport of reactive solute in spatially variable soil systems. Water Resources Research, 23, 2059–2069.CrossRefGoogle Scholar
Van Dijk, A., Moene, A.F., and DeBruin, H.A.R. (2004). The principles of surface flux physics: theory, practice and description of the ECPACK library. Internal Report 2004/1, Meteorology and Air Quality Group, Wageningen University, Wageningen, the Netherlands, 99 pp.Google Scholar
Van Genuchten, M.Th. (1980). A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.CrossRefGoogle Scholar
Van Genuchten, M.Th., and Wieringa, P.J. (1974). Simulation of one-dimensional solute transfer in porous media. New Mexico: New Mexico State University Agricultural Experimental Station Bulletin 628.Google Scholar
Van Genuchten, M.Th., and Cleary, R.W. (1979). Movement of solutes in soil: Computer simulated and laboratory results. In Bolt, G.H. (ed.), Soil chemistry B: Physico-chemical models (pp. 349–386). Amsterdam: Elsevier.Google Scholar
Van Heerwaarden, C.C., Vilà-Guerau de Arellano, J., Moene, A.F., and Holtslag, A.A.M. (2009). Interactions between dry-air entrainment, surface evaporation and convective boundary layer development. Quarterly Journal of the Royal Meteorological Society, 135, 1277–1291.CrossRefGoogle Scholar
Van Wijk, W.R., and de Vries, D.A. (1954). Evapotranspiration. Netherlands Journal of Agricultural Science, 2, 105–118.Google Scholar
Van Wijk, W.R., and de Vries, D.A. (1963). Periodic temperature variations in a homogeneous soil. In van Wijk, W.R. (ed.), Physics of plant environment (pp. 102–143). Amsterdam: North-Holland.Google Scholar
Van Wijk, A.L.M., Feddes, R.A., Wesseling, J.G., and Buitendijk, J. (1988). Effecten van grondsoort en ontwatering op opbrengst van akkerbouwgewassen. Een evaluatie over 30 jaren van de opbrengst van aardappelen en zomergraan op acht bodemprofielen bij vijftien combinaties van ontwateringsdiepte en -intensiteit. Wageningen: Instituut voor Cultuurtechniek en Waterhuishouding (ICW), Rapport 31.Google Scholar
Vazifedoust, M., van Dam, J.C., Bastiaanssen, W.G.M., and Feddes, R.A. (2009). Assimilation of satellite data into agrohydrological models to improve crop yield forecasts. International Journal of Remote Sensing, 30, 2523–2545.CrossRefGoogle Scholar
Verhoef, A., van den Hurk, B.J.J.M, Jacobs, A.F.G, and Heusinkveld, B.G. (1996). Thermal soil properties for vineyard (EFEDA-I) and savanna (HAPEX-Sahel) sites. Agricultural and Forest Meteorology, 78, 1–18.CrossRefGoogle Scholar
Vickers, D., Thomas, C., and Law, B.E. (2009). Random and systematic CO2 flux sampling errors for tower measurements over forests in the convective boundary layer. Agricultural and Forest Meteorology, 149, 73–83.CrossRefGoogle Scholar
Vilà-Guerau de Arellano, J., and van Heerwaarden, C.C. (forthcoming). Atmospheric boundary layer: Integrating air chemistry and land interactions. Cambridge: Cambridge University Press.CrossRef
Viterbo, P., and Beljaars, A. C. M. (1995). An improved land surface parameterization scheme in the ECMWF model and its validation. Journal of Climate, 8, 2716–2748.2.0.CO;2>CrossRefGoogle Scholar
Von Caemmerer, S., and Farquhar, G.D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153, 376–387.CrossRefGoogle ScholarPubMed
Von Hoyningen-Hüne, J. (1983). Die Interception des Niederschlags in landwirtschaftlichen Beständen. Schriftenreihe des DVWK, 57, 1–53.Google Scholar
Voogt, M., van den Hurk, B.J.J.M., and Jacobs, C. (2006). The ECMWF land surface scheme extended with a photosynthesis and LAI module tested for a coniferous site. De Bilt, Royal Dutch Meteorological Institute, report WR-06–02.Google Scholar
Voronovich, V., and Kiely, G. (2007). On the gap in the spectra of surface-layer atmospheric turbulence. Boundary-Layer Meteorology, 122, 67–83.CrossRefGoogle Scholar
Walker, J., and Houser, P. (2001). A methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations. Journal of Geophysical Research, 106, 11,761–11,774.CrossRefGoogle Scholar
Warrick, A.W. (2002). Soil physics companion. Boca Raton, FL: CRC Press.Google Scholar
Warrick, A.W. (2003). Soil water dynamics. New York: Oxford University Press.Google Scholar
Wallace, J.M., and Hobbs, P.V. (2006). Atmospheric science: An introductory survey, 2nd ed. Amsterdam: Academic Press.Google Scholar
Walsum, P.E.V. van, and Groenendijk, P. (2008). Quasi steady-state simulation of the unsaturated zone in groundwater modelling of lowland regions. Vadose Zone Journal, 7, 769–781.CrossRefGoogle Scholar
Wan, F., and Porté-Agel, F. (2011). A large-eddy simulation study of turbulent flow over multiscale topography. Boundary-Layer Meteorology, 141, 201–217.CrossRefGoogle Scholar
Warrilow, D.A. (1986). Indications of the sensitivity of European climate to land use variation using a one-dimensional model (pp. 156–159). Rome: Proceedings ISLSCP conference.Google Scholar
Webb, E., Pearman, G., and Leuning, R. (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of Royal Meteorological Society, 106, 85–100.CrossRefGoogle Scholar
Wehrli, C. (1985). Extraterrestrial solar spectrum. Davos: Physikalisch-Meteorologisches Observatorium + World Radiation Center (PMO/WRC), Publication no. 615.Google Scholar
Weiss, A.Lukens, D.L., Norman, J.M., and Steadman, J.R. (1989). Leaf wetness in dry beans under semi-arid conditions. Agricultural and Forest Meteorology, 48, 149–162.CrossRefGoogle Scholar
Wendroth, O., Ehlers, W., Hopmans, J.W., Kage, H., Halbertsma, J., and Wösten, J.H.M. (1993). Reevaluation of the evaporation method for determining hydraulic functions in unsaturated soils. Soil Science Society of America Journal, 57, 1436–1443.CrossRefGoogle Scholar
Wesseling, J.G. (1998). Some equations and the computer program Helena for the calculation of daily evaporation. Wageningen: Alterra, Technical document 48.Google Scholar
Wichink Kruit, R.J., Jacobs, A.F.G., and Holtslag, A.A.M. (2008). Measurements and estimates of leaf wetness over agricultural grassland for dry deposition modeling of trace gases. Atmospheric Environment, 42, 5304–5316.CrossRefGoogle Scholar
Wieringa, J. (1993). Representative roughness parameters for homogeneous terrain. Boundary Layer Meteorology, 63, 323–363.CrossRefGoogle Scholar
Willmer, C., and Fricker, M. (1996). Stomata, 2nd ed. London: Chapman and Hall.CrossRefGoogle Scholar
Wilson, D.K. (2001). An alternative function for the wind and temperature gradients in unstable surface layers. Boundary Layer Meteorology, 99, 151–158.CrossRefGoogle Scholar
Wilson, J.D. (2008). Monin-Obukhov functions for standard deviations of velocity. Boundary-Layer Meteorology, 129, 353–369.CrossRefGoogle Scholar
WMO (2008). WMO guide to meteorological instruments and methods of observation, 7th ed. Geneva, Switzerland:WMO, No. 8.Google Scholar
Wolf, J., Beusen, A.H.W., Groenendijk, P., Kroon, T., Rötter, R., and van Zeijts, H. (2003). The integrated modeling system STONE for calculating emissions from agriculture in the Netherlands. Environmental Modeling and Software, 18, 597–617.CrossRefGoogle Scholar
Wong, S.-C., Cowan, I.R., and Farquhar, G.D. (1985). Leaf conductance in relation to rate of CO2 assimilation – I. Influence of nitrogen nutrition, phosphorus nutrition, photon flux density, and ambient partial pressure of CO2 during ontogeny. Plant Physiology, 78, 821–825.CrossRefGoogle Scholar
Wösten, J.H.M., Lilly, A., Nemes, A., and Le Bas, C. (1998). Using existing soil data to derive hydraulic parameters for simulation models in environmental studies and in land use planning. Wageningen: Alterra Green World Research, Report 156.Google Scholar
Wösten, J.H.M., Veerman, G.J., de Groot, W.J.M., and Stolte, J. (2001). Waterretentie- en doorlatendheidskarakteristieken van boven- en ondergronden in Nederland. De Staringreeks. Wageningen: Alterra Green World Research, Report 153.Google Scholar
Wyngaard, J.C. (2010). Turbulence in the atmosphere. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Xiao, H., Meissner, R., Seeger, J., Rupp, H., and Borg, H. (2009). Effect of vegetation type and growth stage on dewfall, determined with high precision weighing lysimeters at a site in northern Germany. Journal of Hydrology, 377, 43–49.CrossRefGoogle Scholar
Xiu, A., and Pleim, J.E. (2001). Development of a land surface model. I – Application in a mesoscale meteorological model. Journal of Applied Meteorology, 40, 192–209.2.0.CO;2>CrossRefGoogle Scholar
Yates, S.R., van Genuchten, M.Th., Warrick, A.W., and Leij, F.J. (1992). Analysis of measured, predicted and estimated hydraulic conductivity using the RETC computer program. Soil Science Society of America Journal, 56, 347–354.CrossRefGoogle Scholar
Zangvil, A. (1996). Six years of dew observations in the Negev Desert, Israel. Journal of Arid Environments, 32, 361–371.CrossRefGoogle Scholar
Zelik, M., Gregory, S.A., and Smith, E.V.P. (1992). Introductory astronomy and astrophysics, 3rd ed. Fort Worth, TX: Saunders College.Google Scholar
Zeng, X. (2001). Global vegetation root distribution for land modeling. Journal of Hydrometeorology, 2, 525–530.2.0.CO;2>CrossRefGoogle Scholar
Zhang, H., and Nobel, P.S. (1996). Dependency of ci/ca and leaf transpiration efficiency on the vapour pressure deficit. Australian Journal of Plant Physiology, 232, 561–568.CrossRefGoogle Scholar
Zilitinkevich, S.S., Elperin, T., Kleeorin, N., and Rogachevskii, I. (2007). Energy-and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: steady-state, homogeneous regimes. Boundary-Layer Meteorology, 125, 167–191.CrossRefGoogle Scholar
Zilitinkevich, S. S., Elperin, T., Kleeorin, N., Rogachevskii, I., and Esau, I. (2013). A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably-stratified geophysical flows. Boundary-Layer Meteorology, 146, 341–373.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Arnold F. Moene, Jos C. van Dam
  • Book: Transport in the Atmosphere-Vegetation-Soil Continuum
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139043137.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Arnold F. Moene, Jos C. van Dam
  • Book: Transport in the Atmosphere-Vegetation-Soil Continuum
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139043137.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Arnold F. Moene, Jos C. van Dam
  • Book: Transport in the Atmosphere-Vegetation-Soil Continuum
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139043137.017
Available formats
×