Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-30T02:23:03.720Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  07 October 2011

Nima Sarshar
Affiliation:
University of Regina, Saskatchewan, Canada
Xiaolin Wu
Affiliation:
McMaster University, Ontario
Jia Wang
Affiliation:
Shanghai Jiao Tong University, China
Sorina Dumitrescu
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] D., Slepian and J. K., Wolf. Noiseless coding of correlated information sources. IEEE Trans. on Inform. Theory, 19, 1973.Google Scholar
[2] L. H., Ozarow. On a source coding problem with two channels and three receivers. Bell System Technical Journal, 59(10), 1980.Google Scholar
[3] T., Ho, M., Medard, M., Effros, and R., Koetter. Network coding for correlated sources. CISS, 2004.Google Scholar
[4] A., Ramamoorthy, P. A., Chou, K., Jain, and M., Effros. Separating distributed source coding from network coding. Allerton Conference on Communication, Control and Computing, 2004.
[5] http://www.microsoft.com/tv/iptvedition.mspx
[6] http://www.planet.nl/planet/show/id=118880/contentid=668582/sc=780960
[7] http://www.shoutcast.com/ttsl.html
[8] R., Ahlswede, N., Cai, S. Y. R., Li, and R. W., Yeung. Network information flow. IEEE Trans. on Inform. Theory, 46, 2000.Google Scholar
[9] S. Y. R., Li, R.W., Yeung, and N., Cai. Linear network coding. IEEE Trans. on Inform. Theory, 49, 2003.Google Scholar
[10] A. R., Lehman and E., Lehman. Complexity classification of network information flow problems. Allerton Communication, and Computing, 2003.
[11] S., Jaggi, P., Sanders, P. A., Chou, M., Effros, S., Egner, K., Jain, and L., Tolhuizen. Polynomial time algorithms for multicast network code construction. IEEE Trans. on Inform. Theory, 51, 2005.Google Scholar
[12] P., Sanders, S., Egner, and L., Tolhuizen. Polynomial time algorithms for network information flow. ACM SPAA, 2003.
[13] K., Jain, M., Mahdian, and M. R., Salavatipour. Packing steiner trees. ACM SODA, 2003.
[14] S., Hougardy and H. J., Prömel. A 1.598 approximation algorithm for the steiner problem in graphs. In ACM SODA, 1999.
[15] G., Robins and A., Zelikovsky. Improved Steiner tree approximation in graphs. Proceedings of SODA, 770–779, 2000.Google Scholar
[16] L. C., Lau. An approximate max-steiner-tree-packing min-steiner-cut theorem. In IEEE FOCS, 2004.
[17] Nicholas J. A., Harvey, Robert, Kleinberg, and April, Rasala Lehman. Comparing network coding with multicommodity flow for the k-pairs communication problem. CSAIL Technical Reports, 2004.
[18] Nicholas J. A., Harvey, Robert, Kleinberg, and April, Rasala Lehman. On the capacity of information networks. IEEE/ACM Trans. Netw., 14:2345–2364, 2006.Google Scholar
[19] T., Leighton and S., Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACM, 46(6):787–832, 1999.Google Scholar
[20] Z., Li and B., Li. Network coding in undirected networks. Proc. of CISS, 2004.
[21] B., Li and Z., Li. Network coding: the case of multiple unicast sessions. Proceedings of the 42nd Allerton Annual Conference on Communication, Control, and Computing, 2004.
[22] K., Jain, V. V., Vazirani, and G., Yuval. On the capacity of multiple unicast sessions in undirected graphs. IEEE/ACM Transactions on Networking, 14:2805–2809, 2006.Google Scholar
[23] Z., Reznic, R., Zamir, and M., Feder. Joint source-channel coding of a gaussian mixture source over a gaussian broadcast channel. In IEEE Trans. on Inform. Theory, 48, 2002.Google Scholar
[24] A., Albanese, J., Blomer, J., Edmonds, M., Sudan, and M., Luby. Priority encoding transmission. IEEE Trans. on Inform. Theory, 42, 1996.Google Scholar
[25] R., Venkataramani, G., Kramer, and V. K., Goyal. Multiple description coding with many channels. IEEE Trans. on Inform. Theory, 49, 2003.Google Scholar
[26] A. D., Taubman and M., Marcellin. Jpeg2000: Image compression fundamentals, practice and standard. Berlin: Kluwer Academic Publishers, 2001.Google Scholar
[27] W., Li. Overview of fine granularity scalability in mpeg-4 video standard. IEEE Trans. Circuits Syst. Video Techn., 11, 2001.Google Scholar
[28] X., Wu, B., Ma, and N., Sarshar. Rainbow network problems and multiple description coding. IEEE ISIT, 2005.
[29] L., Lastras and T., Berger. All sources are nearly successively refinable. IEEE Trans. Inform. Theory, 47, 2001.Google Scholar
[30] A., Said and W., Pearlman. A new, fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. on Circuits and Syst. for Video Tech., 6:243–250, 1996.Google Scholar
[31] T., Burger. Rate Distortion Theory: A Mathematical Basis for Data Compression. Englewood Cliffs: Prentice-Hall, 1974.Google Scholar
[32] Taekon, Kim, Hyun, Mun Kim, Ping-Sing, Tsai, and T., Acharya. Memory efficient progressive rate-distortion algorithm for jpeg 2000. IEEE Trans. on Circuits and Systems for Video Tech., 15, 2005.Google Scholar
[33] S., Boyd and L., Vandenberghe. Convex Optimization. Online: http://www.stanford.edu/boyd/cvxbook/
[34] S., Dumitrescu, X., Wu, and Z., Wang. Globally optimal uneven error protected packetization of scalable code streams. IEEE Trans. on Multimedia, 6, 2004.Google Scholar
[35] R., Puri and K., Ramchandran. Multiple description source coding through forward error correction codes. In Proc. 33rd Asilomar Conference on Signals, Systems, and Computers, volume 1, pp. 342–346, 1999.Google Scholar
[36] A. E., Mohr, R. E., Ladner, and E. A., Riskin. Approximately optimal assignment for unequal loss protection. IEEE ICIP, 2000.
[37] A. E., Mohr, E. A., Riskin, and R. E., Ladner. Graceful degradation over packet erasure channels through forward error correction. IEEE DCC, 1999.
[38] T., Stockhammer and C., Buchner. Progressive texture video streaming for lossy packet networks. Int. Packet Video Workshop, 2001.
[39] V., Stankovic, R., Hamzaoui, and Z., Xiong. Packet loss protection of embedded data with fast local search. IEEE ICIP, 2002.
[40] R., Albert and A. L., Barabasi. Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47 (2002).Google Scholar
[41] http://www.ilog.com/products/cplex
[42] M. R., Garey and D. S., Johnson. Computers and intractability: A guide to the theory of np-completeness. San Francisco: W. H. Freeman and Company, 1979.Google Scholar
[43] A. V., Goldberg and R. E., Tarjan. A new approach to the maximum-flow problem. Journal of the ACM, 35(4):921–940, 1988.Google Scholar
[44] V. A., Vaishampayan. Design of multiple-description scalar quantizers. IEEE Trans. Inform. Theory, 39(3):821–834, 1993.Google Scholar
[45] D., Muresan and M., Effros. Quantization as histogram segmentation: globally optimal scalar quantizer design in network systems. In Proc. Data Compression Conf., pp. 302–311, 2002.
[46] H., Jeffreys and B. S., Jeffreys. Dirichlet integrals. In Methods of Mathematical Physics, 3d edn. Cambridge: Cambridge University Press, pp. 468–470, 1988.Google Scholar
[47] V. K., Goyal. Multiple description coding: compression meets the network. IEEE Signal Process. Mag., 18(5):74–93, September 2001.Google Scholar
[48] P., Sanders, S., Egner, P., Chou, M., Effros, S., Egner, K., Jain, and L., Tolhuizen. Polynomial time algorithms for multicast network code construction. IEEE Trans. Inf. Theory, 51, 2005.Google Scholar
[49] N., Sundaram, P., Ramanathan, and S., Banerjee. Multirate media stream using network coding. Proceedings of Allerton 05, 2005.
[50] X., Wu, M., Shao, and N., Sarshar. Rainbow network flow with network coding. Proceedings of NetCod 2008, January 2008.
[51] L., Chen, T., Ho, S. H., Low, M., Chiang, and J. C., Doyle. Optimization based rate control for multicast with network coding. Proceedings of INFOCOM 2007, May 2007, pp. 1163–1171.
[52] R. W., Yeung. Multilevel diversity coding with distortion. IEEE Trans. Inf. Theory, 41(2):412–422, March 1995.Google Scholar
[53] Y., Wu. http://ip.hhi.de/imagecom_g1/savce/downloads/svc-reference-software.htm
[54] H., Schwarz, D., Marpe, and T., Wiegand. Overview of the scalable video coding extension of the h.264/avc standard. IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on Scalable Video Coding, 17(9):1103–1120, 2007.Google Scholar
[55] D., Schonberg, K., Ramchandran, and S. S., Pradhan. Distributed code constructions for the entire Slepian-Wolf rate region for arbitrarily correlated sources. IEEE DCC, 2004, pp. 292–301.
[56] Y., Matsunaga and H., Yamamoto. A coding theorem for lossy data compression by LDPC codes. IEEE Trans. Inform. Theory, 49, 2225–2229, 2003.Google Scholar
[57] R., Yeung, S.-Y., Li, and N., Cai. Network Coding Theory (Foundations and Trends in Communications and Information Theory). Delft, the Netherlands: Now Publishers, 2006.Google Scholar
[58] T., Ho and D., Lun. Network Coding: An Introduction. Cambridge: Cambridge University Press, 2008.Google Scholar
[59] B., Rimoldi and R., Urbanke. Asynchronous Slepian-Wolf coding via source-splitting. IEEE Int. Symp. Inf. Theory, p. 271, 1997.
[60] T. M., Cover and J. A., Thomas. Elements of Information Theory. New York: Wiley, 1991.Google Scholar
[61] A., Grand, B., Rimoldi, R., Urbanke, and P. A., Whiting. Rate-splitting multiple access for discrete memoryless channels. IEEE Trans. on Inform. Theory, 47, no. 3, 873–890, 2001.Google Scholar
[62] Y., Cassuto and J., Bruck. Network coding for non-uniform demands. IEEE ISIT, 2005.
[63] T. P., Coleman, A. H., Lee, M., Medard, and M., Effros. A new source-splitting approach to the Slepian-Wolf problem. IEEE ISIT, p. 332, 2004.
[64] T. P., Coleman, A. H., Lee, M., Medard, and M., Effros. Low-complexity approaches to Slepian-Wolf near-lossless distributed data compression. IEEE Trans. Inform. Theory, 52, 3546–3561, 2006.Google Scholar
[65] S. S., Pradhan, K., Ramchandran, and R., Koetter. A constructive approach to distributed source coding with symmetric rates. IEEE Int. Symp. Inf. Theory, 178, 2000.Google Scholar
[66] V., Stankovic, A., Liveris, Z., Xiong, and C., Georghiades. Design of Slepian-Wolf codes by channel code partitioning. Proc. Data Comp. Conf., Snowbird, UT, 2004, pp. 302–311.Google Scholar
[67] Christina, Fragouli and Emina, Soljanin. Information flow decomposition for network coding. IEEE Trans. on Inform. Theory, 52(3): 829–848, 2006.Google Scholar
[68] M., Sartipi and F., Fekri. Distributed source coding in wireless sensor networks using LDPC coding: the entire Slepian-Wolf rate region. IEEE Wireless Communications and Networking Conference, pp. 1939–1944, Mar. 2005.
[69] A. D., Wyner. Recent results in the Shannon theory. IEEE Trans. Inform. Theory, IT-20, pp. 2–10, Jan. 1974.Google Scholar
[70] A., Aggarwal, M., Klave, S., Moran, P., Shor, and R., Wilber. Geometric applications of a matrix-searching algorithm. Algorithmica, 2, pp. 195–208, 1987.Google Scholar
[71] A., Aggarwal, B., Schieber, and T., Tokuyama. Finding a minimum-weight k-link path in graphs with the concave monge property and applications. Discrete & Computational Geometry, 12, pp. 263–280, 1994.Google Scholar
[72] A., Albanese, J., Blomer, J., Edmonds, M., Luby, and M., Sudan. Priority encoding transmission. IEEE Trans. Inform. Theory, 42, pp. 1737–1744, Nov. 1996.Google Scholar
[73] A., Apostolico and Z., Galil. (eds.). Pattern Matching Algorithms, New York: Oxford University Press, 1997.
[74] T. Y., Berger-Wolf and E. M., Reingold. Index assignment for multichannel communication under failure. IEEE Trans. Inform. Theory, 48(10):2656–2668, Oct. 2002.Google Scholar
[75] S. N., Diggavi, N. J. A., Sloane, and V. A., Vaishampayan. Asymmetric multiple description lattice vector quantizers. IEEE Trans. Inform. Theory, 48(1):174–191, Jan. 2002.Google Scholar
[76] S., Dumitrescu, X., Wu, and Z., Wang. Globally optimal uneven error-protected packetization of scalable code streams. IEEE Trans. Multimedia, 6(2):230–239, Apr. 2004.Google Scholar
[77] S., Dumitrescu and X., Wu. Optimal two-description scalar quantizer design. Algorithmica, 41(4):300, 269–287, Feb. 2005.Google Scholar
[78] S., Dumitrescu and X., Wu. On global optimality of gradient descent algorithms for fixed-rate scalar multiple description quantizer design. Proc. IEEE DCC'05, pp. 388–397, March 2005.
[79] S., Dumitrescu, X., Wu, and Z., Wang. Efficient algorithms for optimal uneven protection of single and multiple scalable code streams against packet erasures. IEEE Trans. Multimedia, 9(7):1466–1474, Nov. 2007.Google Scholar
[80] S., Dumitrescu. Speed-up of encoder optimization step in multiple description scalar quantizer design. Proc. of IEEE Data Compression Conference, pp. 382–391, March 2008, Snowbird, UT.Google Scholar
[81] S., Dumitrescu and X., Wu. Lagrangian optimization of two-description scalar quantizers. IEEE Trans. Inform. Theory, 53(11):3990–4012, Nov. 2008.Google Scholar
[82] S., Dumitrescu and X., Wu. On properties of locally optimal multiple description scalar quantizers with convex cells, to appear in IEEE Trans. on Inform. Theory.
[83] M., Effros and L., Schulman. Rapid near-optimal VQ design with a deterministic data net. Proc. ISIT'04, pp. 298, July 2004.
[84] M., Effros. Optimal multiple description and multiresolution scalar quantizer design. Information Theory and Applications Workshop'08, Univesity of California, San Diego, 27 January–1 February 2008.Google Scholar
[85] M., Fleming, Q., Zhao, and M., Effros. Network vector quantization. IEEE Trans. Inform. Theory, 50(8), Aug. 2004.Google Scholar
[86] M., Garey, D. S., Johnson, and H. S., Witsenhausen. The complexity of the generalized lloydcmax problem. IEEE Trans. Inform. Theory, 28(2):255–266, Mar. 1982.Google Scholar
[87] V. K., Goyal, J. A., Kelner, and J., Kovačević. Multiple description vector quantization with a coarse lattice. IEEE Trans. Inform. Theory, 48, pp. 781–788, Mar. 2002.Google Scholar
[88] S. P., Lloyd. Least squares quantization in PCM. IEEE Trans. Inform. Theory, IT-28, pp. 129–137, Mar. 1982.Google Scholar
[89] A. E., Mohr, E. A., Riskin, and R. E., Ladner. Unequal loss protection: graceful degradation over packet erasure channels through forward error correction. IEEE Journal on Selected Areas in Communication, 18(7):819–828, Jun. 2000.Google Scholar
[90] D., Muresan and M., Effros. Quantization as histogram segmentation: optimal scalar quantizer design in network systems. IEEE Trans. Inform. Theory, 54(1):344–366, Jan. 2008.Google Scholar
[91] J., Østergaard, J., Jensen, and R., Heusdens. n-channel entropy-constrained multiple-description lattice vector quantization. IEEE Trans. Inform. Theory, 52(5):1956–1973, May 2006.Google Scholar
[92] R., Puri and K., Ramchandran. Multiple description source coding through forward error correction codes. Proc. 33rd Asilomar Conference on Signals, Systems, and Computers, vol. 1, California, Oct. 1999, pp. 342–346.Google Scholar
[93] D. G., Sachs, R., Anand, and K., Ramchandran. Wireless image transmission using multiple-description based concatenated codes. Proc. SPIE 2000, vol. 3974, pp. 300–311, Jan. 2000.Google Scholar
[94] S. D., Servetto, V. A., Vaishampayan, and N. J. A., Sloane. Multiple description lattice vector quantization. IEEE Proc. Data Compression Conf., Mar. 1999, pp. 13–22.
[95] V., Stankovic, R., Hamzaoui, and Z., Xiong. Efficient channel code rate selection algorithms for forward error correction of packetized multimedia bitstreams in varying channels. IEEE Trans. Multimedia, 14(2):240–248, Apr. 2004.Google Scholar
[96] C., Tian, S., Mohajer, and S., Diggavi. On the symmetric Gaussian multiple description rate-distortion function. IEEE DCC, Snowbird, UT, March 2008, pp. 402–411.Google Scholar
[97] C., Tian and S., Hemami. Sequential design of multiple description scalar quantizers. IEEE Data Compression Conference, pp. 32–42, 2004.
[98] V. A., Vaishampayan and J., Domaszewicz. Design of entropy-constrained multiple-description scalar quantizers. IEEE Trans. Inform. Theory, 40(1):245–250, Jan. 1994.Google Scholar
[99] V. A., Vaishampayan, N. J. A., Sloane, and S. D., Servetto. Multiple description vector quantization with lattice codebooks: Design and analysis. IEEE Trans. Inform. Theory, 47(5):1718–1734, July 2001.Google Scholar
[100] J., Barros and S. D., Servetto. Network information flow with correlated sources. IEEE Trans. Inform. Theory, 52, pp. 155–170, Jan. 2006.Google Scholar
[101] T. S., Han and K., Kobayshi. A unified achievable region for a general class of multiterminal source coding systems. IEEE Trans. Inform. Theory, 26, pp. 277–288, May 1980.Google Scholar
[102] M., Effros, M., Mdard, T., Ho, S., Ray, D., Karger, and R., Koetter. Linear network codes: A unified framework for source, channel and network coding. Proc. DIMACS Workshop Networking Information Theory, Piscataway, NJ, 2003.Google Scholar
[103] T., Ho, M., Medard, R., Koetter, D. R., Karger, M., Effros, J., Shi, and B., Leong. A random linear network coding approach to multicast. IEEE Trans. Inform. Theory, 53, pp. 4413–4430, Oct. 2006.Google Scholar
[104] A., Ramamoorthy, K., Jain, P. A., Chou, and M., Effros. Separating distributed source coding from network coding. IEEE Trans. Inform. Theory, 52, pp. 2785–2795, June 2006.Google Scholar
[105] P., Tan, K., Xie, and J., Li. Slepian-Wolf coding using parity approach and syndrome approach. Proc. CISS, pp. 708–713, March 2007.
[106] T., Berger, Z., Zhang, and H., Viswanathan. The CEO problem. IEEE Trans. Inform. Theory, 42, pp. 887–902, May 1996.Google Scholar
[107] T., Berger and R., Yeung. Multiterminal source coding with encoder breakdown. IEEE Trans. Inform. Theory, 35, pp. 237–244, Mar. 1989.Google Scholar
[108] J., Chen and T., Berger. Robust distributed source coding. IEEE Trans. Inform. Theory, 54, pp. 3385–3398, Aug. 2008.Google Scholar
[109] I., Csiszar. The method of types. IEEE Trans. Inform. Theory, 44, pp. 2505–2523, Oct. 1998.Google Scholar
[110] I., Csiszar and J., Korner. Information Theory: Coding Theorems for Discrete Memoryless Systems. New York: Academic, 1981.Google Scholar
[111] R. L., Dobrushin and B. S., Tsybakov. Information transmission with additional noise. IRE Trans. Inform. Theory, 18, pp. 293–304, 1962.Google Scholar
[112] A., Kaspi and T., Berger. Rate-distortion for correlated sources with partially separated encoders. IEEE Trans. Inf. Theory, 28, pp. 828–840, Nov. 1982.Google Scholar
[113] Z., Liu, S., Cheng, A. D., Liveris, and Z., Xiong. Slepian-Wolf coded nested lattice quantization for Wyner-Ziv coding: high-rate performance analysis and code design. IEEE Trans. Inform. Theory, 52, pp. 4358–4369, Oct. 2006.Google Scholar
[114] Y., Oohama. Gaussian multiterminal source coding. IEEE Trans. Inform. Theory, 43, pp. 1912–1923, Nov. 1997.Google Scholar
[115] Y., Oohama. The rate-distortion function for the Quadratic Gaussian CEO problem. IEEE Trans. Inform. Theory, 44, pp. 1057–1070, May 1998.Google Scholar
[116] Y., Wang, M. T., Orchard, and A. R., Reibman. Multiple description image coding for noisy channels by pairing transform coefficients. Proc. IEEE Workshop on Multimedia Signal Processing, Princeton, NJ, pp. 419–424, June 1997.Google Scholar
[117] V. K., Goyal and J., Kovačević. Optimal multiple description transform coding of Gaussian vectors. Proc. IEEE Data Compression Conf., Snowbird, UT, pp. 388–397, Mar.–April 1998.Google Scholar
[118] V. K., Goyal and J., Kovačević. Generalized multiple descriptions coding with correlating transforms. IEEE Trans. Inform. Theory, 47(6):2199–2224, Sep. 2001.Google Scholar
[119] V. K., Goyal, J., Kovačević, and M., Vetterli. Multiple description transform coding: robustness to erasures using tight frame expansions. Proc. IEEE Int. Symp. Inform. Theory, pp. 408, Aug. 1998.
[120] V. K., Goyal, J., Kovačević, and M., Vetterli. Quantized frame expansions as source-channel codes for erasure channels. Proc. IEEE Data Compression, pp. 326–335, Mar. 1999.
[121] P. A., Chou, S., Mehrota, and A., Wang. Multiple description decoding of overcomplete expansions using projections onto convex sets. Proc. IEEE DCCn, pp. 72–81, Mar. 1999.
[122] V. K., Goyal, M., Vetterli, and N. T., Thao. Quantized overcomplete expansions in RN. Proc. IEEE Trans. Inform. Theory, 44, pp. 16–31, Jan. 1998.Google Scholar
[123] S., Rangan and V., Goyal. Recursive consistent estimation with bounded noise. Proc. IEEE Trans. Inform. Theory, 47, pp. 457–464, Jan. 2001.Google Scholar
[124] D., Taubman. High performance scalable image compression with EBCOT. IEEE Trans. Image Processing, 9, pp. 1158–1170, July 2000.Google Scholar
[125] N., Sarshar and X., Wu. Rate-distortion optimized multimedia communication in networks. Proceedings of SPIE 08, volume 6822, January 2008.Google Scholar
[126] X., Wu, B., Ma, and N., Sarshar. Rainbow network flow of multiple description codes. IEEE Trans. Inf. Theory, 54(10):4565–4574, Oct. 2008.Google Scholar
[127] S.-Y.R., Li, R.W., Yeung, and N., Cai. Linear Network Coding. IEEE Trans. Inf. Theory, 49(2):371–381, Feb. 2003.Google Scholar
[128] N., Gortz and P., Leelapornchai. Optimization of the index assignments for multiple description vector quantizers. IEEE Trans. Communications, 51(3):336–340, Mar. 2003.Google Scholar
[129] J. H., Conway and N. J. A., Sloane. Sphere Packings, Lattices, and Groups. Berlin: Springer, 1998.Google Scholar
[130] J., Hopcroft and R., Karp. An o(n5/2) algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.Google Scholar
[131] J., Østergaard, J., Jensen, and R., Heusdens. n-channel symmetric multiple-description lattice vector quantization. Proc. IEEE Data Compression Conf., Mar. 2005, pp. 378–387.
[132] X., Huang and X., Wu. Optimal index assignment for multiple description lattice vector quantization. Proc. of DCC 2006.
[133] S., Tavildar, P., Viswanath, and A. B., Wagner. The Gaussian many-help-one distributed source coding problem. IEEE ITW, pp. 596–600, 2006.
[134] H., Viswanathan and T., Berger. The quadratic Gaussian CEO problem. IEEE Trans. Inform. Theory, 43, pp. 1549–1559, Sept. 1997.Google Scholar
[135] A. B., Wanger, S., Tavildar, and P., Viswanath. Rate region of the quadratic Gaussian two-encoder source-coding problem. IEEE Trans. Inf. Theory, 54, pp. 1938–1961, May, 2008.Google Scholar
[136] H. S., Witsenhausen. Indirect rate distortion problems. IEEE Trans. Inform. Theory, 26, pp. 518–521, Sept. 1980.Google Scholar
[137] A. D., Wyner and J., Ziv. The rate-distortion function for source coding with side information at the decoder. IEEE Trans. Inform. Theory, IT-22, pp. 1–10, Jan. 1976.Google Scholar
[138] M., Shao, S., Dumitrescu, and X., Wu. Toward the optimal multirate multicast for lossy packet network. Proceedings of ACM Multimedia, 27–31 October 2008.
[139] R., Zamir, S., Shamai, and U., Erez. Nested linear/lattice codes for structured multiterminal binning. IEEE Trans. Inform. Theory, 48, pp. 1250–1276, Jun. 2002.Google Scholar
[140] R., Cristescu, B., Beferull-Lozano, and M., Vetterli. Networked Slepian-Wolf: theory, algorithms and scaling laws. IEEE Trans. Inform. Theory, 51, pp. 4057–4073, Dec. 2005.Google Scholar
[141] S., Dumitrescu and T., Zheng. Improved multiple description framework based on successively refinable quantization and uneven erasure protection. Proc. of IEEE Data Compression Conference, pp. 514–514, March 2008, Snowbird, UT.Google Scholar
[142] S., Dumitrescu, G., Rivers, and S., Shirani. Unequal erasure protection technique for scalable multi-streams. IEEE Transactions on Image Processing, 19(2):422–434, Feb. 2010.Google Scholar
[143] S., Dumitrescu, M., Shao, and X., Wu. Layered multicast with inter-layer network coding. Proceedings of the IEEE INFOCOM, pp. 442–449, 2009.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Nima Sarshar, University of Regina, Saskatchewan, Canada, Xiaolin Wu, McMaster University, Ontario, Jia Wang, Shanghai Jiao Tong University, China, Sorina Dumitrescu, McMaster University, Ontario
  • Book: Network-aware Source Coding and Communication
  • Online publication: 07 October 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9781139034357.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Nima Sarshar, University of Regina, Saskatchewan, Canada, Xiaolin Wu, McMaster University, Ontario, Jia Wang, Shanghai Jiao Tong University, China, Sorina Dumitrescu, McMaster University, Ontario
  • Book: Network-aware Source Coding and Communication
  • Online publication: 07 October 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9781139034357.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Nima Sarshar, University of Regina, Saskatchewan, Canada, Xiaolin Wu, McMaster University, Ontario, Jia Wang, Shanghai Jiao Tong University, China, Sorina Dumitrescu, McMaster University, Ontario
  • Book: Network-aware Source Coding and Communication
  • Online publication: 07 October 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9781139034357.011
Available formats
×