Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-13T17:14:11.252Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 November 2012

A. Ian Murdoch
Affiliation:
University of Strathclyde
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gurtin, M. E., 1981. An Introduction to Continuum Mechanics. Academic Press, New York.
[2] Truesdell, C., & Noll, W., 1965. The nonlinear field theories of mechanics. In: Handbuch der Physik III/1 (ed. S., Flügge). Springer-Verlag, Berlin.
[3] Chadwick, P., 1976. Continuum Mechanics. Allen & Unwin, London.
[4] Landau, L. D., & Lifschitz, E. M., 1959. Fluid Mechanics. Pergamon Press, London.
[5] Paterson, A. R., 1983. A First Course in Fluid Dynamics. Cambridge University Press, Cambridge, UK.
[6] Brush, S. G., 1986. The Kind of Motion we call Heat. North Holland, Amsterdam.
[7] Goldstein, H., Poole, C., & Safko, J., 2002. Classical Mechanics (3rd ed.). Addison-Wesley, San Francisco.
[8] Truesdell, C., 1977. A First Course in Rational Continuum Mechanics, Vol. 1. Academic Press, New York.
[9] Born, W., & Wolf, E., 1999. Principles of Optics (7th ed.). Cambridge University Press, Cambridge, UK.
[10] Hardy, R. J., 1982. Formulas for determining local properties in molecular-dynamics simulations: Shock waves. J. Chem. Phys. 76, 622–628.Google Scholar
[11] Gurtin, M. E., 1972. The linear theory of elasticity. In: Handbuch der Physik VIa/2 (ed. C., Truesdell). Springer-Verlag, Berlin.
[12] Zadeh, L. A., 1965. Fuzzy sets. Information and Control 8, 338–353.Google Scholar
[13] Bear, J., 1972. Dynamics of Fluids in Porous Media. Elsevier, Amsterdam.
[14] Murdoch, A. I., & Kubik, J., 1995. On the continuum modelling of porous media containing fluid: a molecular viewpoint with particular attention to scale. Transport in Porous Media 19, 157–197.Google Scholar
[15] Murdoch, A. I., & Hassanizadeh, S. M., 2002. Macroscale balance relations for bulk, interfacial and common line systems in multiphase flows through porous media on the basis of molecular considerations. Int. J. Multiphase Flow 28, 1091–1123.Google Scholar
[16] Noll, W., 1955. Der Herleitung der Grundgleichen der Thermomechanik der Kontinua aus der statischen Mechanik. J. Rational Mech. Anal. 4. 627–646. (Translated as: Lehoucq, R., & von Lilienfeld, O. A., 2010. Derivation of the fundamental equations of continuum mechanics from statistical mechanics. J. Elasticity, 100, 5–24.)Google Scholar
[17] Atkins, P. W., 1996. The Elements of Physical Chemistry (2nd ed.). Oxford University Press, Oxford, UK.
[18] Murdoch, A. I., 2007. A critique of atomistic definitions of the stress tensor. J. Elasticity 88, 113–140.Google Scholar
[19] Carlsson, T., & Leslie, F. M., 1999. The development of theory for flow and dynamic effects for nematic liquid crystals. Liquid Crystals 26, 1267–1280.Google Scholar
[20] Murdoch, A. I., 2003. On the microscopic interpretation of stress and couple stress. J. Elasticity 71, 105–131.Google Scholar
[21] Kellogg, O. D., 1967. Foundations of Potential Theory (reprint of first edition of 1929). Springer-Verlag, Berlin.
[22] Israelachvili, J. N., 1974. The nature of van der Waals forces. Contemp. Phys. 15, 159–177.Google Scholar
[23] Gurtin, M. E., Fried, E., & Anand, L., 2010. The Mechanics and Thermodynamics of Continua. Cambridge University Press, New York.
[24] de Gennes, P. G., 1974. The Physics of Liquid Crystals. Oxford University Press, Oxford, UK.
[25] Toupin, R. A., 1962. Elastic materials with couple-stress. Arch. Rational Mech. Anal. 11, 385–414.Google Scholar
[26] Mindlin, M. D., & Tiersten, H. F., 1962. Effects of couple-stresses in linear elasticity. Arch. Rational Mech. Anal. 11, 415–448.Google Scholar
[27] Murdoch, A. I., 1987. On the relationship between balance relations for generalised continua and molecular behaviour. Int. J. Eng. Sci. 25, 883–914.Google Scholar
[28] Sedov, L. I., 1965. Introduction to the Mechanics of a Continuous Medium. Addison-Wesley, Reading, MA.
[29] Reddy, J. N., 2006. An Introduction to Continuum Mechanics. Cambridge University Press, Cambridge, UK.
[30] Kröner, E. (ed.), 1968. Mechanics of Generalized Continua. Springer-Verlag, New York.
[31] Carlson, D. E., 1972. Linear thermoelasticity. In: Handbuch der Physik, VIa/2 (ed. C., Truesdell). Springer-Verlag, Berlin.
[32] Ohanian, H. C., 1985. Physics (Vol. 1). Norton, New York.
[33] Truesdell, C., & Toupin, R. A., 1960. The classical field theories. In: Handbuch der Physik III/1 (Ed. S. Flügge, ). Springer-Verlag, Berlin.
[34] Truesdell, C., 1969. Rational Thermodynamics. McGraw-Hill, New York.
[35] Atkin, R. J., & Craine, R. E., 1976. Continuum theories of mixtures: basic theory and historical development. Q. J., Mech. Appl. Math. XXIX, 211–244.Google Scholar
[36] Bowen, R. M., 1976. Theory of mixtures. In: Continuum Physics, III (Ed. A. C., Eringen). Academic Press, New York.
[37] Gurtin, M. E., Oliver, M. L., & Williams, W. O., 1973. On balance of forces for mixtures. Q. Appl. Math. 30, 527–530.Google Scholar
[38] Williams, W. O., 1973. On the theory of mixtures. Arch. Rational Mech. Anal. 51, 239–260.Google Scholar
[39] Oliver, M. L., & Williams, W. O., 1975. Formulation of balance of forces in mixture theories. Q. Appl. Math. 33, 81–86.Google Scholar
[40] Morro, A., & Murdoch, A. I., 1986. Stress, body force, and momentum balance in mixture theory. Meccanica 21, 184–190.Google Scholar
[41] Murdoch, A. I., & Morro, A., 1987. On the continuum theory of mixtures: motivation from discrete considerations. Int. J. Eng. Sci. 25, 9–25.Google Scholar
[42] Bedford, A., 1983. Theories of immiscible and structured mixtures. Int. J. Eng. Sci. 21, 863–890.Google Scholar
[43] Alblas, J. B., 1976. A note on the physical foundation of the theory of multipole stresses. Arch. Mech. Stos. 28, 279–298.Google Scholar
[44] Murdoch, A. I., 1985. A corpuscular approach to continuum mechanics. Arch. Rational Mech. Anal. 88, 291–321.Google Scholar
[45] Noll, W., 1973. Lectures on the foundations of continuum mechanics and thermodynamics. Arch. Rational Mech. Anal. 52, 62–92.Google Scholar
[46] MacLane, S., & Birkhoff, G., 1967. Algebra. Macmillan, London.
[47] Roberts, P. H., & Donnelly, R. J., 1974. Superfluid mechanics. In: Annual Review of Fluid Mechanics 6 (ed. van Dyke, M., Vincentini, W. G., & Wehausen, J. V.). Annual Reviews, Palo Alto, CA.
[48] Hills, R. N., & Roberts, P. H., 1977. Superfluid mechanics for a high density of vortex lines. Arch. Rational Mech. Anal. 66, 43–71.Google Scholar
[49] Piquet, J., 2001. Turbulent Flows (revised 2nd printing). Springer-Verlag, Berlin.
[50] Murdoch, A. I., 2003. Objectivity in classical continuum mechanics: a rationale for discarding the ‘principle of invariance under superposed rigid body motions’ in favour of purely objective considerations. Continuum Mech. Thermodyn. 15, 309–320.Google Scholar
[51] Murdoch, A. I., 2006. Some primitive concepts in continuum mechanics regarded in terms of objective space-time molecular averaging: the key rôle played by inertial observers. J. Elasticity 84, 69–97.Google Scholar
[52] Rivlin, R. S., 1970. Red herrings and sundry unidentified fish in nonlinear continuum mechanics. In: Inelastic Behavior of Solids (ed. Kanninen, M. G., Adler, D., Rosenfield, A. R., Jaffee, R. I.), McGraw-Hill, New York.
[53] Müller, I., 1972. On the frame dependence of stress and heat flux. Arch. Rational Mech. Anal. 45, 241–250.Google Scholar
[54] Murdoch, A. I., 1983. On material frame-indifference, intrinsic spin, and certain constitutive relations motivated by the kinetic theory of gases. Arch. Rational Mech. Anal. 83, 185–194.Google Scholar
[55] Wang, C. C., 1975. On the concept of frame-indifference in continuum mechanics and in the kinetic theory of gases. Arch. Rational Mech. Anal. 58, 381–393.Google Scholar
[56] Truesdell, C., 1976. Correction of two errors in the kinetic theory of gases which have been used to cast unfounded doubt upon the principle of material frame-indifference. Meccanica 11, 196–199.Google Scholar
[57] Speziale, G., 1981. On frame-indifference and iterative procedures in the kinetic theory of gases. Int. J. Eng. Sci. 19, 63–73.Google Scholar
[58] Svendsen, B., & Bertram, A., 1999. On frame-indifference and form invariance in constitutive theory. Acta Mechanica 132, 195–207.Google Scholar
[59] Edelen, G. B., & McLennan, J. A., 1973. Material indifference: a principle or a convenience. Int. J. Eng. Sci. 11, 813–817.Google Scholar
[60] Söderholm, L. H., 1976. The principle of material frame-indifference and material equations of gases. Int. J. Eng. Sci. 14, 523–528.Google Scholar
[61] Woods, L. C., 1981. The bogus axioms of continuum mechanics. Bull. Inst. Math. Applications 17, 98–102.Google Scholar
[62] Burnett, D., 1935. The distribution of molecular velocities and the mean motion in a non-uniform gas. Proc. Lond. Math. Soc. 40, 382–435.Google Scholar
[63] Murdoch, A. I., 1982. On material frame-indifference. Proc. R. Soc. Lond. A 380, 417–426.Google Scholar
[64] Liu, I.-S., 2003. On Euclidean objectivity and the principle of material frame-indifference. Continuum Mech. Thermodyn. 16, 309–320.Google Scholar
[65] Liu, I.-S., 2005. Further remarks on Euclidean objectivity and the principle of material frame-indifference. Continuum Mech. Thermodyn. 17, 125–133.Google Scholar
[66] Murdoch, A. I., 2005. On criticism of the nature of objectivity in classical continuum physics. Continuum Mech. Thermodyn. 17, 135–148.Google Scholar
[67] Edelen, D. G. B., 1976. Nonlocal field theories. In: Continuum Physics, IV (ed. A. C., Eringen). Academic Press, New York.
[68] Silling, S., 2000. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209.Google Scholar
[69] Lehoucq, R. B., & Sears, M. P., 2011. Statistical mechanical foundation of the peri-dynamic nonlocal continuum theory: Energy and momentum laws. Physical ReviewE 84(031112), 1–7.Google Scholar
[70] Silling, S. A., Epton, M., Weckner, O., & Askari, E., 2007. Peridynamic states and constitutive modelling. J. Elasticity 88, 151–184.Google Scholar
[71] Stone, A. J., 1984. Intermolecular forces. In: Molecular Liquids – Dynamics and Interactions (ed. A. J., , Barnes, ). Reidel, Dordrecht, The Netherlands.
[72] Landau, L. D., & Lifschitz, E. M., 1980. Statistical Physics (3rd ed. part 1). Pergamon Press, Oxford, UK.
[73] Irving, J. H., & Kirkwood, J. G., 1950. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817–829.Google Scholar
[74] Pitteri, M., 1986. Continuum equations of balance in classical statistical mechanics. Arch. Rational Mech. Anal. 94, 291–305.Google Scholar
[75] Admal, N. C., & Tadmor, E. B., 2010. A unified interpretation of stress in molecular systems. J. Elasticity 100, 63–143.Google Scholar
[76] Murdoch, A. I., & Bedeaux, D., 1993. On the physical interpretation of fields in continuum mechanics. Int. J. Eng. Sci. 31, 1345–1373.Google Scholar
[77] Murdoch, A. I., & Bedeaux, D., 1994. Continuum equations of balance via weighted averages of microscopic quantities. Proc. R. Soc. London A 445, 157–179.Google Scholar
[78] Murdoch, A. I., & Bedeaux, D., 1996. A microscopic perspective on the physical foundations of continuum mechanics: 1. Macroscopic states, reproducibility, and macroscopic statistics, at prescribed scales of length and time. Int. J. Eng. Sci. 34, 1111–1129.Google Scholar
[79] Murdoch, A. I., & Bedeaux, D., 1997. A microscopic perspective on the physical foundations of continuum mechanics – II. A projection operator approach to the separation of reversible and irreversible contributions to macroscopic behaviour. Int. J. Eng. Sci. 35, 921–949.Google Scholar
[80] Zwanzig, R., 1960. Ensemble method in the theory of irreversibility. J. Chem. Phys. 33, 1338–1341.Google Scholar
[81] Zwanzig, R., 2004. Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford, UK.
[82] Kröner, E., 1971. Statistical Continuum Mechanics. C. I. S. M. E., Courses and Lectures No. 92. Springer-Verlag, Vienna.
[83] Belleni-Morante, A., 1994. A Concise Guide to Semigroups and Evolution Equations. World Scientific, Singapore.
[84] Jacobson, N., 1951. Lectures in Abstract Algebra, Vol. 1 – Basic Concepts. van Nostrand, Princeton, NJ.
[85] Lamb, W., Murdoch, A. I., & Stewart, J., 2001. On an operator identity central to projection operator methodology. Physica A 298, 121–139.Google Scholar
[86] Grabert, H., 1982. Projection Operator Techniques in Nonequilibrium Statistical Mechanics. Springer-Verlag, Berlin.
[87] Murdoch, A. I., & Bedeaux, D., 2001. Characterisation of microstates for confined systems and associated scale-dependent continuum fields via Fourier coefficients. J. Phys. A: Math. Gen. 34, 6495–6508.Google Scholar
[88] Halmos, P. R., 1958. Finite-Dimensional Vector Spaces. van Nostrand, Princeton.
[89] Goertzel, G., & Tralli, N., 1960. Some Mathematical Methods of Physics. McGraw-Hill, New York.
[90] Greub, W., 1978. Multilinear Algebra, 2nd edn. Springer-Verlag, New York.
[91] Apostol, T. M., 1957. Mathematical Analysis. Addison-Wesley, Reading, MA.
[92] Moeckel, G. P., 1975. Thermodynamics of an interface. Arch. Rational Mech. Anal. 57, 255–280.Google Scholar
[93] Gurtin, M. E., & Murdoch, A. I., 1975. A continuum theory of elastic material surfaces. Arch. Rational Mech. Anal. 57, 291–323.Google Scholar
[94] Rusanov, A. I., 1971. Recent investigations on the thickness of surface layers. In: Progress in Surface and Membrane Science, Vol. 4. (ed. Danielli, J. F., Rosenberg, M. D., & Codenhead, D. A.) Academic Press, New York.
[95] Rowlinson, J. S., & Widom, B., 1982. Molecular Theory of Capillarity. Oxford University Press, London.
[96] Murdoch, A. I., 2005. Some fundamental aspects of surface modelling. J. Elasticity 80, 33–52.Google Scholar
[97] Ericksen, J. E., 1976. Equilibrium theory of liquid crystals. In: Advances in Liquid Crystals, Vol. 2. (ed. G. H., Brown). Academic Press, New York.
[98] Leslie, F. M., 1979. Theory of flow phenomena in liquid crystals. In: Advances in Liquid Crystals, Vol. 4. (ed. G. H., Brown). Academic Press, New York.
[99] Maugin, G. A., 1993. Material Inhomogeneities in Elasticity. Chapman & Hall, London.
[100] Gurtin, M. E., 2000. Configurational Forces as a Basic Concept of Continuum Physics. Springer-Verlag, Berlin.
[101] Coulson, C. A., 1961. Electricity. Oliver & Boyd, London.
[102] Rutherford, D. E., 1957. Vector Methods (9th ed.). Oliver & Boyd, London.
[103] Murdoch, A. I., 2003. Foundations of Continuum Modelling: a Microscopic Perspective with Applications. Center of Excellence for Advanced Materials and Structures. IPPT, Polish Academy of Sciences, Warsaw.
[104] Day, W. A., 1972. The Thermodynamics of Simple Materials with Fading Memory. Springer-Verlag, Berlin.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • A. Ian Murdoch, University of Strathclyde
  • Book: Physical Foundations of Continuum Mechanics
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139028318.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • A. Ian Murdoch, University of Strathclyde
  • Book: Physical Foundations of Continuum Mechanics
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139028318.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • A. Ian Murdoch, University of Strathclyde
  • Book: Physical Foundations of Continuum Mechanics
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139028318.019
Available formats
×