Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-02T12:34:30.164Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  04 May 2017

Bernard J. T. Jones
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Precision Cosmology
The First Half Million Years
, pp. 702 - 753
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbe, C. 1867. On the distribution of the nebulæ in space. MNRAS, 27 (May), 257–263.Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D. et al. 2016. Observation of gravitational waves from a binary black hole merger. Physical Review Letters, 116 (6), 061102.Google Scholar
Abbott, E.A. 2015. Flatland: A Romance of Many Dimensions. 2015 edn. CreateSpace Independent Publishing Platform.
Abbott, L. F., and Wise, M. B. 1984. Constraints on generalized inflationary cosmologies. Nuclear Physics B, 244 (Oct.), 541–548.Google Scholar
Abramowitz, M., and Stegun, I.A. 1965. Handbook of Mathematical Functions. 1965 edn. Dover Publications Inc.
Adams, W. S. 1941. Some results with the COUDÉ spectrograph of the Mount Wilson Observatory. ApJ, 93 (Jan.), 11.Google Scholar
Adler, R.J. 1981. The Geometry of Random Fields. John Wiley & Son.
Adler, R., Bazin, M., and Schiffer, M. 1975. Introduction to General Relativity. McGraw-Hill.
Albrecht, A., and Steinhardt, P. J. 1982. Cosmology for grand unified theories with radiatively induced symmetry breaking. Physical Review Letters, 48 (Apr.), 1220–1223.Google Scholar
Albrecht, A., Bernstein, G., Cahn, R. et al. 2006. Report of the Dark Energy Task Force. arXiv astro-ph, 0609591.
Albrecht, A., Amendola, L., Bernstein, G. et al. 2009. Findings of the Joint Dark Energy Mission Figure of Merit Science Working Group. arXiv astro-ph. 0901.0721.
Alcock, C., and Paczynski, B. 1979. An evolution free test for non-zero cosmological constant. Nature, 281 (Oct.), 358.Google Scholar
Aldrovandi, R., Caser, S., Omnes, R., and Puget, J. L. 1973. Matter-antimatter cosmology. A&A, 28 (Oct.), 253.Google Scholar
Alfvén, H., and Klein, O. 1962. Matter-antimatter annihilation and cosmology. Arkiv för Fysik, 23, 187–194.Google Scholar
Ali-Haïmoud, Y., and Hirata, C. M. 2011. HyRec: A fast and highly accurate primordial hydrogen and helium recombination code. Phys. Rev. D, 83 (4), 043513.Google Scholar
Alpher, R. A. 1948. A neutron-capture theory of the formation and relative abundance of the elements. Physical Review, 74 (Dec.), 1577–1589.Google Scholar
Alpher, R. A., and Herman, R. C. 1950. Theory of the origin and relative abundance distribution of the elements. Reviews of Modern Physics, 22 (Apr.), 153–212.Google Scholar
Alpher, R. A., and Herman, R. C. 1953. The origin and abundance distribution of the elements. Annual Review of Nuclear and Particle Science, 2, 1–40.Google Scholar
Alpher, R. A., Follin, J. W., and Herman, R. C. 1953. Physical conditions in the initial stages of the expanding Universe. Physical Review, 92 (Dec.), 1347–1361.Google Scholar
Amanullah, R., Lidman, C., Rubin, D. et al. 2010. Spectra and Hubble Space Telescope light curves of six type Ia supernovae at 0.511 < z < 1.12 and the Union2 compilation. ApJ, 716 (June), 712–738.Google Scholar
Amendola, L., Kunz, M., and Sapone, D. 2008. Measuring the dark side (with weak lensing). Journal of Cosmology and Astro-Particle Physics, 4 (Apr.), 13.Google Scholar
Ames, A. 1950. A catalogue of 2778 nebulae, including the Coma-Virgo group. Annals of Harvard College Observatory, 88, 1–40.Google Scholar
Anderson, L. et al. 2014a. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 galaxy samples. MNRAS, 441 (June), 24–62.Google Scholar
Anderson, L. et al. 2014b. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring DA and H at z = 0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic galaxy sample. MNRAS, 439 (Mar.), 83–101.Google Scholar
Anderson, T.W. 2003. An Introduction to Multivariate Statistical Analysis. Wiley–Blackwell; 3rd Edition.
Arago, F.J.D. 1820. Quelques nouveaux details sur le passage de la comte découverte dans le mois de Juillet 1819, devant le disque du soleil. Annales de Chimie et de Physique, serie 2, 13, 104–110.Google Scholar
Aragón-Calvo, M. A., Jones, B. J. T., van de Weygaert, R., and van der Hulst, J. M. 2007. The multiscale morphology filter: identifying and extracting spatial patterns in the galaxy distribution. A&A, 474 (Oct.), 315–338.Google Scholar
Arnold, V.I. 1980. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, Vol. 60. Springer.
Ashby, N. 2002. Relativity and the Global Positioning System. Physics Today, 55 (5), 41–47.Google Scholar
Ashby, N. 2003. Relativity in the Global Positioning System. [Online]. Available:. http://www.livingreviews.org/lrr-2003-1.
Audouze, J., Pelletan, M.-C., Szalay, A., Zel'dovich, Y. B., and Peebles, P. J. E. (eds). 1988. Large Scale Structures of the Universe. Proceedings of the 130th Symposium of the International Astronomical Union, dedicated to the memoryof Marc A. Aaronson (1950 –1987), held in Balatonfured, Hungary, 15–20 June 1987.
Baade, D., and Lucy, L. B. 1990. HST images: what can image processing do? The Messenger, 61 (Sept.), 24–27.Google Scholar
Baade, W., and Minkowski, R. 1954. Identification of the radio sources in Cassiopeia, Cygnus A, and Puppis A. ApJ, 119 (Jan.), 206.Google Scholar
Bade, W. L. 1953. Relativistic rocket theory. American Journal of Physics, 21 (Apr.), 310–312.Google Scholar
Baker, J. G., Centrella, J., Choi, D.-I., Koppitz, M., and van Meter, J. 2006a. Binary black hole merger dynamics and waveforms. Phys. Rev. D, 73 (10), 104002.Google Scholar
Baker, J. G., Centrella, J., Choi, D.-I., Koppitz, M., and van Meter, J. 2006b. Gravitational-wave extraction from an inspiraling configuration of merging black holes. Physical Review Letters, 96 (11), 111102.
Baldwin, O. R., and Jeffery, G. B. 1926. The relativity theory of plane waves. Proceedings of the Royal Society of London Series A, 111 (May), 95–104.Google Scholar
Bardeen, J. M. 1980. Gauge-invariant cosmological perturbations. Phys. Rev. D, 22 (Oct.), 1882–1905.Google Scholar
Barnes, L., Francis, M. J., Lewis, G. F., and Linder, E. V. 2005. The influence of evolving dark energy on cosmology. Publications of the Astronomical Society of Australia, 22, 315–325.Google Scholar
Barrow, J. D., Juszkiewicz, R., and Sonoda, D. H. 1985. Universal rotation – How large can it be? MNRAS, 213 (Apr.), 917–943.Google Scholar
Barrow, J.D., and Webb, J.K. 2005. Inconstant constants. Sci. Am., 70–77.Google Scholar
Bartholinus, E. 1670. Experimenta Crystalli Islandici Disdiaclastici Quibus Mia & Infolita Refractio detegitur. Hafniae.
Bateman, H. 1908. The conformal transformations of a space of four dimensions and their applications to geometrical optics. Proc. London Math. Soc., 7, (2), 49–69.Google Scholar
Bateman, H. 1910. The transformation of the electrodynamical equations. Proc. London Math. Soc. 8, (2), 277–294.Google Scholar
Baumann, D. 2009. TASI Lectures on Inflation. arXiv astro-ph, 0907.5424
Baur, J., Blanchard, A., and Von Ballmoos, P. 2015. Is a symmetric matter-antimatter Universe excluded? arXiv astro-ph, 1512.08482
Baxter, Stephen. 2007. Last Contact. Solaris Science Fiction.
Baylis, W. E. 1980. Special relativity with 2x2 matrices. American Journal of Physics, 48(Nov.), 918–925.Google Scholar
Becker, R. H., Fan, X., and White, R. L. et al. 2001. Evidence for reionization at z ~ 6: Detection of a Gunn-Peterson trough in a z = 6.28 quasar. AJ, 122(Dec.), 2850–2857.Google Scholar
Begeman, K. G. 1989. H I rotation curves of spiral galaxies. I – NGC 3198. A&A, 223(Oct.), 47–60.Google Scholar
Bekenstein, J. D. 2004. Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Phys. Rev. D, 70 (8), 083509.Google Scholar
Bekenstein, J. D. 2010. Alternatives to dark matter: Modified gravity as an alternative to dark matter. arXiv astro-ph, 1001.3876
Belenkiy, A. 2013. ‘The waters I am entering no one yet has crossed’: Alexander Friedman and the origins of modern cosmology. Page 71 of: Way, M. J., and Hunter, D. (eds), Origins of the Expanding Universe: 1912–1932. Astronomical Society of the Pacific Conference Series, vol. 471.
Belinfante, F. 1939. On the spin angular momentum of mesons. Physica, 6 (July), 887–898.Google Scholar
Belinfante, F. J. 1940. On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields. Physica, 7 (May), 449–474.Google Scholar
Belinskiǐ, V. A., and Khalatnikov, I. M. 1969. On the nature of the singularities in the general solutions of the gravitational equations. Soviet Journal of Experimental and Theoretical Physics, 29, 911.Google Scholar
Belinskiǐ, V. A., Khalatnikov, I. M., and Lifshitz, E. M. 1970. Oscillatory approach to a singular point in the relativistic cosmology. Advances in Physics, 19, 525–573.Google Scholar
Bellhouse, D.R. 2004. The Reverend Thomas Bayes, FRS: A biography to celebrate the tercentenary of his birth. Statistical Science, 19, 3–43.Google Scholar
Bender, C.M., and Orzag, S.A. 1999. Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory (v. 1). Springer.
Bennett, A. S. 1962. The preparation of the revised 3C catalogue of radio sources. MNRAS, 125, 75.Google Scholar
Bennett, C. L. et al. 2013. Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: Final maps and results. Astrophys. J. Suppl., 208 (Oct.), 20.Google Scholar
Benson, A. J. 2010. Galaxy formation theory. Phys. Rep., 495 (Oct.), 33–86.Google Scholar
Berger, J. 2006. The case for objective Bayesian analysis. Bayesian Analysis, 1 (3), 385–402.Google Scholar
Berk, R. 1967. Review 1922 of ‘invariance of maximum likelihood estimators’ by Peter W. Zehna. Mathematical Reviews, 30, 343.Google Scholar
Bernoulli, D. 1738. Hydrodynamica. Reinhold, Basle.
Bernstein, J. 1988. Kinetic Theory in the Expanding Universe. Cambridge Monographs on Mathematical Physics. Cambridge University Press.
Bernstein, J. 2011. A memorandum that changed the world. American Journal of Physics, 79(May), 440–446.Google Scholar
Berry, M. V. 1973. The statistical properties of echoes diffracted from rough surfaces. Royal Society of London Philosophical Transactions Series A, 273 (Feb.), 611–654.Google Scholar
Bertschinger, E. 1992. Large-scale structures and motions: Linear theory and statistics. Page 65 of: Martinez, V. J., Portilla, M., and Saez, D. (eds), New Insights into the Universe. Lecture Notes in Physics, Berlin Springer Verlag, Vol. 408.
Bethe, H. A. 1939. Energy production in stars. Physical Review, 55 (Mar.), 434–456.Google Scholar
Bethe, H. A., and Critchfield, C. L. 1938. The formation of deuterons by proton combination. Physical Review, 54 (Aug.), 248–254.Google Scholar
Betoule, M., Kessler, R. et al. 2014. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. A&A, 568 (Aug.), A22.Google Scholar
Bilicki, M., and Chodorowski, M. J. 2010. Influence of the local void on measurements of the clustering dipole. MNRAS, 406 (Aug.), 1358–1363.Google Scholar
Birrell, N. D., and Davies, P. C. W. 1982. Quantum Fields in Curved Space. Cambridge University Press.
Bičák, J., Katz, J., and Lynden-Bell, D. 2007. Cosmological perturbation theory, instantaneous gauges, and local inertial frames. Phys. Rev. D, 76 (6), 063501.Google Scholar
Blake, C., Kazin, E. A. et al. 2011. The WiggleZ Dark Energy Survey: mapping the distance–redshift relation with baryon acoustic oscillations. MNRAS, 418 (Dec.), 1707–1724.Google Scholar
Blake, C. et al. 2012. The WiggleZ Dark Energy Survey: joint measurements of the expansion and growth history at z < 1. MNRAS, 425 (Sept.), 405–414.Google Scholar
Blanchard, A. 1984. Angular fluctuations in the cosmological microwave background in a Universe with a cosmological constant. A&A, 132 (Mar.), 359.Google Scholar
Blau, M. 2014. Lecture Notes on General Relativity. Albert Einstein Centre for Fundamental Physics, Bern. [Online]. Available:. http://www.blau.itp.unibe.ch/newlecturesGR.pdf.
Bleem, L. E., Stalder, B. et al. 2015. Galaxy clusters discovered via the SunyaevZel'dovich effect in the 2500-square-degree SPT-SZ Survey. ApJs, 216 (Feb.), 27.Google Scholar
Boardman, W. J. 1964. The radiative recombination coefficients of the hydrogen atom. ApJs, 9 (Aug.), 185–192.Google Scholar
Bodenner, J., and Will, C. M. 2003. Deflection of light to second order: A tool for illustrating principles of general relativity. American Journal of Physics, 71 (Aug.), 770–773.Google Scholar
Bond, J. R., Kofman, L., and Pogosyan, D. 1996. How filaments of galaxies are woven into the cosmic web. Nature, 380 (Apr.), 603–606.Google Scholar
Bondi, H. 1947. Spherically symmetrical models in general relativity. MNRAS, 107, 410–425.Google Scholar
Bondi, H. 2009. Cosmology. 2nd edn. Dover Publications.
Bondi, H., and Gold, T. 1948. The steady-state theory of the expanding Universe. MNRAS, 108, 252–270.Google Scholar
Bondi, H., Pirani, F. A. E., and Robinson, I. 1959. Gravitational waves in general relativity. III. Exact plane waves. Proceedings of the Royal Society of London Series A, 251 (June), 519–533.Google Scholar
Bonnor, W. B. 1954. The stability of cosmological models. Zeitschrift fur Astrophysik, 35, 10.Google Scholar
Bonnor, W. B. 1957. Jeans’ formula for gravitational instability. MNRAS, 117, 104.Google Scholar
Born, M. 1909. Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips. Annalen der Physik, 335, 1–56.Google Scholar
Bortolot, V. J., Clauser, J. F., and Thaddeus, P. 1969. Upper limits to the intensity of background radiation at λ =1.32, 0.559, and 0.359 mm. Physical Review Letters, 22 (Feb.), 307–310.Google Scholar
Bosma, A. 1978. The Distribution and Kinematics of Neutral Hydrogen in Spiral Galaxies of Various Morphological Types. PhD thesis, Groningen Univ., (1978).
Bosma, A. 1981. 21-cm line studies of spiral galaxies. II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. AJ, 86 (Dec.), 1825–1846.Google Scholar
Boulliau, I. 1645. Astronomia philolaica. Opus novum, in quo motus planetarum per novam ac veram hypothesim demonstrantur. The Inverse-Square Law of Attraction. Simeonis Piget, Paris.
Boussinesq, J. 1877. Théorie des écoulements tourbillonnaries. C.R. Acad. Sci Paris, 23.Google Scholar
Bousso, R. 2003. Adventures in de Sitter Space. Cambridge University Press, pp. 539–569.
Bower, R. G., Coles, P., Frenk, C. S., and White, S. D. M. 1993. Cooperative galaxy formation and large-scale structure. ApJ, 405 (Mar.), 403–412.Google Scholar
Box, T. C., and Roeder, R. C. 1984. The distribution of quasar emission-line redshifts. A&A, 134 (May), 234–239.Google Scholar
Branch, D., and Miller, D. L. 1993. Type IA supernovae as standard candles. ApJl, 405(Mar.), L5–L8.Google Scholar
Brans, C., and Dicke, R. H. 1961. Mach's principle and a relativistic theory of gravitation. Physical Review, 124 (Nov.), 925–935.Google Scholar
Briggs, M. S. et al. 1999. Observations of GRB 990123 by the Compton Gamma Ray Observatory. ApJ, 524 (Oct.), 82–91.Google Scholar
Brinkmann, H.W. 1925. Einstein spaces which are mapped conformally on each other. Mathematische Annalen, 94, 119–145.Google Scholar
Brout, R., Englert, F., and Gunzig, E. 1978. The creation of the Universe as a quantum phenomenon. Annals of Physics, 115, 78–106.Google Scholar
Brown, H. 1949. A table of relative abundances of nuclear species. Reviews of Modern Physics, 21 (Oct.), 625–634.Google Scholar
Buchert, T. 2000. On average properties of inhomogeneous cosmologies. pp. 306–321 of: Proceedings of 9th Workshop on General Relativity and Gravitation.
Buchert, T. 2008. Dark energy from structure: a status report. General Relativity and Gravitation, 40 (Feb.), 467–527.Google Scholar
Buchert, T., and Ehlers, J. 1997. Averaging inhomogeneous Newtonian cosmologies. A&A, 320(Apr.), 1–7.Google Scholar
Buddelmeijer, H. 2006. Cosmotopology. MPhil thesis, University of Groningen.
Bull, P., and Kamionkowski, M. 2013. What if Planck's Universe isn't flat? Phys. Rev. D, 87(8), 081301.Google Scholar
Bunn, E. F., and Hogg, D. W. 2009. The kinematic origin of the cosmological redshift. American Journal of Physics, 77 (Aug.), 688–694.Google Scholar
Burbidge, E. M., Burbidge, G. R., Fowler, W. A., and Hoyle, F. 1957. Synthesis of the elements in stars. Reviews of Modern Physics, 29, 547–650.Google Scholar
Burbidge, G. 1967. On the wavelengths of the absorption lines in quasi-stellar objects. ApJ, 147(Feb.), 851.Google Scholar
Burbidge, G., and Napier, W. M. 2001. The distribution of redshifts in new samples of quasi-stellar objects. AJ, 121 (Jan.), 21–30.Google Scholar
Burbidge, G. R., and Burbidge, E. M. 1967. Limits to the distance of the quasi-stellar objects deduced from their absorption line spectra. ApJl, 148 (May), L107.Google Scholar
Burbidge, G. R., and O'dell, S. L. 1972. The distribution of redshifts of quasi-stellar objects and related emission-line objects. ApJ, 178 (Dec.), 583–606.Google Scholar
Burigana, C., Danese, L., and de Zotti, G. 1991. Formation and evolution of early distortions of the microwave background spectrum – A numerical study. A&A, 246 (June), 49–58.Google Scholar
Caderni, N., Fabbri, R., Melchiorri, B., Melchiorri, F., and Natale, V. 1978. Polarization of the microwave background radiation. II. An infrared survey of the sky. Phys. Rev. D, 17(Apr.), 1908–1918.Google Scholar
Cai, Y.-C., Cole, S., Jenkins, A., and Frenk, C. 2009. Towards accurate modelling of the integrated Sachs–Wolfe effect: the nonlinear contribution. MNRAS, 396 (June), 772–778.Google Scholar
Calabretta, M. R., and Roukema, B. F. 2007. Mapping on the HEALPix grid. MNRAS, 381(Oct.), 865–872.Google Scholar
Calder, L., and Lahav, O. 2008. Dark energy: back to Newton? Astronomy and Geophysics, 49(1), 010000–1.Google Scholar
Caldwell, R. R., Kamionkowski, M., and Weinberg, N. N. 2003. Phantom energy: Dark energy with w < -1 causes a cosmic doomsday. Physical Review Letters, 91 (7), 071301.Google Scholar
Callan, C., Dicke, R. H., and Peebles, P. J. E. 1965. Cosmology and Newtonian mechanics. American Journal of Physics, 33 (Feb.), 105–108.Google Scholar
Campanelli, M., Lousto, C. O., Marronetti, P., and Zlochower, Y. 2006. Accurate evolutions of orbiting black-hole binaries without excision. Physical Review Letters, 96 (11), 111101.Google Scholar
Campbell, J.E. 1926. A Course of Differential Geometry. Clarendon Press.
Carroll, S. M., Press, W. H., and Turner, E. L. 1992. The cosmological constant. ARA&A, 30, 499–542.Google Scholar
Carroll, S.M. 2003. Spacetime and Geometry. Addison Wesley.
Casella, G. 1989. An introduction to empirical Bayes data analysis. Amer. Statistician, 39, 83–87.Google Scholar
Centrella, J., Baker, J. G., Kelly, B. J., and van Meter, J. R. 2010a. Black-hole binaries, gravitational waves, and numerical relativity. Reviews of Modern Physics, 82 (Oct.), 3069–3119.Google Scholar
Centrella, J., Baker, J. G., Kelly, B. J., and van Meter, J. R. 2010b. The final merger of black-hole binaries. Annual Review of Nuclear and Particle Science, 60 (Nov.), 75–100.Google Scholar
Chadwick, J. 1932. Possible existence of a neutron. Nature, 129 (Feb.), 312.Google Scholar
Challinor, A., and Lasenby, A. 1998. Relativistic corrections to the Sunyaev–Zeldovich effect. ApJ, 499 (May), 1–6.Google Scholar
Chan, K. L., and Jones, B. J. T. 1975a. Distortions of the 3 K background radiation spectrum – Observational constraints on the early thermal history of the universe. ApJ, 195(Jan.), 1–11.Google Scholar
Chan, K. L., and Jones, B. J. T. 1975b. Distortions of the microwave background radiation spectrum in the submillimeter wavelength region. ApJ, 198 (June), 245–248.Google Scholar
Chan, K. L., and Jones, B. J. T. 1975c. The evolution of the cosmic radiation spectrum under the influence of turbulent heating. I – Theory. ApJ, 200 (Sept.), 454–460.Google Scholar
Chan, K. L., and Jones, B. J. T. 1975d. The evolution of the cosmic radiation spectrum under the influence of turbulent heating. II. Numerical calculation and application. ApJ, 200(Sept.), 461–470.Google Scholar
Chandrasekhar, S. 2003. An Introduction to the Study of Stellar Structure. Dover Publications Inc.
Chandrasekhar, S., Gamow, G., and Tuve, M. A. 1938. The problem of stellar energy. Nature, 141 (May), 982.Google Scholar
Chang, K. 2006. Black Holes Collide, and Gravity Quivers. New York Times. [Online]. Available: http://www.nytimes.com/2006/05/02/science/space/02hole.html?pagewanted=all&_r=0.
Chluba, J., and Thomas, R. M. 2011. Towards a complete treatment of the cosmological recombination problem. MNRAS, 412 (Apr.), 748–764.Google Scholar
Chluba, J., Vasil, G. M., and Dursi, L. J. 2010. Recombinations to the Rydberg states of hydrogen and their effect during the cosmological recombination epoch. MNRAS, 407(Sept.), 599–612.Google Scholar
Clifford, W.K. 1870. On the space-theory of matter. Proc. Camb. Phil. Soc, 2, 157–158.Google Scholar
Clifton, T., Ferreira, P. G., Padilla, A., and Skordis, C. 2012. Modified gravity and cosmology. Phys. Rep., 513 (Mar.), 1–189.Google Scholar
Cloutman, L.D. 1999. Compressible Turbulence Transport Equations for Generalized Second Order Closure. Informal Report UCRL-ID-134075. Lawrence Livermore National Laboratory.
Coc, A. 2013. Primordial nucleosynthesis. Journal of Physics Conference Series, 420 (1), 012136.Google Scholar
Cole, S., and Percival, W. J. et al. 2005. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications. MNRAS, 362 (Sept.), 505– 534.Google Scholar
Coleman, T. S., and Roos, M. 2003. Effective degrees of freedom during the radiation era. Phys. Rev. D, 68 (2), 027702.Google Scholar
Coles, P. 1996. Einstein and the Birth of Big Science. Postmodern Encounters. Totem Books.
Coles, P. 2001. Einstein, Eddington and the 1919 Eclipse. Page 21 of: Martínez, V. J., Trimble, V., and Pons-Bordería, M. J. (eds), Historical Development of Modern Cosmology. Astronomical Society of the Pacific Conference Series, Vol. 252.
Collins, H. 2004. Gravity's Shadow: The Search for Gravitational Waves. Univ. Chicago Press. (2nd. editiion).
Combrinck, L. 2013. General Relativity and Space Geodesy. Chap. 2, pp. 53–95, in Sciences of Geodesy – 11, ed. Guochang, Xu, Springer.
Condon, J. J., Cotton, W. D., Fomalont, E. B., 2012. Resolving the radio source background: Deeper understanding through confusion. ApJ, 758 (Oct.), 23.Google Scholar
Conklin, E. K. 1969. Velocity of the Earth with respect to the cosmic background radiation. Nature, 222 (June), 971–972.Google Scholar
Conklin, E. K., and Bracewell, R. N. 1967. Limits on small scale variations in the cosmic background radiation. Nature, 216 (Nov.), 777–779.Google Scholar
Conley, A., Goldhaber, G., Wang, L. et al. 2006. Measurement of Ωm, ΩΛ from a blind analysis of type Ia supernovae with CMAGIC: Using color information to verify the acceleration of the Universe. ApJ, 644 (June), 1–20.Google Scholar
Conley, A., Guy, J., Sullivan, M. et al. 2011. Supernova constraints and systematic uncertainties from the first three years of the Supernova Legacy Survey. ApJs, 192 (Jan.), 1.Google Scholar
Corey, B. E., and Wilkinson, D. T. 1976. A measurement of the cosmic microwave background anisotropy at 19 GHz. Bulletin of the American Astronomical Society. 8, 351.Google Scholar
Corry, L. 1999. From Mie's Electromagnetic Theory of Matter to Hilbert's Foundations of Physics. Studies Hist. Phil. Modern Physics, 30, 159–183.Google Scholar
Corry, L., Renn, J., and Stachel, J.. 1997. Belated decision in the Hilbert–Einstein priority dispute. Science, 278, 1270–1273.Google Scholar
Couchman, H. M. P., and Carlberg, R. G. 1992. Large-scale structure in a low-bias universe. ApJ, 389 (Apr.), 453–463.Google Scholar
Courteau, S., and van den Bergh, S. 1999. The solar motion relative to the local group. AJ, 118(July), 337–345.Google Scholar
Courtois, H. M., Pomarède, D., Tully, R. B., Hoffman, Y., and Courtois, D. 2013. Cosmography of the local Universe. AJ, 146 (Sept.), 69.Google Scholar
Cowan, Jr. C. L., Reines, F., Harrison, F. B., Kruse, H. W., and McGuire, A. D. 1956. Detection of the free neutrino: A confirmation. Science, 124 (July), 103–104.Google Scholar
Cox, D. R., and Hinkley, D. V. 1979. Theoretical Statistics. Chapman & Hall.
Cramér, H. 1946. Mathematical Methods of Statistics. Princeton Univ. Press.
Croom, S. M., Smith, R. J., Boyle, B. J. et al. 2004. The 2dF QSO Redshift Survey – XII. The spectroscopic catalogue and luminosity function. MNRAS, 349 (Apr.), 1397–1418.Google Scholar
Cunningham, E. 1908. Conformal representation and the transformation of Laplace's equation. Proc. Lond. Math. Soc., vii. Communicated but not published.
Cunningham, E. 1914. The Principle of Relativity. Cambridge University Press.
Curtis, H. 1921. The scale of the Universe. Bulletin of the National Research Council, 2, 194.Google Scholar
Curtis, H. D. 1920. Modern theories of the spiral nebulae. JRASC, 14 (Oct.), 317.Google Scholar
Cyburt, R. H., Fields, B. D., Olive, K. A., and Yeh, T.-H. 2016. Big bang nucleosynthesis: Present status. Reviews of Modern Physics, 88 (1), 015004.Google Scholar
Danby, G., Gaillard, J.-M., Goulianos, K. et al. 1962. Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos. Physical Review Letters, 9 (July), 36–44.Google Scholar
Danese, L., and de Zotti, G. 1982. Double Compton process and the spectrum of the microwave background. A&A, 107 (Mar.), 39–42.Google Scholar
Das, S., Louis, T., Nolta, M. R. et al. 2014. The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data. JCAP, 4 (Apr.), 14.Google Scholar
Davidson, W. 1959. Steady-state cosmology treated according to general relativity. MNRAS, 119, 309.Google Scholar
Davis, M., Efstathiou, G., Frenk, C. S., and White, S. D. M. 1992. The end of cold dark matter? Nature, 356 (Apr.), 489–494.Google Scholar
Davis, T. M., and Lineweaver, C. H. 2001. Superluminal recession velocities. pp. 348–351 of: Durrer, R., Garcia-Bellido, J., and Shaposhnikov, M. (eds), Cosmology and Particle Physics. American Institute of Physics Conference Series, Vol. 555.
Davis, T. M., and Lineweaver, C. H. 2004. Expanding confusion: Common misconceptions of cosmological horizons and the superluminal expansion of the Universe. Publications of the Astronomical Society of Australia, 21, 97–109.Google Scholar
Davis, T. M., Mörtsell, E., Sollerman, J. et al. 2007. Scrutinizing exotic cosmological models using ESSENCE supernova data combined with other cosmological probes. ApJ, 666(Sept.), 716–725.Google Scholar
de Bernardis, P. et al. 2000. A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature, 404 (Apr.), 955–959.Google Scholar
de Finetti, B. 1937. La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. Henri Poincaré, 7, 1–68.Google Scholar
de Finetti, B. 1974. Theory of Probability (2 vols.). John Wiley and Sons.
de la Caille, N. 1755. Sur les Etoiles du Ciel Austral. Histoire de l'Acad. Roy. des Sci. (Paris).
de Lapparent, V., Geller, M. J., and Huchra, J. P. 1986. A slice of the Universe. ApJl, 302(Mar.), L1–L5.Google Scholar
de Martino, I., Atrio-Barandela, F., da Silva, A. et al. 2012. Measuring the redshift dependence of the cosmic microwave background monopole temperature with Planck data. ApJ, 757 (Oct.), 144.Google Scholar
de Sitter, W. 1917a. Einstein's theory of gravitation and its astronomical consequences. Third paper. MNRAS, 78 (Nov.), 3–28.Google Scholar
de Sitter, W. 1917b. On the relativity of inertia. Remarks concerning Einstein's latest hypothesis. Koninklijke Nederlandse Akademie van Weteschappen Proceedings Series B Physical Sciences, 19, 1217–1225.Google Scholar
de Sitter, W. 1918. Further remarks on the solutions of the field-equations of the Einstein's theory of gravitation. Koninklijke Nederlandse Akademie van Weteschappen Proceedings Series B Physical Sciences, 20, 1309–1312.Google Scholar
de Sitter, W. 1930. On the distances and radial velocities of extra-galactic nebulae, and the explanation of the latter by the relativity theory of inertia. Proceedings of the National Academy of Science, 16 (July), 474–488.Google Scholar
de Sitter, W. 1931. The expanding universe. Scientia, 49, 1–10.Google Scholar
de Vaucouleurs, G., and de Vaucouleurs, A. 1964. Reference Catalogue of Bright Galaxies. University of Texas monographs in Astronomy, Austin.
de Vaucouleurs, G., de Vaucouleurs, A., and Corwin, Jr., H. G. 1976. Second Reference Catalogue of Bright Galaxies. Containing Information on 4,364 Galaxies with References to Papers Published between 1964 and 1975. University of Texas Press.
de Vaucouleurs, G., de Vaucouleurs, A., Corwin, Jr. H. G. et al. 1991. Third Reference Catalogue of Bright Galaxies, Vol. 1–3, Springer-Verlag.
Derlet, P. M., and Choy, T. C. 1996. Planck's radiation law: A many body theory perspective. Australian Journal of Physics, 49, 589.Google Scholar
Dicke, R. H. 1963. Cosmology, Mach's principle and relativity. American Journal of Physics, 31 (July), 500–509.Google Scholar
Dicke, R. H., and Goldenberg, H. M. 1967. Solar oblateness and general relativity. Physical Review Letters, 18 (Feb.), 313–316.Google Scholar
Dicke, R. H., and Peebles, P. J. 1965. Gravitation and space science. Space Sci. Rev., 4(June), 419–460.Google Scholar
Dicke, R. H., Peebles, P. J. E., Roll, P. G., and Wilkinson, D. T. 1965. Cosmic black-body radiation. ApJ, 142 (July), 414–419.Google Scholar
Dirac, P. A. 1949. Forms of relativistic dynamics. Reviews of Modern Physics, 21 (July), 392–399.Google Scholar
Dirac, P. A. M. 1937. The cosmological constants. Nature, 139 (Feb.), 323.Google Scholar
Dirac, P. A. M. 1938. A new basis for cosmology. Royal Society of London Proceedings Series A, 165 (Apr.), 199–208.Google Scholar
Dodelson, S. 2003. Modern Cosmology. Academic Press.
Dolgov, A. D., Hansen, S. H., Pastor, S. et al. 2002. Cosmological bounds on neutrino degeneracy improved by flavor oscillations. Nuclear Physics B, 632 (June), 363–382.Google Scholar
DONUT Collaboration, Kodama, K., Ushida, N. et al. 2001. Observation of tau neutrino interactions. Physics Letters B, 504 (Apr.), 218–224.Google Scholar
Doob, J.L. 1949. Application of the theory of martingales. Colloques Internationaux du CNRS, 23–27.
Doroshkevich, A. G., and Novikov, I. D. 1964. Mean density of radiation in the metagalaxy and certain problems in relativistic cosmology. Soviet Physics Doklady, 9 (Aug.), 111.Google Scholar
Doroshkevich, A. G., and Shandarin, S. F. 1974. Galaxy formation in nonlinear gravitational-instability theory. Soviet Ast., 18 (Aug.), 24.Google Scholar
Doroshkevich, A. G., Zel'dovich, Y. B., and Syunyaev, R. A. 1978. Fluctuations of the microwave background radiation in the adiabatic and entropic theories of galaxy formation. Soviet Ast., 22 (Oct.), 523–528. Translation Astronomicheskii Zhurnal, 55, (Sept.-Oct.) 1978, 913–921.Google Scholar
Doroshkevich, A. G., Kotok, E. V., Poliudov, A. N. et al. 1980. Two-dimensional simulation of the gravitational system dynamics and formation of the large-scale structure of the Universe. MNRAS, 192 (Aug.), 321–337.Google Scholar
Dreicer, H. 1964. Kinetic theory of an electron-photon gas. Physics of Fluids, 7 (May), 735–753.Google Scholar
Drever, R. W. P. 1977. Gravitational wave astronomy. QJRAS, 18 (Mar.), 9–27.Google Scholar
Droste, J. 1914. On the field of a single centre in Einstein's theory of gravitation. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences, 17, 998–1011.Google Scholar
Droste, J. 1917. The field of a single centre in Einstein's theory of gravitation, and the motion of a particle in that field. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences, 19, 197–215.Google Scholar
Duerbeck, H. W., and Seitter, W. C. 2001. In Hubble's Shadow: Early Research on the Expansion of the Universe. In 100 Years of Observational Astronomy and Astrophysics, ed. Sterken, C. and Hearnshaw, J.B., Chapter 15, p. 231, VUB.
Dunham, Jr. T., and Adams, W. S. 1939. New interstellar lines in the ultra-violet spectrum. Publications of the American Astronomical Society, 9. 5.Google Scholar
Dunkley, J., Spergel, D. N. et al. 2009. Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Bayesian estimation of cosmic microwave background polarization maps. ApJ, 701 (Aug.), 1804–1813.Google Scholar
Dünner, R., Hasselfield, M., Marriage, T. A.,et al. 2013. The Atacama Cosmology Telescope: Data characterization and mapmaking. ApJ, 762 (Jan.), 10.Google Scholar
Dyson, F. J. 1969. The efficiency of energy release in gravitational collapse. Comments on Astrophysics and Space Physics, 1 (May), 75.Google Scholar
Dyson, F. W., Eddington, A. S., and Davidson, C. 1920. A determination of the deflection of light by the Sun's gravitational field, from observations made at the total eclipse of May 29, 1919. Royal Society of London Philosophical Transactions Series A, 220, 291–333.Google Scholar
Eckart, C. 1940. The thermodynamics of irreversible processes. III. Relativistic theory of the simple fluid. Physical Review, 58 (Nov.), 919–924.Google Scholar
Eddington, A.S. 1923. The Mathematical Theory of Relativity. Reprinted 1960, 1965 edn. Cambridge Univerity Press.
Eddington, A.S. 1926. The Internal Constitution of the Stars. Cambridge Univerity Press.
Edwards, D. 1972. Exact expressions for the properties of the zero-pressure Friedmann models. MNRAS, 159, 51.Google Scholar
Efron, B., and Morris, C. 1977. Stein's paradox in statistics. Sci. Am., 236, 119–127.Google Scholar
Efstathiou, G., Sutherland, W. J., and Maddox, S. J. 1990. The cosmological constant and cold dark matter. Nature, 348 (Dec.), 705–707.Google Scholar
Egan, C. A., and Lineweaver, C. H. 2010. A larger estimate of the entropy of the Universe. ApJ, 710 (Feb.), 1825–1834.Google Scholar
Ehlers, J. 1993. Contributions to the relativistic mechanics of continuous media. General Relativity and Gravitation, 25 (Dec.), 1225–1266. Translated by Ellis, G.F.R. (with Dunsby, P.K.S.).Google Scholar
Einasto, J. 2014. Dark Matter and the Cosmic Web Story. World Scientific Publishing Co.
Einasto, J., Einasto, M., Gottlöber, S. et al. 1997. A 120-Mpc periodicity in the three-dimensional distribution of galaxy superclusters. Nature, 385 (Jan.), 139–141.Google Scholar
Einstein, A. 1905. Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322, 891–921.Google Scholar
Einstein, A. 1914. Die formale Grundlage der allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 1030–1085. English translation: http://einsteinpapers.press.princeton.edu/vol6-trans/42?ajax.
Einstein, A. 1915. Die Feldgleichungen der Gravitation. Königlich Preussische Akademie der Wissenschaften, 844–847. English translation: http://einsteinpapers.press.princeton.edu/vol6-trans/129.
Einstein, A. 1915. Erklarung der Perihelionbewegung der Merkur aus der allgemeinen Relativitatstheorie. Sitzungsber. preuss.Akad. Wiss., 47, 831–839. English translation: http://einsteinpapers.press.princeton.edu/vol6-trans/125?ajax.Google Scholar
Einstein, A. 1916a. Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 354, 769–822.Google Scholar
Einstein, A. 1916b. Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 688–696. English translation: http://einsteinpapers.press.princeton.edu/vol6-trans/214?ajax.
Einstein, A. 1917a. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 142–152.
Einstein, A. 1917b. Zur Quantentheorie der Strahlung. Physikalische Zeitschrift, 18, 121–128. English translation: http://astro1.panet.utoledo.edu/~ljc/einstein_ab.pdf.Google Scholar
Einstein, A. 1918a. Prinzipielles zur allgemeinen Relativitätstheorie. Annalen der Physik, 55, 241–244.Google Scholar
Einstein, A. 1918b. Über Gravitationswellen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 154–167. English translation: http://einsteinpapers.press.princeton.edu/vol7-trans/25?ajax.
Einstein, A. 1919. Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle? Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 349–356. English translation: http://einsteinpapers.press.princeton.edu/vol7-trans/96.Google Scholar
Einstein, A. 1922. Bemerkung zu arbeit von A. Friedman ‘Uber die Krümmung des Raumes’. Zeitschr. Phys., 11, 326.Google Scholar
Einstein, A. 1923. Notiz zu Bemerkung zu arbeit von A. Friedman ‘Uber die Krümmung des Raumes’. Zeitschr. Phys., 16, 228.Google Scholar
Einstein, A. 1931. Zum kosmologischen problem der allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 235–237.
Einstein, A., and de Sitter, W. 1932. On the relation between the expansion and the mean density of the Universe. Proceedings of the National Academy of Science, 18 (Mar.), 213–214. Contributions from the Mount Wilson Observatory, Vol. 3, pp.51–52.Google Scholar
Einstein, A., and Grossmann, M. 1913. Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Zeitschrift für Mathematik und Physik, 62, 1–38. Engish translation: http://www.pitt.edu/~jdnorton/teaching/GR&Grav_2007/pdf/Einstein_Entwurf_1913.pdf.Google Scholar
Einstein, A., and Straus, E. G. 1945. The influence of the expansion of space on the gravitation fields surrounding the individual stars. Reviews of Modern Physics, 17 (Apr.), 120–124.Google Scholar
Einstein, A., and Straus, E. G. 1946. Corrections and additional remarks to our paper: The influence of the expansion of space on the gravitation fields surrounding the individual stars. Reviews of Modern Physics, 18 (Jan.), 148–149.Google Scholar
Eisele, C., Nevsky, A. Y., and Schiller, S. 2009. Laboratory test of the isotropy of light propagation at the 10−17 level. Physical Review Letters, 103 (9), 090401.Google Scholar
Eisenhart, L.P. 1926. Riemannian Geometry. Princeton University Press.
Eisenstein, D., and White, M. 2004. Theoretical uncertainty in baryon oscillations. Phys. Rev. D, 70 (10), 103523.Google Scholar
Eisenstein, D. J., Zehavi, I. et al. 2005. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. ApJ, 633 (Nov.), 560–574.Google Scholar
Elfessi, A., and Reineke, D.M. 2001. A Bayesian look at classical estimation: The exponential distribution. Journal of Statistics Education, 9. http://www.amstat.org/publications/jse/v9nl/elfessi.htmlGoogle Scholar
Ellis, G. F. R. 1971. Relativistic cosmology. 104–182 of: Sachs, R. K. (ed),General Relativity and Cosmology. Republished as a ‘Golden Oldie’: Ellis (2009b).
Ellis, G. F. R. 2009a. Editorial note to: Pascual Jordan, Jürgen Ehlers and Wolfgang Kundt, Exact solutions of the field equations of the general theory of relativity. General Relativity and Gravitation, 41 (Sept.), 2179–2189.Google Scholar
Ellis, G. F. R. 2009b. Republication of: Relativistic cosmology. General Relativity and Gravitation, 41 (Mar.), 581–660.Google Scholar
Ellis, G. F. R. 2011. Inhomogeneity effects in cosmology. Classical and Quantum Gravity, 28(16), 164001.Google Scholar
Ellis, G. F. R., and Rothman, T. 1993. Lost horizons. American Journal of Physics, 61(Oct.), 883–893.Google Scholar
Ellis, G. F. R., and Rothman, T. 1995. Past light cone shape and refocusing in cosmology, A Response to Michael Rauch's ‘Comments on “Lost Horizons” ’ [Am. J. Phys. 63,87 (1995)]. American Journal of Physics, 63 (Jan.), 88–89.Google Scholar
Ellis, G. F. R., Maartens, R., and MacCallum, M. A. H. 2012. Relativistic Cosmology. Cambridge University Press.
Englert, F. 1999. Primordial inflation. arXiv hep-th, 9911185
Epstein, E. E. 1967. On the small-scale distribution at 3.4-mm wavelength of the reported 3 K background radiation. ApJ, 148 (June), L157.Google Scholar
Epstein, R.A. 1977. The Theory of Gambling and Statistical Logic. Academic Press.
Euler, L. 1757. Principes generaux du mouvement des fluides. Mémoires de l'académie des sciences de Berlin, 11, 274–315.Google Scholar
Everitt, C.W.F. et al. 2011. Gravity probe B: Final results of a space experiment to test general relativity. Phys. Rev. Lett., 106, 221101.Google Scholar
Ewen, H. I., and Purcell, E. M. 1951. Observation of a line in the galactic radio spectrum: Radiation from galactic hydrogen at 1,420 Mc./sec. Nature, 168 (Sept.), 356.Google Scholar
Exo-200 Collaboration. 2014. Search for Majorana neutrinos with the first two years of EXO-200 data. Nature, 510 (June), 229–234.
Fan, X. 2012. Observations of the first light and the epoch of reionization. Research in Astronomy and Astrophysics, 12 (Aug.), 865–890.Google Scholar
Faraoni, V. 2007. A common misconception about LIGO detectors of gravitational waves. General Relativity and Gravitation, 39 (May), 677–684.Google Scholar
Favre, A.J. 1965. The Equations of a Compressible Turbulent Gas. Annual Summary Report No.1. Institut de Mécanique Statistique de la Turbulence.
Fendt, W. A., Chluba, J., Rubiño-Martín, J. A., and Wandelt, B. D. 2009. RICO: A new approach for fast and accurate representation of the cosmological recombination history. ApJs, 181 (Apr.), 627–638.Google Scholar
Fermi, E., and Turkevich, A. 1949. Unpublished (classified document).
Ferris, T.A. 2003. Coming of Age in the Milky Way. Harper Perennial.
Feynman, R. P. 1965. Feynman Lectures on Physics. Addison Wesley.
Field, G. B., and Hitchcock, J. L. 1966a. Cosmic black-body radiation at λ =2.6 mm. Physical Review Letters, 16 (May), 817–818.Google Scholar
Field, G. B., and Hitchcock, J. L. 1966b. The radiation temperature of space at λ = 2.6 mm and the excitation of interstellar CN. ApJ, 146 (Oct.), 1.Google Scholar
Field, G. B., Herbig, G. H., and Hitchcock, J. 1966. Radiation temperature of space at λ = 2.6 mm. AJ, 71(Feb.), 161–161.Google Scholar
Field, G. B., Rees, M. J., and Sciama, D. W. 1969. The astronomical significance of mass loss by gravitational radiation. Comments on Astrophysics and Space Physics, 1 (Nov.), 187.Google Scholar
Field, G. B., Arp, H. C., and Bahcall, J. N. 1973. The Redshift Controversy. Benjamin.
Filippenko, A. V. 1997. Optical spectra of supernovae. ARA&A, 35, 309–355.Google Scholar
Fisher, R.A. 1922. On the mathematical foundations of theoretical statistics. Phil. Transactions Roy. Soc., 222A, 309–368.Google Scholar
Fisher, R.A. 1925. Theory of statistical estimation. Proc. Camb. Phil. Soc., 22, 700–725.Google Scholar
Fisher, R.A. 1925 (1st edition). Statistical Methods for Research Workers. Oliver and Boyd.
Fixsen, D. J. 2009. The temperature of the cosmic microwave background. ApJ, 707 (Dec.), 916–920.Google Scholar
Fixsen, D. J., Cheng, E. S., and Wilkinson, D. T. 1983. Large-scale anisotropy in the 2.7-K radiation with a balloon-borne maser radiometer at 24.5 GHz. Physical Review Letters, 50(Feb.), 620–622.Google Scholar
Fixsen, D. J., Cheng, E. S., Cottingham, D. A. et al. 1994. Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument. ApJ, 420 (Jan.), 445–449.Google Scholar
Fixsen, D. J., Cheng, E. S., Gales, J. M. et al. 1996. The cosmic microwave background spectrum from the full COBE FIRAS data set. ApJ, 473 (Dec.), 576.Google Scholar
Flesch, E. W. 2015. The half million quasars (HMQ) catalogue. Pub. Astron. Soc. Aus., 32(Mar.), 10.Google Scholar
Ford, L. H. 1987. Cosmological-constant damping by unstable scalar fields. Phys. Rev. D, 35(Apr.), 2339–2344.Google Scholar
Forger, M., and Römer, H. 2004. Currents and the energy-momentum tensor in classical field theory: a fresh look at an old problem. Annals of Physics, 309 (Feb.), 306–389.Google Scholar
Forward, R. L. 1978. Wideband laser-interferometer gravitational-radiation experiment. Phys. Rev. D, 17 (Jan.), 379–390.Google Scholar
Frankel, T. 2011. The Geometry of Physics: An Introduction. 3rd. edn. Cambridge University Press.
Freedman, W. L., and Madore, B. F. 2010. The Hubble constant. ARA&A, 48 (Sept.), 673–710.Google Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K. et al. 2001. Final results from the Hubble Space Telescope key project to measure the Hubble constant. ApJ, 553 (May), 47–72.Google Scholar
Freedman, W. L., Madore, B. F., Scowcroft, V. et al. 2012. Carnegie Hubble Program: A mid-infrared calibration of the Hubble constant. ApJ, 758 (Oct.), 24.Google Scholar
Frieden, B. R. 1972. Restoring with maximum likelihood and maximum entropy. Journal of the Optical Society of America (1917-1983), 62 (Apr.), 511.Google Scholar
Friedmann, A. 1922. On the curvature of space. Zeitschrift f. Phys., 10, 337. English translation in General Relativity and Gravitation 1999, 31, 1991.Google Scholar
Friedmann, A. 1924. On the possibility of a world with constant negative curvature of space. Zeitschrift f. Phys., 21, 326. English translation in General Relativity and Gravitation 1999, 31, 2001.Google Scholar
Frobenius, G. 1877. Ueber das Pfaffsche Problem. Journal für die reine und angewandte Mathematik, 82, 230–315.Google Scholar
Fujita, T., Kawasaki, M., Tada, Y., and Takesako, T. 2013. A new algorithm for calculating the curvature perturbations in stochastic inflation. JCAP, 1312 (Dec.), 36.Google Scholar
Fujita, T., Kawasaki, M., and Tada, Y. 2014. Non-perturbative approach for curvature perturbations in stochastic δ N formalism. JCAP, 10 (Oct.), 030.Google Scholar
Fukugita, M., and Peebles, P. J. E. 2004. The cosmic energy inventory. ApJ, 616 (Dec.), 643–668.Google Scholar
Futamase, T. 1988. Approximation scheme for constructing a clumpy Universe in general relativity. Physical Review Letters, 61 (Nov.), 2175–2178.Google Scholar
Futamase, T. 1989. An approximation scheme for constructing inhomogeneous Universes in general relativity. MNRAS, 237 (Mar.), 187–200.Google Scholar
Galama, T. J., Groot, P. J., van Paradijs, J. et al. 1997. GRB 970508. IAU Circ., 6655 (May), 1.
Gamow, G. 1928. Zur Quantentheorie des Atomkernes. Zeitschrift fur Physik, 51 (Mar.), 204–212.Google Scholar
Gamow, G. 1935. Nuclear transformations and the origin of the chemical elements. Ohio J. Sci., 35 (5), 406–414.Google Scholar
Gamow, G. 1938. Nuclear energy sources and stellar evolution. Physical Review, 53 (Apr.), 595–604.Google Scholar
Gamow, G. 1946. Expanding universe and the origin of elements. Physical Review, 70(Oct.), 572–573.Google Scholar
Gamow, G. 1948. The origin of elements and the separation of galaxies. Physical Review, 74(Aug.), 505–506.Google Scholar
Gamow, G. 1949. On relativistic cosmogony. Reviews of Modern Physics, 21 (July), 367–373.Google Scholar
Gamow, G. 1952. The Creation of the Universe. Viking Press, reprinted Dover 2004.
Gamow, G. 1954a. On the steady-state theory of the universe. AJ, 59 (June), 200.Google Scholar
Gamow, G. 1954b. Possible mathematical relation between deoxyribonucleic acid and proteins. Det Kong. Danske Viden. Selskab, Bio. Medd., 22 (3).Google Scholar
Gamow, G. 1956. The physics of the expanding Universe. Vistas in Astronomy, 2, 1726–1732.Google Scholar
Gamow, G., and Critchfield, C.L. 1949. Theory Of Atomic Nucleus And Nuclear Energy Sources. Clarendon Press.
Gamow, G., and Teller, E. 1938. The rate of selective thermonuclear reactions. Physical Review, 53 (Apr.), 608–609.Google Scholar
Gamow, G., and Teller, E. 1939a. On the origin of great nebulae. Physical Review, 55(Apr.), 654–657.Google Scholar
Gamow, G., and Teller, E. 1939b. The expanding Universe and the origin of the great nebulæ. Nature, 143 (Jan.), 116–117.Google Scholar
Gauss, C.F. 1827. Allgemeine Flächentheorie (Disquisitiones generales circa superficies curvas). Göttingen: Dieterich, translated into German 1828.
Gawiser, E., and Silk, J. 2000. The cosmic microwave background radiation. Phys. Rep., 333(Aug.), 245–267.Google Scholar
Gehrels, N. 1997. Use of ν Fν spectral energy distributions for multiwavelength astronomy. Nuovo Cimento B Serie, 112 (Jan.), 11–15.Google Scholar
Gelfand, A.E., and Smith, F.M. 1990. Sampling-based approaches to calculating marginal densities. J. Amer. Stat. Assoc., 85, 398–409.Google Scholar
Georgi, H., and Glashow, S. L. 1974. Unity of all elementary-particle forces. Physical Review Letters, 32 (Feb.), 438–441.Google Scholar
Gerber, P. 1898. Die Räumliche und zeitliche Ausbreitung der Gravitation. Zeitschrift für Mathematik und Physik, 43, 93–104.Google Scholar
Gerber, P. 1917. Die Fortplfanzungsgeschwindigkeit der Gravitation. Annalem der Physik, 52, 415–444.Google Scholar
Gibbons, G. W. 2003. Phantom matter and the cosmological constant. arXiv hep-th, 0302199
Gingerich, O. 1982. Obituary – Payne-Gaposchkin Cecilia. QJRAS, 23 (Mar.), 450.Google Scholar
Glover, S. C. O., Chluba, J., Furlanetto, S. R., Pritchard, J. R., and Savin, D. W. 2014. Chapter Three – Atomic, molecular, and optical physics in the early Universe: From recombination to reionization. Advances in Atomic Molecular and Optical Physics, 63(Aug.), 135–270. Early version available at http://user.astro.columbia.edu/~savin/papers/EarlyAMO121221.pdf (may be volatile link).Google Scholar
Goldschmidt, V. M. 1938. Geochemische Verteilungsgesetze der Elemente. IX Die Mengenverhältnisse der Elemente und der Atomarten. Dybwad, Oslo.
Goldstein, H., Poole, Jr. C.P., and Safko, J.L. 2001. Classical Mechanics. 3rd. edn. Addison-Wesley.
Goldstein, M. 2006. Subjective Bayesian analysis: Principles and practice. Bayesian Analysis, 1 (3), 403–420.Google Scholar
Golub, G. H., and van Loan, C. F. 1996. Matrix Computations. 3rd edn. Johns Hopkins University Press.
Gordon, C., Land, K., and Slosar, A. 2008. Determining the motion of the Solar system relative to the cosmic microwave background using Type Ia supernovae. MNRAS, 387(June), 371–376.Google Scholar
Gorenstein, M. V., and Smoot, G. F. 1981. Large-angular-scale anisotropy in the cosmic background radiation. ApJ, 244 (Mar.), 361–381.Google Scholar
Górski, K. M., Hinshaw, G., Banday, A. J. et al. 1994. On determining the spectrum of primordial inhomogeneity from the COBE DMR sky maps: Results of two-year data analysis. ApJ, 430 (Aug.), L89–L92.Google Scholar
Górski, K. M., Hivon, E., and Wandelt, B.D. 1999. Analysis issues for large CMB data sets. Page 37 of: Banday, A. J., Sheth, R. K., and da Costa, L. N. (eds), Evolution of Large Scale Structure : From Recombination to Garching, MPA–ESO Cosmology Conference.
Górski, K. M., Hivon, E., Banday, A. J. et al. 2005. HEALPix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere. ApJ, 622(Apr.), 759–771.Google Scholar
Górski, K. M., Wandelt, B. D., Hansen, F. K., Hivon, E., and Banday, A. J. 2010. The HEALPix Primer: version 2.15a. First published 1999 for version 1.0. [Online]. Available:http://healpix.jpl.nasa.gov/pdf/intro.pdf.
Gotay, M.J., and Marsden, J.E. 1992. Stress–energy–momentum tensors and the Belinfante–rosenfeld formula. Contemp. Math, 132, 367–392.Google Scholar
Gottlöber, S. 1994. Perturbations in the expanding universe. Page 415 of: Novello, M. (ed), Cosmology and Gravitation VII Brazilian School of Cosmology and Gravitation, Editions Frontières.
Gough, D. 2012. How oblate is the Sun? Science, 337 (Sept.), 1611.Google Scholar
Gould, R. J. 1984. The cross-section for double Compton scattering. ApJ, 285 (Oct.), 275–278.Google Scholar
Gradshteyn, I.S., and Ryzhik, I.M. 2007. Table of Integrals, Series, and Products. Academic Press; 7th edition.
Greason, M.R., Limon, M., Wollack, E., and the WMAP Science Working Group. 2012. Wilkinson Microwave Anisotropy Probe (WMAP): Nine–Year Explanatory Supplement. Greenbelt, MD: NASA/GSFC. Version 5. [Online]. Available: http://lambda.gsfc.nasa.gov/product/map/dr5/pub_papers/nineyear/supplement/WMAP_supplement.pdf.
Greenstein, J. L. 1963. Red-shift of the unusual radio source: 3C 48. Nature, 197 (Mar.), 1041–1042.Google Scholar
Griffiths, D. J., Proctor, T. C., and Schroeter, D. F. 2010. Abraham–Lorentz versus Landau–Lifshitz. American Journal of Physics, 78 (Apr.), 391–402.Google Scholar
Gull, S. F., and Daniell, G. J. 1978. Image reconstruction from incomplete and noisy data. Nature, 272 (Apr.), 686–690.Google Scholar
Gullstrand, A. 1922. Allgemeine Lösung des statischen Einkörperproblems in der Einstein-schen Gravitationstheorie. Arkiv. Mat. Astron. Fys., 16, 1–15.Google Scholar
Gunn, J. E., and Oke, J. B. 1975. Spectrophotometry of faint cluster galaxies and the Hubble diagram – an approach to cosmology. ApJ, 195 (Jan.), 255–268.Google Scholar
Gunn, J. E., and Peterson, B. A. 1965. On the density of neutral hydrogen in intergalactic space. ApJ, 142 (Nov.), 1633–1641.Google Scholar
Gunn, J. E., and Tinsley, B. M. 1975. An accelerating Universe. Nature, 257 (Oct.), 454–457.Google Scholar
Gurbatov, S. N., Saichev, A. I., and Shandarin, S. F. 1985a. A model for describing the development of the large-scale structure of the Universe. Soviet Physics Doklady, 30(Nov.), 921.Google Scholar
Gurbatov, S. N., Saichev, A. I., and Shandarin, S. F. 1985b. Model description of the development of the large-scale structure of the Universe. Akademiia Nauk SSSR Doklady, 285, 323–326.Google Scholar
Gurbatov, S. N., Saichev, A. I., and Shandarin, S. F. 1989. The large-scale structure of the Universe in the frame of the model equation of non-linear diffusion. MNRAS, 236 (Jan.), 385–402.Google Scholar
Gurbatov, S. N., Saichev, A. I., and Shandarin, S. F. 2012. Large-scale structure of the Universe. The Zel'dovich approximation and the adhesion model. Physics Uspekhi, 55(Mar.), 223–249.Google Scholar
Gursky, H., Kellogg, E., Murray, S. et al. 1971. A strong X-ray source in the Coma Cluster observed by UHURU. ApJ, 167 (Aug.), L81.Google Scholar
Gursky, H., Solinger, A., Kellogg, E. M. et al. 1972. X-ray emission from rich clusters of galaxies. ApJ, 173 (May), L99.Google Scholar
Guth, A. H. 1981. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D, 23 (Jan.), 347–356.Google Scholar
Guth, A. H., and Nomura, Y. 2012. What can the observation of nonzero curvature tell us? Phys. Rev. D, 86 (2), 023534.Google Scholar
Guth, A. H., and Pi, S.-Y. 1982. Fluctuations in the new inflationary universe. Physical Review Letters, 49 (Oct.), 1110–1113.Google Scholar
Guy, J., and The SALT2 Collaboration. 2007. SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators. A&A, 466 (Apr.), 11–21.Google Scholar
Hakkila, J., and Preece, R. D. 2011. Unification of pulses in long and short gamma-ray bursts: Evidence from pulse properties and their correlations. ApJ, 740 (Oct.), 104.Google Scholar
Halley, E. 1716. An account of several nebulae or lucid spots like clouds. Phil. Transactions, 29, 390.Google Scholar
Hamuy, M., Phillips, M. M., Suntzeff, N. B. et al. 1996. The Hubble diagram of the Calan/Tololo type IA supernovae and the value of HO. AJ, 112 (Dec.), 2398.Google Scholar
Hannestad, S. 2006. Neutrinos in cosmology. Progress in Particle and Nuclear Physics, 57(July), 309–323.Google Scholar
Hansen, L., Jorgensen, H. E., and Norgaard-Nielsen, H. U. 1987. Search for supernovae in distant clusters of galaxies. The Messenger, 47 (Mar.), 46–49.Google Scholar
Hansen, L., Jorgensen, H. E., Norgaard-Nielsen, H. U., Ellis, R. S., and Couch, W. J. 1989. A supernova at Z = 0.28 and the rate of distant supernovae. A&A, 211 (Feb.), L9–L11.Google Scholar
Harrison, E. 1991. Hubble spheres and particle horizons. ApJ, 383 (Dec.), 60–65.Google Scholar
Harrison, E. 1993. The redshift-distance and velocity-distance laws. ApJ, 403 (Jan.), 28–31.Google Scholar
Harrison, E. R. 1968a. Baryon inhomogeneity in the early Universe. Physical Review, 167(Mar.), 1170–1175.Google Scholar
Harrison, E. R. 1968b. The early Universe. Physics Today, 21, 31.Google Scholar
Harrison, E. R. 1970. Fluctuations at the threshold of classical cosmology. Phys. Rev. D, 1(May), 2726–2730.Google Scholar
Harrison, E. R. 1995. Mining energy in an expanding Universe. ApJ, 446 (June), 63.Google Scholar
Harrison, E.R. 1989. Darkness at Night: A Riddle of the Universe. Harvard University Press.
Harrison, E. R. 2000. Cosmology. The science of the Universe. 2nd edn. Cambridge University Press.
Hasenöhrl, F. 1908. Zur Thermodynamik bewegter Systeme. Sitzungsberichte der mathematisch-naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaften, Wien, 116, 1391–1405. https://en.wikisource.org/wiki/Translation:On_the_Thermodynamics_of_MovingSystems.Google Scholar
Haugbølle, T., Hannestad, S., Thomsen, B. et al. 2007. The velocity field of the local universe from measurements of type Ia supernovae. ApJ, 661 (June), 650–659.Google Scholar
Hauser, M. G., and Peebles, P. J. E. 1973. Statistical analysis of catalogs of extragalactic objects. II. The Abell catalog of rich clusters. ApJ, 185 (Nov.), 757–786.Google Scholar
Hawking, S. W. 1966. Perturbations of an expanding Universe. ApJ, 145 (Aug.), 544.Google Scholar
Hawking, S. W. 1982. The development of irregularities in a single bubble inflationary Universe. Physics Letters B, 115 (Sept.), 295–297.Google Scholar
Hawking, S. W., and Ellis, G. F. R. 1975. The Large-scale Structure of Space-Time. 2nd edn. Cambridge University Press.
Hayashi, C. 1950. Proton-neutron concentration ratio in the expanding Universe at the stages preceding the formation of the elements. Progress of Theoretical Physics, 5 (Mar.), 224–235.Google Scholar
Hayashi, C., and Nishida, M. 1956. Formation of light nuclei in the expanding Universe. Progress of Theoretical Physics, 16 (Dec.), 613–624.Google Scholar
Hazard, C., Mackey, M. B., and Shimmins, A. J. 1963. Investigation of the radio source 3C 273 by the method of lunar occultations. Nature, 197 (Mar.), 1037–1039.Google Scholar
Heath, D. J. 1977. The growth of density perturbations in zero pressure Friedmann– Lemaître Universes. MNRAS, 179 (May), 351–358.Google Scholar
Heath, D. J. 1981. The growth of density perturbations in the Lemaître Universe. Ap&SS, 77(June), 59–64.Google Scholar
Heath, D. J. 1989. Closed-form expressions for the rate of growth of perturbations in zero-pressure Friedmann–Lemaître Universes. Ap&SS, 154 (Apr.), 207–216.Google Scholar
Heath, D. J. 1991. Gravitational instability. Ap&SS, 175 (Jan.), 35–50.Google Scholar
Heckmann, O., and Schücking, E. 1955. Bemerkungen zur Newtonschen Kosmologie. I. Mit 3 Textabbildungen in 8 Einzeldarstellungen. ZAp, 38, 95.Google Scholar
Heinrich, J. 2003a. Benefits of Blind Analysis Techniques. [Online]. Available:. http://www-cdf.fnal.gov/physics/statistics/notes/cdf6576_blind.pdf.
Heinrich, J. 2003b. Pitfalls of goodness-of-fit from likelihood. Page 52 of: Lyons, L., Mount, R., and Reitmeyer, R. (eds), Statistical Problems in Particle Physics, Astrophysics, and Cosmology. SLAC, Stanford, CA.
Heller, M. 1985. Friedman's cosmological views. Acta Cosmologica, 13, 65.Google Scholar
Heller, M. 1989. Mach's predictions and relativistic cosmology. Acta Cosmologica, 16, 47.Google Scholar
Heller, M. 2010. Ultimate Explanations of the Universe. Springer.
Henry, P. S. 1971. Isotropy of the 3 K background. Nature, 231 (June), 516–518.Google Scholar
Henry, R. C. 1999. Diffuse background radiation. ApJl, 516 (May), L49–L52.Google Scholar
Herschel, J. F. W. 1864. Catalogue of nebulae and clusters of stars. Royal Society of London Philosophical Transactions Series I, 154, 1–137.Google Scholar
Herschel, W. 1789. Catalogue of a second thousand of new nebulae and clusters of stars; with a few introductory remarks on the construction of the heavens. Royal Society of London Philosophical Transactions Series I, 79, 212–255.Google Scholar
Herschel, W. 1800. Catalogue of 500 new nebulae, nebulous stars, planetary nebulae, and clusters of stars; with remarks on the construction of the heavens. [Abstract]. Royal Society of London Proceedings Series I, 1, 98–100.Google Scholar
Hertzsprung, E. 1913. Über die räumliche Verteilung der Veränderlichen vom δ CepheiTypus. Astronomische Nachrichten, 196 (Nov.), 201.Google Scholar
Hewitt, A., and Burbidge, G. 1980. A revised optical catalog of quasi-stellar objects. ApJs, 43(May), 57–158.Google Scholar
Hewitt, A., and Burbidge, G. 1993. A revised and updated catalog of quasi-stellar objects. ApJs, 87 (Aug.), 451–947.Google Scholar
Hilbert, D. 1915. Die Grundlagen der Physik. Konigl. Gesell. d. Wiss. Göttingen, Nachr. Math.-Phys. Kl., 395–407.Google Scholar
Hinshaw, G., Larson, D. et al. 2013. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results. ApJs, 208 (Oct.), 19.Google Scholar
Hinshaw, G., Weiland, J. L. et al. 2009. Five-year Wilkinson Microwave Anisotropy Probe observations: Data processing, sky maps, and basic results. ApJs, 180 (Feb.), 225–245.Google Scholar
Hobson, M. P., Bridle, S. L., and Lahav, O. 2002. Combining cosmological data sets: hyperparameters and Bayesian evidence. MNRAS, 335 (Sept.), 377–388.Google Scholar
Hobson, M.P., Efstathiou, G.P., and Lasenby, A.N. 2006. General Relativity: An Introduction for Physicists. Cambridge University Press.
Hogg, D. W. 1999. Distance measures in cosmology. arXiv astro-ph, 9905116
Hoskin, M.A. 1976. The ‘Great Debate’: What Really Happened. Journal for the History of Astronomy, 7, 169.Google Scholar
Hou, Z., Reichardt, C. L., Story, K. T. et al. 2012. Constraints on cosmology from the cosmic microwave background power spectrum of the 2500-square degree SPT-SZ survey. arXiv astro-ph, 1212.6267
Hoyle, F. 1946. The synthesis of the elements from hydrogen. MNRAS, 106, 343.Google Scholar
Hoyle, F. 1947. On the formation of heavy elements in stars. Proceedings of the Physical Society, 59 (Nov.), 972–978.Google Scholar
Hoyle, F. 1948. A new model for the expanding Universe. MNRAS, 108, 372–382.Google Scholar
Hoyle, F. 1950. Book reviews. The Observatory, 70 (Oct.), 194–197.Google Scholar
Hoyle, F. 1954. On nuclear reactions occurring in very hot stars.I. the synthesis of elements from carbon to nickel. ApJS, 1 (Sept.), 121.Google Scholar
Hoyle, F., and Narlikar, J. V. 1962. Mach's principle and the creation of matter. Royal Society of London Proceedings Series A, 270 (Nov.), 334–339.Google Scholar
Hoyle, F., and Narlikar, J. V. 1963. Mach's principle and the creation of matter. Royal Society of London Proceedings Series A, 273 (Apr.), 1–11.Google Scholar
Hoyle, F., and Narlikar, J. V. 1964. On the avoidance of singularities in C-field cosmology. Royal Society of London Proceedings Series A, 278 (Apr.), 465–478.Google Scholar
Hoyle, F., and Sandage, A. 1956. The second-order term in the redshift-magnitude relation. PASP, 68 (Aug.), 301.Google Scholar
Hoyle, F., and Tayler, R. J. 1964. The mystery of the cosmic helium abundance. Nature, 203(Sept.), 1108–1110.Google Scholar
Hu, W., and Sugiyama, N. 1995. Anisotropies in the cosmic microwave background: an analytic approach. ApJ, 444 (May), 489–506.Google Scholar
Hu, W., and Sugiyama, N. 1996. Small-scale cosmological perturbations: an analytic approach. ApJ, 471 (Nov.), 542.Google Scholar
Hu, W., Hedman, M. M., and Zaldarriaga, M. 2003. Benchmark parameters for CMB polarization experiments. Phys. Rev. D, 67 (4), 043004.Google Scholar
Hubble, E. 1929. A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Science, 15 (Mar.), 168–173.Google Scholar
Hubble, E., and Humason, M. L. 1931. The velocity–distance relation among extra-galactic nebulae. Contributions from the Mount Wilson Observatory / Carnegie Institution of Washington, 427, 1–38.Google Scholar
Hubble, E., and Tolman, R. C. 1935. Two methods of investigating the nature of the nebular redshift. ApJ, 82 (Nov.), 302.Google Scholar
Hubble, E. P. 1925. Cepheids in spiral nebulae. Popular Astronomy, 33, 252–255.Google Scholar
Hubble, E. P. 1926. Extragalactic nebulae. ApJ, 64 (Dec.), 321–369.Google Scholar
Hubble, E. P. 1953. The law of red shifts (George Darwin Lecture). MNRAS, 113, 658.Google Scholar
Hulse, R. A., and Taylor, J. H. 1975. Discovery of a pulsar in a binary system. ApJ, 195(Jan.), L51–L53.Google Scholar
Humason, M. L. 1931. The large apparent velocities of extra-galactic nebulae. Leaflet of the Astronomical Society of the Pacific, 1, 149.Google Scholar
Humason, M. L. 1936a. Is the Universe expanding? Leaflet of the Astronomical Society of the Pacific, 2, 161.Google Scholar
Humason, M. L. 1936b. The apparent radial velocities of 100 extra-galactic nebulae. ApJ, 83(Jan.), 10.Google Scholar
Humason, M. L., Mayall, N. U., and Sandage, A. R. 1956. Redshifts and magnitudes of extragalactic nebulae. AJ, 61, 97–162.Google Scholar
Hung, C-L., Gurarie, V., and Chin, C. 2013. From cosmology to cold atoms: Observation of Sakharov oscillations in a quenched atomic superfluid. Science, 341, 1213–1215.Google Scholar
Hunt, B.R. 1977. Bayesian methods in nonlinear digital image restoration. IEEE Trans. Computers, C-26, 219–229.Google Scholar
Hütsi, G. 2005. Acoustic oscillations in the SDSS luminous red galaxy sample power spectrum. arXiv astro-ph, 0507678
Hütsi, G. 2006a (May). Cosmic sound: Measuring the Universe with baryonic acoustic oscillations. PhD thesis, Max Planck Institut für Astrophysik. Available from https//edoc.ub.uni-muenchen.de/5400/.
Hütsi, G. 2006b. Power spectrum of the SDSS luminous red galaxies: constraints on cosmological parameters. A&A, 459 (Nov.), 375–389.Google Scholar
Huygens, C. 1690. Traitè de la lumière. Leyden.
IBM Archive – Exhibits. 2013 (Jan.). Brunsviga Calculating Machine. Exhibition of 19th century calculating machines at http://www-03.ibm.com/ibm/history/exhibits/attic3/attic3_044.html.
Icke, V., and van de Weygaert, R. 1987. Fragmenting the universe. A&A, 184 (Oct.), 16–32.Google Scholar
Isaacson, R. A. 1968a. Gravitational radiation in the limit of high frequency. I. The linear approximation and geometrical optics. Physical Review, 166 (Feb.), 1263–1271.Google Scholar
Isaacson, R. A. 1968b. Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor. Physical Review 166 (Feb.), 1272–1279.Google Scholar
Israel, W., and Stewart, J. M. 1979. Transient relativistic thermodynamics and kinetic theory. Annals of Physics, 118 (Apr.), 341–372.Google Scholar
Israel, W., and Stewart, J. M. 1980. Progress in relativistic thermodynamics and electrodynamics of continuous media. Page 491 of: Held, A. (ed), General Relativity and Gravitation II, Vol. 2, Plenum Press.
Jackson, J.D. 1998. Classical Electrodynamics. 3rd. edn. John Wiley & Sons.
Jacobs, K. C. 1968. Spatially homogeneous and Euclidean cosmological models with shear. ApJ, 153 (Aug.), 661.Google Scholar
James, W., and Stein, C. 1961. Estimation with quadratic loss. Proc. Fourth Berkeley Symp. on Math. Statist. and Prob., Vol. 1 (Univ. of Calif. Press, 1961), 1, 361–379.Google Scholar
Janssen, M. 2007. What did Einstein know and when did he know it? A Besso memo dated August 1913. Pages 785–838 of: Janssen, M., Norton, J.D., Renn, J., Sauer, T., and Stachel, J. (eds), The Genesis of General Relativity. Boston Studies in the Philosophy of Science, Vol. 250.2. Springer.
Janssen, M., Norton, J.D., Renn, J., Sauer, T., and Stachel, J. 2007a. A commentary on the notes on gravity in the Zurich notebook. Pages 489–714 of: Janssen, M., Norton, J.D., Renn, J., Sauer, T., and Stachel, J. (eds), The Genesis of General Relativity. Boston Studies in the Philosophy of Science, Vol. 250.2. Springer.
Janssen, M., Norton, J.D., Renn, J., Sauer, T., and Stachel, J. 2007b. The Zurich notebook. Pages 313–487 of: Janssen, M., Norton, J.D., Renn, J., Sauer, T., and Stachel, J. (eds), The Genesis of General Relativity. Boston Studies in the Philosophy of Science, Vol. 250.1. Springer.
Jarrett, T. 2004. Large scale structure in the local Universe – The 2MASS galaxy catalog. Publications of the Astronomical Society of Australia, 21, 396–403.Google Scholar
Jauncey, D. L. 1975. Radio surveys and source counts. ARA&A, 13, 23–44.Google Scholar
Jaynes, E. T. 2003. Probability Theory: The Logic of Science (Vol 1). Cambridge University Press.
Jeffreys, H. 1961. Theory of Probability. 3rd edn. Oxford Classic Texts in the Physical Sciences. Oxford University Press.
Jensen, W. B. 2007. The origin of the s, p, d, f orbital labels. Journal of Chemical Education, 84 (May), 757.Google Scholar
Jöeveer, M., Einasto, J., and Tago, M. 1977. The cell structure of the Universe. Tartu Astrofüüs. Obs. Preprint, Nr. A-1, 45 p., 1 (July).Google Scholar
Johnstone Stoney, D. 1881. On the physical units of nature. Phil. Mag. Ser. 5, 11 (69), 381–390. Paper read before Royal Dublin Soc. Feb. 10, 1881.Google Scholar
Jones, B. J. T. 1973. Cosmic turbulence and the origin of galaxies. ApJ, 181 (Apr.), 269–294.Google Scholar
Jones, B. J. T. 1976. The origin of galaxies: A review of recent theoretical developments and their confrontation with observation. Reviews of Modern Physics, 48 (Jan.), 107–145.Google Scholar
Jones, B. J. T., and Mazure, A. 1996. Galaxy cluster luminosity functions and the distances to clusters. Page 197 of: Coles, P., Martinez, V., and Pons-Borderia, M.-J. (eds), Mapping, Measuring, and Modelling the Universe. Astronomical Society of the Pacific Conference Series, Vol. 94.
Jones, B. J. T., and Steigman, G. 1978. Distortions of the cosmic radiation spectrum in baryon-symmetric cosmologies. MNRAS, 183 (June), 585–594.Google Scholar
Jones, B. J. T., and Wyse, R. F. G. 1985. The ionisation of the primeval plasma at the time of recombination. A&A, 149 (Aug.), 144–150.Google Scholar
Jones, B. J. T., Martínez, V. J., Saar, E., and Trimble, V. 2004. Scaling laws in the distribution of galaxies. Reviews of Modern Physics, 76 (Oct.), 1211–1266.Google Scholar
Jones, J., and Jones, B. 1970. Physical sciences: Distribution of antimatter in the Universe. Nature, 227 (Aug.), 475–476.Google Scholar
Jones, W. C. et al. (BOOMERANG). 2006. A measurement of the angular power spectrum of the CMB temperature anisotropy from the 2003 Flight of BOOMERANG. ApJ, 647(Aug.), 823–832.Google Scholar
Jonsson, R. M. 2005. Visualizing curved spacetime. American Journal of Physics, 73(Mar.), 248–260.Google Scholar
Jordan, P., Ehlers, J., and Kundt, W. 2009. Republication of: Exact solutions of the field equations of the general theory of relativity. General Relativity and Gravitation, 41(Sept.), 2191–2280.Google Scholar
Joseph, D. D., and Preziosi, L. 1989. Heat waves. Reviews of Modern Physics, 61 (Jan.), 41–73.Google Scholar
Kaluza, T. 1921. Zum Unitätsproblem in der Physik. Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.), 966–972.
Kamionkowski, M., and Knox, L. 2003. Aspects of the cosmic microwave background dipole. Phys. Rev. D, 67 (6), 063001.Google Scholar
Kamionkowski, M., Kosowsky, A., and Stebbins, A. 1997. Statistics of cosmic microwave background polarization. Phys. Rev. D, 55 (June), 7368–7388.Google Scholar
Kasai, M. 1992. Construction of inhomogeneous Universes which are Friedmann–Lemaître–Robertson–Walker on average. Physical Review Letters, 69 (Oct.), 2330–2332.Google Scholar
Kasner, E. 1925a. An algebraic solution of the Einstein equations. Trans. Am. Math. Soc., 27, 101–105.Google Scholar
Kasner, E. 1925b. Solutions of the Einstein equations involving functions of only one variable. Trans. Am. Math. Soc., 27, 155–162.Google Scholar
Kass, R.E., and Raferty, A.E. 1995. Bayes factors. J. Amer. Stat. Assoc., 90, 773–795.Google Scholar
Kay, S. 1993. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory. Prentice Hall.
Kay, S. 1998. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory. Prentice Hall.
Kay, S. 2013. Fundamentals of Statistical Signal Processing, Volume III: Practical Algorithm Development. Prentice Hall.
Kayser, R., Helbig, P., and Schramm, T. 1997. A general and practical method for calculating cosmological distances. A&A, 318 (Feb.), 680–686.Google Scholar
Kazanas, D. 1980. Dynamics of the universe and spontaneous symmetry breaking. ApJ, 241(Oct.), L59–L63.Google Scholar
Keynes, J.M. 1921. A Treatise on Probability. London MacMillan & Co.
Kharbediya, L. I. 1976. Some exact solutions of the Friedmann equations with the cosmological term. Soviet Astronomy, 20 (Dec.), 647.Google Scholar
Kharbediya, L. I. 1983. Solutions to the Friedmann Equations with the lambda term for a dust radiation Universe. Soviet Astronomy, 27 (Aug.), 380.Google Scholar
Kholupenko, E. E., Ivanchik, A. V., Balashev, S. A., and Varshalovich, D. A. 2011. Advanced three-level approximation for numerical treatment of cosmological recombination. MNRAS, 417 (Nov.), 2417–2425.Google Scholar
Kiang, T. 1995. The Cosmological Redshift as Indicators of Distance and Velocity. Irish Astronomical Journal, 22 (July).Google Scholar
Kiang, T. 1997. Horizon and the question whether galaxies that recede faster than light are observable. Chin. Astron. Astrophys., 21 (Feb.), 1–18.Google Scholar
Kiang, T. 2003. Can we observe galaxies that recede faster than light? A more clear-cut answer. Chin. Astron. Astrophys., 27 (July), 247–251.Google Scholar
Kiang, T. 2004. Time, distance, velocity, redshift: A brief history of changes in basic physical concept. Chin. Astron. Astrophys., 28 (July), 273–286.Google Scholar
Kinney, W. H. 2002. Cosmology, inflation, and the physics of nothing. In: Prosper, H.B., and Danilov, M. (eds), Lectures given at the NATO Advanced Study Institute on Techniques and Concepts of High Energy Physics, St. Croix, USVI (2002). NATO Science Series Vol. 123. NATO.
Kipper, A. Y. 1952. Teoriya dvojnogo izlucheniya svetovyh kvantov dlya atoma vodoroda. The theory of duel rediation light rays of the hydrogen atom. publications of the Tartu Astrofizica Observatory, 32, 63–93. In Russian. There are two articles in this one paper.Google Scholar
Kirshner, R. P. 2010. Foundations of Supernova Cosmology. In Ruiz-Lapuente, P. (ed), Dark Energy: Observational and Theoretical Approaches. Cambridge University Press. p.151.
Klein, O. 1926. Quantentheorie und fünfdimensionale Relativitätstheorie. Zeits. f. Physik A, 895–906.
Klypin, A. A., Sazhin, M. V., Strukov, I. A., and Skulachev, D. P. 1987. Limits on microwave background anisotropies – the Relikt experiment. Soviet Astronomy Letters, 13(Apr.), 104.Google Scholar
Klypin, A. A., Strukov, I. A., and Skulachev, D. P. 1992. The Relikt missions – Results and prospects for detection of the microwave background anisotropy. MNRAS, 258 (Sept.), 71–81.Google Scholar
Knight, J. W., Sturrock, P. A., and Switzer, P. 1976. The distribution of redshifts of quasars and related objects. ApJ, 203 (Jan.), 286–290.Google Scholar
Kodama, H., and Sasaki, M. 1984. Cosmological perturbation theory. Progress of Theoretical Physics Supplement, 78, 1.Google Scholar
Kofman, L., Pogosian, D., and Shandarin, S. 1990. Structure of the Universe in the two-dimensional model of adhesion. MNRAS, 242 (Jan.), 200–208.Google Scholar
Kogut, A., Spergel, D. N., Barnes, C. et al. 2003. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Temperature–polarization correlation. ApJS, 148(Sept.), 161–173.Google Scholar
Kolb, E. W., and Turner, M. S. 1990. The Early Universe, Addison-Wesley.
Kolb, E.W. 2006. Report of the Dark Energy Task Force. HEPAP. http://science.energy.gov/~/media/hep/pdf/files/pdfs/kolb_hepap_07_06.pdf
Kolb, E.W. 2012. Community Dark Energy Task Force Report. [Online]. Available: http://science.energy.gov/~/media/hep/hepap/pdf/20120827/Kolb_HEPAP_8_12_revised.pdf.
Komar, A. 1956. Necessity of singularities in the solution of the field equations of general relativity. Physical Review, 104 (Oct.), 544–546.Google Scholar
Komatsu, E., Smith, K. M., and WMAP collaboration. 2010. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological interpretation. arXiv astro-ph, 1001.4538
Kompaneets, A.S. 1957. The establishment of thermal equilibrium between quanta and electrons. Sov. Phys. – JETP, 4, 730.Google Scholar
Kottler, F. 1918. Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie. Annalen der Physik, 361, 401–462.Google Scholar
Kovac, J. 2002. The Degree Angular Scale Interferometer (DASI) in Antarctica has detected the polarization of the cosmic microwave background. Univ. Chicago Press Release. [Online]. Available: http://www-news.uchicago.edu/releases/photos/polarization/polmap_press.jpg.
Kovac, J. M., Leitch, E. M., Pryke, C. et al. 2002. Detection of polarization in the cosmic microwave background using DASI. Nature, 420 (Dec.), 772–787.Google Scholar
Kowal, C. T. 1968. Absolute magnitudes of supernovae. AJ, 73 (Dec.), 1021–1024.Google Scholar
Kowalski, M., Rubin, D. et al. 2008. Improved cosmological constraints from new, old, and combined supernova data sets. ApJ, 686 (Oct.), 749–778.Google Scholar
Kragh, H. 2000. Max Planck: the reluctant revolutionary. Physics World, 13, 31–35.Google Scholar
Kragh, H. 2008. The origin and earliest reception of Big-Bang cosmology. Publications de l'Observatoire Astronomique de Beograd, 85 (Oct.), 7–16.Google Scholar
Kragh, H., and Smith, R. W. 2003. Who discovered the expanding Universe? History of Science, 41, 141–162.Google Scholar
Kragh, H.S. 2007. Conceptions of Cosmos: From Myths to the Accelerating Universe: A History of Cosmology. Oxford University Press.
Krasinski, A. 1997. Inhomogeneous Cosmological Models. Cambridge University Press.
Kristian, J., Sandage, A., and Westphal, J. A. 1978. The extension of the Hubble diagram. II – New redshifts and photometry of very distant galaxy clusters – First indication of a deviation of the Hubble diagram from a straight line. ApJ, 221 (Apr.), 383–394.Google Scholar
Kuhn, J. R., Bush, R., Emilio, M., and Scholl, I. F. 2012. The precise solar shape and its variability. Science, 337 (Sept.), 1638.Google Scholar
Lahav, O., and Liddle, A. R. 2014. The cosmological parameters 2014. arXiv astro-ph, 1401.1389
Lahav, O., and Suto, Y. 2004. Measuring our Universe from galaxy redshift surveys. Living Reviews in Relativity, 7 (July), 8.Google Scholar
Lambert, S. B., and Le Poncin-Lafitte, C. 2011. Improved determination of γ by VLBI. A&A, 529 (May), A70.Google Scholar
Landau, L.D., and Lifshitz, E.M. 1980. The Classical Theory of Fields,. 4th edn. Course of Theoretical Physics Series, Vol. 2. Butterworth–Heinemann.
Landau, L.D., and Lifshitz, E.M. 1987. Fluid Mechanics. 2nd edn. Butterworth– Heinemann Ltd.
Langlois, D. 2010 (Mar.). Inflation and cosmological perturbations. Pages 1–57 of: Wolschin, G. (ed), Lecture Notes in Physics, Springer Verlag, Vol. 800.
Larmor, J. 1897. On a dynamical theory of the electric and luminiferous medium, Part 3, Relations with material media. Phil. Trans. Roy. Soc., 190, 205–300.Google Scholar
Larmor, J. 2012. Aether and Matter. Forgotten Books.
Layzer, D. 1954. On the significance of Newtonian cosmology. AJ, 59 (Aug.), 268.Google Scholar
Layzer, D. 1964. The formation of stars and galaxies: Unified hypotheses. ARA&A, 2, 341.Google Scholar
Layzer, D. 1971. Cosmogonic processes. Pages 151–233 of: Brandeis Summer Institute 1968: Astrophysics and general relativity, Vol. 2, pp. 151–233.Google Scholar
Layzer, D. 1975. Galaxy Clustering: its Description and its Interpretation. The University of Chicago Press. Page 665.
Layzer, D., and Burke, J. R. 1972. The weak-field approximation and the range of gravitational force. General Relativity and Gravitation, 3 (June), 121–121.Google Scholar
Leavitt, H. S. 1908. 1777 variables in the Magellanic Clouds. Annals of Harvard College Observatory, 60, 87–108.Google Scholar
Leavitt, H. S., and Pickering, E. C. 1912. Periods of 25 variable stars in the small Magellanic Cloud. Harvard College Observatory Circular, 173 (Mar.), 1–3.Google Scholar
Lehmkuhl, D. 2011. Mass Energy Momentum: Only there because of spacetime? Brit. J. Phil. Sci., 62, 453–488.Google Scholar
Lemaître, G. 1925. Note on de Sitter's Universe. M.I.T Journal Math.and Phys., 4, 188–192.Google Scholar
Lemaître, G. 1927. Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annales de la Société Scientifique de Bruxelles, 47, 49–59.Google Scholar
Lemaître, G. 1931a. Expansion of the Universe, A homogeneous Universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. MNRAS, 91 (Mar.), 483–490.Google Scholar
Lemaître, G. 1931b. The expanding universe. MNRAS, 91 (Mar.), 490–501.Google Scholar
Lemaître, G. 1933. Schwarzschild's solution (actual title unknown). Annales de la Societe Scientifique de Bruxelles, Ser. A, 53, 51–85.Google Scholar
Lemaître, G. 1958. Instability in the expanding Universe and its astronomical implications. Ricerche Astronomiche, 5, 475.Google Scholar
Lemaître, G. 1961. Exchange of galaxies between clusters and field. AJ, 66 (Dec.), 603–606.Google Scholar
Letessier, J., and Rafelski, J. 2005. Hadrons and Quark-Gluon Plasma. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Cambridge Univerity Press.
Lewis, H. R. 1973. Einstein's derivation of Planck's radiation law. American Journal of Physics, 41 (Jan.), 38–44.Google Scholar
Li, A. 2003. Cosmic needles versus cosmic microwave background radiation. ApJ, 584(Feb.), 593–598.Google Scholar
Li, M.-H., Wang, P., Chang, Z., and Zhao, D. 2014. CosmoMC installation and running guidelines. arXiv astro-ph, 1409.1354
Liddle, A. R. 1989. Power-law inflation with exponential potentials. Physics Letters B, 220(Apr.), 502–508.Google Scholar
Liddle, A. R., and Lyth, D. H. 1992. COBE, gravitational waves, inflation and extended inflation. Physics Letters B, 291 (Oct.), 391–398.Google Scholar
Lifshitz, E. M. 1946. On the gravitational stability of the expanding Universe. J. Phys. (Moscow), 10, 116.Google Scholar
LIGO Scientific Collaboration, and Virgo Collaboration. 2016. Observing gravitational-wave transient GW150914 with minimal assumptions. arXiv astro-ph, 1602.03843
Lilje, P. B., Yahil, A., and Jones, B. J. T. 1986. The tidal velocity field in the local supercluster. ApJ, 307 (Aug.), 91–96.Google Scholar
Limber, D. N. 1953. The analysis of counts of the extragalactic nebulae in terms of a fluctuating density field. ApJ, 117 (Jan.), 134.Google Scholar
Limber, D. N. 1954. The analysis of counts of the extragalactic nebulae in terms of a fluctuating density field. II. ApJ, 119 (May), 655.Google Scholar
Limber, D. N. 1957. Analysis of counts of the extragalactic nebulae in terms of a fluctuating density field. III. ApJ, 125 (Jan.), 9.Google Scholar
Linde, A. 2014. Inflationary cosmology after Planck 2013. arXiv hep-th, 1402.0526
Linde, A. D. 1982a. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B, 108 (Feb.), 389–393.Google Scholar
Linde, A. D. 1982b. Scalar field fluctuations in the expanding universe and the new inflationary universe scenario. Physics Letters B, 116 (Oct.), 335–339.Google Scholar
Linde, A. D. 1983. Chaotic inflation. Physics Letters B, 129 (Sept.), 177–181.Google Scholar
Linder, E. V. 1988a. Cosmological tests of generalized Friedmann models. A&A, 206(Nov.), 175–189.Google Scholar
Linder, E. V. 1988b. Light propagation in generalized Friedmann Universes. A&A, 206(Nov.), 190–198.Google Scholar
Linder, E. V. 2003. Exploring the expansion history of the Universe. Physical Review Letters, 90 (9), 091301.Google Scholar
Linder, E. V. 2005. Cosmic growth history and expansion history. Phys. Rev. D, 72 (4), 043529.Google Scholar
Linder, E. V. 2009. Extending the gravitational growth framework. Phys. Rev. D, 79 (6), 063519.Google Scholar
Linder, E. V., and Jenkins, A. 2003. Cosmic structure growth and dark energy. MNRAS, 346(Dec.), 573–583.Google Scholar
Lineweaver, C. H. 1997. The CMB dipole: the most recent measurement and some history. Pages 69–75 of: Bouchet, F. R., Gispert, R., Guiderdoni, B., and Trân Thanh Vân, J. (eds), Microwave Background Anisotropies. Editions Frontières.
Lineweaver, C. H., and Davis, T. M. 2005. Misconceptions about the Big Bang. Scientific American, 292 (3), 030000–45.Google Scholar
Lineweaver, C. H., Tenorio, L., Smoot, G. F. et al. 1996. The dipole observed in the COBE DMR 4 year data. ApJ, 470 (Oct.), 38.Google Scholar
Livio, M. 2011. Lost in translation: Mystery of the missing text solved. Nature, 479 (Nov.), 171–173.Google Scholar
Longair, M. S. 1966. On the interpretation of radio source counts. MNRAS, 133, 421.Google Scholar
Longair, M. S., and Einasto, J. 1978. The Large Scale Structure of the Universe: symposium no. 79 held in Tallinn, Estonia, U.S. S.R., September 12-16, 1977. Reidel.
Longair, M. S., and Sunyaev, R. A. 1969. The origin of the X-ray background. Astrophys. Lett., 4, 65.Google Scholar
Lorentz, H.-A. 1904. Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proc. Acad. Amsterdam, 6, 809.Google Scholar
Lorentz, H.A., Einstein, A., Minkowski, H., and Weyl, H. 2000. The Principle of Relativity. Dover Publications Inc.
Lovelock, D. 1972. The four-dimensionality of space and the Einstein tensor. Journal of Mathematical Physics, 13, 874–876.Google Scholar
Lubin, P., Villela, T., Epstein, G., and Smoot, G. 1985. A map of the cosmic background radiation at 3 millimeters. ApJ, 298 (Nov.), L1–L5.Google Scholar
Lubin, P. M., and Smoot, G. F. 1981. Polarization of the cosmic background radiation. ApJ, 245(Apr.), 1–17.Google Scholar
Lucchin, F., and Matarrese, S. 1985. Power-law inflation. Phys. Rev. D, 32 (Sept.), 1316–1322.Google Scholar
Lundmark, K. 1924. The determination of the curvature of space-time in de Sitter's world. MNRAS, 84 (June), 747–770.Google Scholar
Lundmark, K. 1925. Nebulæ, The motions and the distances of spiral. MNRAS, 85 (June), 865.Google Scholar
Lundmark, K. 1956. On metagalactic distance-indicators. Vistas in Astronomy, 2, 1607–1619.Google Scholar
Luzum, B. et al. 2011. The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for fundamental astronomy. Celestial Mechanics and Dynamical Astronomy, 110 (Aug.), 293–304.Google Scholar
Lynden-Bell, D., Katz, J., and Bicak, J. 1995. Mach's principle from the relativistic constraint equations. MNRAS, 272 (Jan.), 150–160.Google Scholar
Lyth, D. H., and Liddle, A. R. 2009. The Primordial Density Perturbation. Cambridge University Press.
Ma, C.-P., and Bertschinger, E. 1995. Cosmological perturbation theory in the synchronous and conformal Newtonian gauges. ApJ, 455 (Dec.), 7.Google Scholar
Maartens, R. 1996. Causal thermodynamics in relativity. arXiv astro-ph, 9609119
MacCallum, M. A. H. 2006 (June). Finding and using exact solutions of the Einstein equations. Pages 129–143 of: Mornas, L., and Diaz Alonso, J. (eds), A Century of Relativity Physics: ERE 2005. American Institute of Physics Conference Series, Vol. 841.
Mach, E., and McCormack, T. b. T. J. 2013. The Science of Mechanics. Cambridge University Press.
MacKay, D.J.C. 1992. Bayesian interpolation. Neural Computation, 4, 415–447.Google Scholar
MacKay, D.J.C. 2003. Information Theory, Inference and Learning Algorithms. Cambridge University Press.
MacTavish, C. J. et al. 2006. Cosmological parameters from the 2003 flight of BOOMERANG. ApJ, 647 (Aug.), 799–812.Google Scholar
Maddox, S. J., Efstathiou, G., Sutherland, W. J., and Loveday, J. 1990. Galaxy correlations on large scales. MNRAS, 242 (Jan.), 43P–47P.Google Scholar
Maddox, S. J., Efstathiou, G., and Sutherland, W. J. 1996. The APM galaxy survey – III. An analysis of systematic errors in the angular correlation function and cosmological implications. MNRAS, 283 (Dec.), 1227–1263.Google Scholar
Madore, B. F., and Freedman, W. L. 1991. The Cepheid distance scale. PASP, 103 (Sept.), 933–957.Google Scholar
Madore, B. F., and Freedman, W. L. 1998. Calibration of the extragalactic distance scale. Page 263 of: Aparicio, A., Herrero, A., and Sánchez, F. (eds), Stellar Astrophysics for the Local Group: VIII Canary Islands Winter School of Astrophysics.
Malik, K. A., and Wands, D. 2009. Cosmological perturbations. Phys. Rep., 475 (May), 1–51.Google Scholar
Mangano, G., Miele, G., Pastor, S. et al. 2005. Relic neutrino decoupling including flavour oscillations. Nuclear Physics B, 729 (Nov.), 221–234.Google Scholar
Margot, J.-L., and Giorgini, J. D. 2009 (May). Probing general relativity with radar astrometry in the inner solar system. Page 701 of: IAU Symposium æ261, American Astronomical Society, Vol. 261.Google Scholar
Martin, J. 2015. The observational status of cosmic inflation after Planck. arXiv astro-ph, 1502.05733
Martin, J., and Musso, M. 2005. Stochastic quintessence. Phys. Rev. D, 71 (6), 063514.Google Scholar
Martin, J., Ringeval, C., and Vennin, V. 2014. Encyclopædia Inflationaris. Physics of the Dark Universe, 5 (Dec.), 75–235.Google Scholar
Martínez-González, E. 2009. Cosmic microwave background anisotropies: The power spectrum and beyond. Pages 79–120 of: Martínez, V. J., Saar, E., Martínez-González, E., and Pons-Bordería, M.-J. (eds), Data Analysis in Cosmology. Lecture Notes in Physics, Berlin Springer Verlag, Vol. 665.
Martínez-González, E., and Sanz, J. L. 1990. CMB anisotropies generated by cosmic voids and great attractors. MNRAS, 247 (Dec.), 473–478.Google Scholar
Martínez-González, E., Sanz, J. L., and Silk, J. 1990. Anisotropies in the microwave sky due to nonlinear structures. ApJ, 355 (May), L5–L9.Google Scholar
Mashhoon, B., and Wesson, P. 2007. An embedding for general relativity and its implications for new physics. General Relativity and Gravitation, 39 (Sept.), 1403–1412.Google Scholar
Massey, R., Rhodes, J., Ellis, R. et al. Dark matter maps reveal cosmic scaffolding. Nature, 445(Jan.), 286–290.
Mather, J. C., and Boslough, J. 1996. The Very First Light: the True Inside Story of the Scientific Journey Back to the Dawn of the Universe. Basic Books.
Mather, J. C., and the COBE collaboration. 1990. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite. ApJ, 354 (May), L37–L40.Google Scholar
Mathews, G. J., Kajino, T., and Shima, T. 2005. Big Bang nucleosynthesis with a new neutron lifetime. Phys. Rev. D, 71 (2), 021302.Google Scholar
Matsuda, T., Sato, H., and Takeda, H. 1971. Dissipation of primordial turbulence and thermal history of the Universe. Progress of Theoretical Physics, 46 (Aug.), 416–432.Google Scholar
Matthews, T. A., and Sandage, A. R. 1963. Optical identification of 3c 48, 3c 196, and 3c286 with stellar objects. ApJ, 138 (July), 30.Google Scholar
Mattig, W. 1958. Über den Zusammenhang zwischen Rotverschiebung und scheinbarer Helligkeit. Astronomische Nachrichten, 284 (May), 109.Google Scholar
Maxwell, J. C. 1865. A dynamical theory of the electromagnetic field. Phil. Trans. Roy. Soc. Lond., 155, 459–512.Google Scholar
Maxwell, J.C. 1954. Treatise on Electricity and Magnetism, Vol. 1. 3rd. edn. Dover Publications.
McCrea, W. H. 1928. A note on Dr. P. A. Taylor's paper ‘The equilibrium of the calcium chromosphere,’. MNRAS, 88 (June), 729.Google Scholar
McCrea, W. H. 1929. The hydrogen chromosphere. MNRAS, 89 (Mar.), 483.Google Scholar
McCrea, W. H. 1951. Relativity theory and the creation of matter. Royal Society of London Proceedings Series A, 206 (May), 562–575.Google Scholar
McCrea, W. H. 1964. Continual creation. MNRAS, 128, 335.Google Scholar
McCrea, W. H. 1984. The Influence of Radio Astronomy on Cosmology, pp. 365–384 of Sullivan, W. T. (ed.) The Early Years of Radio Astronomy – Reflections Fifty Years after Jansky's Discovery. Cambridge University Press.
McCrea, W. H., and McVittie, G. C. 1930. Relativity: On the contraction of the Universe. MNRAS, 91 (Nov.), 128–133.Google Scholar
McCrea, W. H., and Milne, E. A. 1934. Newtonian Universes and the curvature of space. The Quarterly Journal of Mathematics, 5, 73–80.Google Scholar
McCrea, W.H. 1950. The Steady State Theory of the expanding Universe. Endeavour, 9, 3–10.Google Scholar
McKellar, A. 1940. Evidence for the molecular origin of some hitherto unidentified interstellar lines. PASP, 52 (June), 187.Google Scholar
McKellar, A. 1941. Molecular lines from the lowest states of diatomic molecules composed of atoms probably present in interstellar space. Publications of the Dominion Astrophysical Observatory Victoria, 7 (Mar.), 251–272.Google Scholar
McVittie, G. C. 1931. The problem of n bodies and the expansion of the Universe. MNRAS, 91(Jan.), 274.Google Scholar
McVittie, G. C. 1932. Condensations in an expanding universe. MNRAS, 92 (Apr.), 500–518.Google Scholar
McVittie, G. C. 1933. The mass-particle in an expanding universe. MNRAS, 93 (Mar.), 325–339.Google Scholar
McVittie, G. C. 1965a. General Relativity and Cosmology. Chapman and Hall.
McVittie, G. C. 1965b. Some consequences of large redshifts. ApJ, 142 (Nov.), 1637.Google Scholar
Meerburg, P. D., Hložek, R., Hadzhiyska, B., and Meyers, J. 2015. Multiwavelength constraints on the inflationary consistency relation. Phys. Rev. D, 91 (10), 103505.Google Scholar
Messier, C. 1784. Catalogue des nebuleuses et des amas d'etoiles. Connaissance des Temps, 238–282.
Mészáros, P. 2006. Gamma-ray bursts. Reports on Progress in Physics, 69 (Aug.), 2259–2321.Google Scholar
Metzger, M. R., Djorgovski, S. G., Kulkarni, S. R. et al. 1997. Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997. Nature, 387 (June), 878–880.Google Scholar
Meyer, D. M., and Jura, M. 1984. The microwave background temperature at 2.64 and 1.32 millimeters. ApJ, 276 (Jan.), L1–L3.Google Scholar
Michie, R. W. 1969. On the growth of condensations in an expanding Universe. Contributions from the Kitt Peak National Observatory, 440.Google Scholar
Milgrom, M. 1983. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. ApJ, 270 (July), 365–370.Google Scholar
Mills, B. Y., and Slee, O. B. 1957. A preliminary survey of radio sources in a limited region of the sky at the wavelength of 3.5 m. Australian Journal of Physics, 10 (Mar.), 162–194.Google Scholar
Mills, B. Y., Slee, O. B., and Hill, E. R. 1958. A catalogue of radio sources between declinations +10° and − 20°. Australian Journal of Physics, 11 (Sept.), 360.Google Scholar
Mills, B. Y., Slee, O. B., and Hill, E. R. 1960. A catalogue of radio sources between declinations −20° and − 50°. Australian Journal of Physics, 13 (Dec.), 676.Google Scholar
Mills, B. Y., Slee, O. B., and Hill, E. R. 1961. A catalogue of radio sources between declinations −50° and − 80°. Australian Journal of Physics, 14 (Dec.), 497.Google Scholar
Milne, E. A. 1933. Note on H. P. Robertson's paper on world-structure. Zeitschrift fur Astrophysik, 7, 180.Google Scholar
Milne, E. A. 1935. Relativity, Gravitation and World-Structure. Oxford, The Clarendon press, 1935.
Minkowski, H. 1908. Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttinngen, Mathematisch-Physikalische Klasse, 53–111. English title: The fundamental equations for electromagnetic processes in moving bodies.
Minkowski, H. 1909. Raum und Zeit. Jahresberichte der Deutschen MathematikerVereinigung, 18, 75–88. Engish title: Space and time. A lecture delivered before the Naturforscher Versammlung (Congress of Natural Philosophers) at Cologne – (21st September, 1908).Google Scholar
Minkowski, R. 1941. Spectra of supernovae. PASP, 53 (Aug.), 224.Google Scholar
Misner, C. W. 1968. The isotropy of the Universe. ApJ, 151 (Feb.), 431.Google Scholar
Misner, C. W. 1969. Mixmaster Universe. Physical Review Letters, 22 (May), 1071–1074.Google Scholar
Misner, C. W., and Sharp, D. H. 1965. Spherical gravitational collapse with energy transport by radiative diffusion. Physics Letters, 15 (Apr.), 279–281.Google Scholar
Misner, C. W., and Wheeler, J. A. 1957. Classical physics as geometry. Annals of Physics, 2(Dec.), 525–603.Google Scholar
Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1973. Gravitation. W.H. Freeman.
Mohr, P. J., Taylor, B. N., and Newell, D. B. 2012. CODATA recommended values of the fundamental physical constants: 2010. Reviews of Modern Physics, 84 (Oct.), 1527– 1605.Google Scholar
Molina, R., Nunez, J., Cortijo, F. J., and Mateos, J. 2001. Image restoration in astronomy: a Bayesian perspective. IEEE Signal Processing Magazine, 18 (Mar.), 11–29.Google Scholar
Monthly Notices Obituary. 1854. Report of the Thirty-fourth Annual General Meeting of the Society. MNRAS, 14 (Feb.), 97.
Møller, C. 1967. Relativistic thermodynamics – A strange incident in the history of physics. Kongl. Danske Vid. Selsk. mat-fys. Medd, 36, 1–27.Google Scholar
Mortlock, D. J., Warren, S. J. et al. 2011. A luminous quasar at a redshift of z = 7.085. Nature, 474 (June), 616–619.Google Scholar
Moschella, U. 2005. The de Sitter and anti-de Sitter sightseeing tour. [Online]. Available: http://www.bourbaphy.fr/moschella.pdf.
Moss, G. E., Miller, L. R., and Forward, R. L. 1971. Photon-noise-limited laser transducer for gravitational antenna. Appl. Opt., 10, 2495–2498.Google Scholar
Muller, C. A., and Oort, J. H. 1951. Observation of a line in the galactic radio spectrum: The interstellar hydrogen line at 1420 Mc/sec, and an estimate of galactic rotation. Nature, 168 (Sept.), 357–358.Google Scholar
Müller, I. 1967a. On the entropy inequality. Arch. Ration. Mech. An., 26 (2), 118–141.Google Scholar
Müller, I. 1967b. Zum Paradoxon der Wärmeleitungstheorie. Zeitschrift fur Physik, 198(Aug.), 329–344.Google Scholar
Muller, S., Beelen, A., Black, J. H. et al. 2013. A precise and accurate determination of the cosmic microwave background temperature at z = 0.89. A&A, 551 (Mar.), A109.Google Scholar
Nakahata, M. 2011. Astroparticle physics with solar neutrinos. Proceeding of the Japan Academy, Series B, 87, 215–229.Google Scholar
Nanos, Jr. G. P. 1979. Polarization of the blackbody radiation at 3.2 centimeters. ApJ, 232(Sept.), 341–347.Google Scholar
Narlikar, J.V. 2011. Machs principle. Resonance, 16 (4), 310–320.Google Scholar
NASA-LAMBDA Website. 2012. LAMBDA – Data Products: CMB Experiments. [Online]. Available:. http://lambda.gsfc.nasa.gov/product/expt/.
Neill, J. D., Hudson, M. J., and Conley, A. 2007. The peculiar velocities of local type Ia supernovae and their impact on cosmology. ApJ, 661 (June), L123–L126.Google Scholar
Netterfield, C. B. et al. 2002. A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background. ApJ, 571 (June), 604– 614.Google Scholar
Neumann, C. 1874. Über die den Kräften elecktrodynamischen Usprungs zuzuschreibenden Elementargesetz. Abh. Math.- Phys. Classe der Köngl. Sächsischen Gessellschaft de Wissenschaften, 10, 417–524.Google Scholar
Neumann, C. 1896. Allgemeine Untersuchungen über das Newton'sche Princip der Fern-wirkungen mit besonderer Rücksicht auf die elektrische Wirkungen. Leipzig: Teubner.
Newman, E., and Penrose, R. 1962. An approach to gravitational radiation by a method of spin coefficients. Journal of Mathematical Physics, 3 (May), 566–578.Google Scholar
Newman, E., and Penrose, R. 1963. Errata: an approach to gravitational radiation by a method of spin coefficients. Journal of Mathematical Physics, 4 (July), 998–998.Google Scholar
Newton, I. 1726. The Principia: Mathematical Principles of Natural Philosophy (3rd edition). Royal Society of London.
Newton, I. 1999. The Principia: Mathematical Principles of Natural Philosophy. University of California Press.
Neyman, J. 1937. Outline of a theory of statistical estimation based on the classical theory of probability. Phil. Trans. Roy Soc. A, 236 (767), 333–380.Google Scholar
Neyman, J., and Scott, E.L. 1948. Consistent estimates based on partially consistent observations. Econometrica, 16, 1–32.Google Scholar
Neyman, J., and Scott, E.L. 1960. Correction for bias introduced by a transformation of variables. Ann. Math. Stat., 31 (3), 643–655.Google Scholar
Noether, E. 1918. Invariante Variationsprobleme. Nachr. D. Knig. Gesellsch. D. Wiss. Zu Gttingen, Math-phys. Klasse, 235–257.
Noonan, T. W. 1984. The gravitational contribution to the stress-energy tensor of a medium in general relativity. General Relativity and Gravitation, 16 (Nov.), 1103–1118.Google Scholar
Nordström, G. 1914. Über die Möglichkeit, das elektromagnetische Feld und das Gravitationsfeld zu vereinigen. Physikalische Zeitschrift, 15, 504–506.Google Scholar
Norgaard-Nielsen, H. U., Hansen, L., Jorgensen, H. E., Aragon Salamanca, A., and Ellis, R. S. 1989. The discovery of a type IA supernova at a redshift of 0.31. Nature, 339 (June), 523–525.Google Scholar
North, J. D. 1965. The Measure of the Universe. A History of Modern Cosmology. Clarendon Press.
North, J.D. 2008. Cosmos: An Illustrated History of Astronomy and Cosmology. University Of Chicago Press.
Norton, J.D. 1999. The cosmological woes of Newtonian gravitation theory. Pages 271–322 of: Goenner, H., Renn, J., Ritter, J., and Sauer, T. (eds), The Expanding Worlds of General Relativity: Einstein Studies, Vol. 7. Birkhauser.
Novikov, I. D. 1964. On the evolution of a semiclosed world. Soviet Ast., 7 (Feb.), 587.Google Scholar
Nussbaumer, H., and Bieri, L. 2011. Who discovered the expansion of the Universe? The Observatory, 131 (Dec.), 394–398.Google Scholar
O'Hagan, A., and Luce, B.R. 2003. A Primer on Bayesian Statistics in Health Economics and Outcomes Research. Tech. rept. Centre for Bayesian Statistics in Health Economics, University of Sheffield.
Ohanian, H. C., and Ruffini, R. 2013. Gravitation and Spacetime. 3rd. edn. Cambridge University Press.
Olive, D.J. 2012. A Course in Statistical Theory. David Olive.
Olive, K. A., and Particle Data Group. 2014. Review of particle physics. Chinese Physics C, 38 (9), 090001.Google Scholar
Olson, D. W. 1976. Density perturbations in cosmological models. Phys. Rev. D, 14 (July), 327–331.Google Scholar
Omnès, R. 1969. Possibility of matter–antimatter separation at high temperature. Physical Review Letters, 23 (July), 38–40.Google Scholar
Oort, J. H., Kerr, F. J., and Westerhout, G. 1958. The galactic system as a spiral nebula (Council Note). MNRAS, 118, 379.Google Scholar
O'Raifeartaigh, C., and McCann, B. 2014. Einstein's cosmic model of 1931 revisited: an analysis and translation of a forgotten model of the Universe. European Physical Journal H, 39 (Feb.), 63–85.Google Scholar
O'Raifeartaigh, C., McCann, B., Nahm, W., and Mitton, S. 2014. Einstein's steady-state theory: an abandoned model of the cosmos. European Physical Journal H, 39 (Sept.), 353.Google Scholar
Osterbrock, D. E., and Rogerson, Jr. J. B. 1961. The helium and heavy-element content of gaseous-nebulae and the Sun. PASP, 73 (Apr.), 129.Google Scholar
Ostriker, J. P., and Tremaine, S. D. 1975. Another evolutionary correction to the luminosity of giant galaxies. ApJ, 202 (Dec.), L113–L117.Google Scholar
Overduin, J. M., and Wesson, P. S. 1997. Kaluza–Klein gravity. Phys. Rep., 283 (Apr.), 303–378.Google Scholar
Overduin, J. M., and Wesson, P. S. 2004. Dark matter and background light. Phys. Rep., 402(Nov.), 267–406.Google Scholar
Padgett, M. 2014. A new twist on the Doppler shift. Physics Today, 67 (2), 58–59.Google Scholar
Padmanabhan, T. 2010. Gravitation: Foundations and Frontiers. Cambridge University Press.
Page, L. et al. 2003. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Interpretation of the TT and TE angular power spectrum peaks. ApJs, 148 (Sept.), 233–241.Google Scholar
Painlevé, P. 1921a. La gravitation dans la mécanique de Newton et dans la mécanique d'Einstein. Comptes Rendus Acad. Sci. (Paris), 173, 873–886.Google Scholar
Painlevé, P. 1921b. La mécanique classique et la thorie de la relativité. Comptes Rendus Acad. Sci. (Paris), 173, 677–680.Google Scholar
Pais, A. 1982. Subtle is the Lord: The Science and the Life of Albert Einstein. 1st edition, Oxford University Press.
Panofsky, W.K.H., and Phillips, M. 2005. Classical Electricity and Magnetism: Second Edition. Dover Publications.
Papoulis, A., and Pillai, S.U. 2002. Probability, Random Variables and Stochastic Processes. McGraw-Hill Higher Education. 4th edition.
Paranjape, A. 2008. Backreaction of cosmological perturbations in covariant macroscopic gravity. Phys. Rev. D, 78 (6), 063522.Google Scholar
Paranjape, A. 2009 (June). The Averaging Problem in Cosmology. PhD Thesis, 2009.
Paranjape, A., and Singh, T. P. 2008. Structure formation, backreaction and weak gravitational fields. JCAP, 3 (Mar.), 23.Google Scholar
Pâris, I., Petitjean, P. et al. 2014. The Sloan Digital Sky Survey quasar catalog: tenth data release. A&A, 563 (Mar.), A54.Google Scholar
Partridge, R. B. 1988. Review Article: The angular distribution of the cosmic background radiation. Reports on Progress in Physics, 51 (May), 647–706.Google Scholar
Partridge, R. B. 1991. Fluctuations in the cosmic microwave background: The first measurements. Pages 149–176 of: Blanchard, A., Celnikier, L., Lachieze-Rey, M., and Tran Thanh Van, J. (eds), Physical Cosmology. Editions Frontièrs.
Partridge, R. B. 1992. Recent observations of the cosmic microwave background and their cosmological implication. Page 97 of: de Carvalho, R. R. (ed), Cosmology and Large-Scale Structure in the Universe. Astronomical Society of the Pacific Conference Series, Vol. 24.
Partridge, R. B., and Wilkinson, D. T. 1967. Isotropy and homogeneity of the Universe from measurements of the cosmic microwave background. Physical Review Letters, 18(Apr.), 557–559.Google Scholar
Partridge, R.B. 2007. 3K: The cosmic microwave background radiation. Cambridge Astrophysics (Book 25). Cambridge University Press. First published 1995, reissued 2007.
Patton, C. M., and Wheeler, J. A. 1975. Is physics legislated by cosmogony. Pages 538–605 of: Isham, C. J., Penrose, R., and Sciama, D. W. (eds), Quantum Gravity. Oxford University Press.
Pawsey, J. L. 1951. Observation of a line in the galactic radio spectrum: The interstellar hydrogen line at 1420 Mc/sec, and an estimate of galactic rotation. Nature, 168 (Sept.), 358.Google Scholar
Payne, C. H. 1925a. Astrophysical data bearing on the relative abundance of the elements. Proceedings of the National Academy of Science, 11 (Mar.), 192–198.Google Scholar
Payne, C. H. 1925b. Stellar atmospheres; a contribution to the observational study of high temperature in the reversing layers of stars. PhD thesis, Radcliffe College.
Payne, W. T. 1952. Elementary spinor theory. American Journal of Physics, 20 (May), 253–262.Google Scholar
Payne, W. T. 1955. Spinor theory and relativity. I. American Journal of Physics, 23 (Nov.), 526–536.Google Scholar
Payne, W. T. 1959. Spinor theory and relativity. II. American Journal of Physics, 27 (May), 318–328.Google Scholar
Peacock, J. A. 1999. Cosmological Physics. Cambridge University Press.
Pearson, K. 1895. Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material. Phil. Trans. Roy. Soc. A: Math., Phys. and Eng. Sci., 186, 343–414.Google Scholar
Peebles, P. 1971. Physical Cosmology. Princeton Series in Physics. Princeton University Press.
Peebles, P. J. 1966a. Primeval helium abundance and the primeval fireball. Physical Review Letters, 16 (Mar.), 410–413.Google Scholar
Peebles, P. J., and Wilkinson, D. T. 1968. Comment on the anisotropy of the primeval fireball. Physical Review, 174 (Oct.), 2168–2168.Google Scholar
Peebles, P. J. E. 1965. The black-body radiation content of the Universe and the formation of galaxies. ApJ, 142 (Nov.), 1317.Google Scholar
Peebles, P. J. E. 1966b. Primordial helium abundance and the primordial fireball. II. ApJ, 146(Nov.), 542.Google Scholar
Peebles, P. J. E. 1967. The gravitational instability of the Universe. ApJ, 147 (Mar.), 859.Google Scholar
Peebles, P. J. E. 1968. Recombination of the primeval plasma. ApJ, 153 (July), 1.Google Scholar
Peebles, P. J. E. 1973. Statistical analysis of catalogs of extragalactic objects. I. Theory. ApJ, 185 (Oct.), 413–440.Google Scholar
Peebles, P. J. E. 1993. Principles of Physical Cosmology. Princeton University Press.
Peebles, P. J. E. 2014. Discovery of the Hot Big Bang: What happened in 1948. European Physical Journal H, 39 (Apr.), 205–223.Google Scholar
Peebles, P. J. E., and Yu, J. T. 1970. Primeval adiabatic perturbation in an expanding Universe. ApJ, 162 (Dec.), 815.Google Scholar
Peebles, P.J.E. 1980. Large-Scale Structure of the Universe. Princeton Series in Physics. Princeton University Press.
Peebles, P.J.E., Page, Jr. L.A., and Partridge, R.B. 2009. Finding the Big Bang. Cambridge University Press.
Penrose, R. 1960. A spinor approach to general relativity. Annals of Physics, 10 (June), 171–201.Google Scholar
Penzias, A. A., and Wilson, R. W. 1965. A measurement of excess antenna temperature at 4080 Mc/s. ApJ, 142 (July), 419–421.Google Scholar
Pequignot, D., Petitjean, P., and Boisson, C. 1991. Total and effective radiative recombination coefficients. A&A, 251 (Nov.), 680–688.Google Scholar
Percival, W. J. et al. 2001. The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe. MNRAS, 327 (Nov.), 1297–1306.Google Scholar
Perl, M. L. et al. 1975. Evidence for anomalous lepton production in e+e− annihilation. Physical Review Letters, 35 (Dec.), 1489–1492.Google Scholar
Perley, D. A. et al. 2009. GRB 080503: Implications of a naked short gamma-ray burst dominated by extended emission. ApJ, 696 (May), 1871–1885.Google Scholar
Perlick, V. 2010. Gravitational lensing from a spacetime perspective. arXiv gr-qc, 1010.3416
Perlmutter, S. 2003. Supernovae, dark energy, and the accelerating Universe. Physics Today, 56 (4), 53–62.Google Scholar
Perlmutter, S. 2012. Nobel Lecture: Measuring the acceleration of the cosmic expansion using supernovae. Reviews of Modern Physics, 84 (July), 1127–1149.Google Scholar
Perlmutter, S. et al. 1998. Discovery of a supernova explosion at half the age of the universe. Nature, 391 (Jan.), 51.Google Scholar
Perlmutter, S. et al. (Supernova Cosmology Project). 1995. A supernova at z = 0.458 and implications for measuring the cosmological deceleration. ApJ, 440 (Feb.), L41–L44.Google Scholar
Perlmutter, S. et al. (Supernova Cosmology Project). 1997. Measurements of the cosmological parameters and from the first seven supernovae at z ≥ 0.35. ApJ, 483(July), 565–581.Google Scholar
Perlmutter, S. et al. (Supernova Cosmology Project). 1999. Measurements of omega and lambda from 42 high-redshift supernovae. ApJ, 517 (June), 565–586.Google Scholar
Petrosian, V., Bouvier, A., and Ryde, F. 2009. Gamma-ray bursts as cosmological tools. arxiv astro-ph, 0909.5051.
Phillips, M. M. 1993. The absolute magnitudes of Type IA supernovae. ApJ, 413 (Aug.), L105–L108.Google Scholar
Phillips, M. M., Lira, P., Suntzeff, N. B. et al. 1999. The reddening-free decline rate versus luminosity relationship for type IA supernovae. AJ, 118 (Oct.), 1766–1776.Google Scholar
Pina, R. K., and Puetter, R. C. 1993. Bayesian image reconstruction – The pixon and optimal image modeling. PASP, 105 (June), 630–637.Google Scholar
Pirani, F. A. 1957. Invariant formulation of gravitational radiation theory. Physical Review, 105(Feb.), 1089–1099.Google Scholar
Planck, M. 1900a. Über eine Verbesserung der Wienschen Spektralgleichung. Verhandl. Dtsch. phys. Ges., 2, 202–204.Google Scholar
Planck, M. 1900b. Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum. Verhandl. Dtsch. phys. Ges., 2, 237.Google Scholar
Planck, M. 1901. Ueber das Gesetz der Energieverteilung im Normalspectrum. Annalen der Physik, 309, 553–563.Google Scholar
Planck, M. 1907. Zur Dynamik bewegter System. Sitzungsberichte der Kniglich-Preussischen Akademie der Wissenschaften, Berlin, 29, 542–570. https://archive.org/details/sitzungsbericht396klasgoog https://en.wikisource.org/wiki/Translation:On_the_Dynamics_of_Moving_Systems.Google Scholar
Planck Collaboration ES. 2013. Planck Explanatory Supplement (Public Release 1.07). E.S.A., [Online]. Available:. http://wiki.cosmos.esa.int/planckpla/index.php/Main_Page.
Planck Collaboration I. 2013. Planck 2013 results. I. Overview of products and scientific results. Astron. & Astrophys., 571 (Mar), A1.
Planck Collaboration I. 2015. Planck 2015 results. I. Overview of products and scientific results. ArXiv astro-ph, 1502.01582
Planck Collaboration VIII. 2015. Planck 2015 results. VIII. High frequency instrument data processing: Calibration and maps. ArXiv astro-ph, 1502.01587
Planck Collaboration XII. 2014. Planck 2013 results. XII. Diffuse component separation. Astron. & Astrophys., 571 (A12), 31.
Planck Collaboration XIII. 2015. Planck 2015 results. XIII. Cosmological parameters. arXiv astro-ph, 1502.01589
Planck Collaboration XVI. 2013. Planck 2013 results: 16: Cosmological parameters. Astron. & Astrophys., 571.
Planck Team XX. 2015. Planck 2015 results. XX. Constraints on inflation. arXiv astro-ph, 1502.02114
Planck Collaboration XXII. 2014. Planck 2013 results. XXII. Constraints on inflation. Astron. & Astrophys., 571 (Nov.), A22.
Platen, E., van de Weygaert, R., and Jones, B. J. T. 2007. A cosmic watershed: the WVF void detection technique. MNRAS, 380 (Sept.), 551–570.Google Scholar
Podolký, J. 1999. The structure of the extreme Schwarzschild–de Sitter space-time. General Relativity and Gravitation, 31 (Nov.), 1703.Google Scholar
Pogson, N. 1856. Magnitudes of thirty-six of the minor planets for the first day of each month of the year 1857. MNRAS, 17 (Nov.), 12–15.Google Scholar
Poincaré, H. 1905. Sur la dynamique de l'électron. Comptes Rendus Acad. Sci., 23, 140.Google Scholar
Poisson, E. 2007. A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press.
Pooley, G. G., and Ryle, M. 1968. The extension of the number-flux density relation for radio sources to very small flux densities. MNRAS, 139, 515.Google Scholar
Popper, K.R. 2002. The Logic of Scientific Discovery. Routledge.
Porter, F. C. 2008. Testing consistency of two histograms. arXiv data-an, 0804.0380
Pound, R. V., and Rebka, G. A. 1960. Apparent weight of photons. Physical Review Letters, 4(Apr.), 337–341.Google Scholar
Preskill, J. P. 1979. Cosmological production of superheavy magnetic monopoles. Physical Review Letters, 43 (Nov.), 1365–1368.Google Scholar
Press, W. H. 1980. Spontaneous production of the Zel'dovich spectrum of cosmological fluctuations. Phys. Scr, 21, 702–707.Google Scholar
Press, W. H., and Thorne, K. S. 1972. Gravitational-wave astronomy. ARA&A, 10, 335.Google Scholar
Press, W.H., Teukolsky, S., Vetterling, W.T., and Flannery, B.P. 2007. Numerical Recipes in C++: The Art of Scientific Computing. Cambridge University Press; 3rd. edition.
Pretorius, F. 2005. Evolution of binary black-hole spacetimes. Physical Review Letters, 95(12), 121101.Google Scholar
Pretorius, F. 2006. Simulation of binary black hole spacetimes with a harmonic evolution scheme. Classical and Quantum Gravity, 23 (Aug.), S529–S552.Google Scholar
Proctor, R. A. 1869. Distribution of the nebulæ. MNRAS, 29 (June), 337.Google Scholar
Prokhorov, D. A. 2015. Upper bounds on matter-antimatter admixture from gamma-ray observations of colliding clusters of galaxies with the Fermi Large Area Telescope. Phys. Rev. D, 91 (8), 083002.Google Scholar
Pskovskii, I. P. 1977. Light curves, color curves, and expansion velocity of type I supernovae as functions of the rate of brightness decline. Soviet Ast., 21 (Dec.), 675–682.Google Scholar
Pskovskii, Y. P. 1984. Photometric classification and basic parameters of type I supernovae. Soviet Ast., 28 (Dec.), 658–664.Google Scholar
Rafelski, J., and Birrell, J. 2014. Traveling through the Universe: Back in time to the quark-gluon plasma era. Journal of Physics Conference Series, 509 (1), 012014.Google Scholar
Raine, D. J. 1975. Mach's principle in general relativity. MNRAS, 171 (June), 507–528.Google Scholar
Raine, D.W. 1981. The Isotropic Universe. Monographs on astronomical subjects. Adam Hilger.
Ramsey, F.P. 1931. Truth and probability. In Mathematics and Other Logical Essays, pp. 156–198. Kegan, Paul, Trench, Trubner & Co.
Rao, C.R. 1945. Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc, 37, 81–89.Google Scholar
Räsänen, S. 2010. Applicability of the linearly perturbed FRW metric and Newtonian cosmology. Phys. Rev. D, 81 (10), 103512.Google Scholar
Raychaudhuri, A. 1955. Relativistic cosmology. I. Physical Review, 98 (May), 1123–1126.Google Scholar
Raychaudhuri, A. 1957. Singular state in relativistic cosmology. Physical Review, 106(Apr.), 172–173.Google Scholar
Rees, M. J. 1968. Polarization and spectrum of the primeval radiation in an anisotropic Universe. ApJ, 153 (July), L1.Google Scholar
Rees, M. J., and Sciama, D. W. 1968. Large-scale density inhomogeneities in the Universe. Nature, 217 (Feb.), 511–516.Google Scholar
Reid, N. 2010. Likelihood inference. Computational Statistics, 2 (5), 517–525. (Not an open journal).Google Scholar
Reid, N. 2013. Aspects of likelihood inference. Bernoulli, 19, 1404–1418.Google Scholar
Reines, F., and Cowan, C. L. 1953. Detection of the free neutrino. Physical Review, 92(Nov.), 830–831.Google Scholar
Renn, J., and Schemmel, M. 2012. Theories of gravitation in the twilight of classical physics. Page 363 of: Lehner, C., Renn, J., and Schemmel, M. (eds), Einstein and the Changing Worldviews of Physics. Einstein Studies. Birkhäuser.
Richards, G. T., Strauss, M. A. et al. 2006. The Sloan Digital Sky Survey Quasar Survey: Quasar luminosity function from data release 3. AJ, 131 (June), 2766–2787.Google Scholar
Richardson, W. H. 1972. Bayesian-based iterative method of image restoration. J. Optical Soc. America, 62, 55–59.Google Scholar
Riess, A. G. 2000. The case for an accelerating Universe from supernovae. PASP, 112(Oct.), 1284–1299.Google Scholar
Riess, A. G., Filippenko, A. V. et al. (Hi-z team) 1998. Observational evidence from supernovae for an accelerating Universe and a cosmological constant. AJ, 116 (Sept.), 1009–1038.Google Scholar
Riess, A. G., Macri, L. et al. 2009. A redetermination of the Hubble constant with the Hubble Space Telescope from a differential distance ladder. ApJ, 699 (July), 539–563.Google Scholar
Riess, A. G., Macri, L. et al. 2011. A 3% solution: Determination of the Hubble constant with the Hubble Space Telescope and wide field camera 3. ApJ, 730 (Apr.), 119. This citation has been updated as per the errata ApJ. 2011, 730, 119.Google Scholar
Riess, A. G., Strolger, L.-G. et al. (Hi-Z team) 2007. New Hubble Space Telescope discoveries of type Ia supernovae at z ≥ 1: Narrowing constraints on the early behavior of dark energy. ApJ, 659 (Apr.), 98–121.Google Scholar
Riess, A. G., Press, W. H., and Kirshner, R. P. 1995. Using type IA supernova light curve shapes to measure the Hubble constant. ApJ, 438 (Jan.), L17–L20.Google Scholar
Riess, A. G., Press, W. H., and Kirshner, R. P. 1996. A precise distance indicator: Type IA supernova multicolor light-curve shapes. ApJ, 473 (Dec.), 88.Google Scholar
Rindler, W. 2006. Relativity: Special, General, and Cosmological. Oxford University Press.
Rindler, W., and Ishak, M. 2007. Contribution of the cosmological constant to the relativistic bending of light revisited. Phys. Rev. D, 76 (4), 043006.Google Scholar
Robert, C., and Casella, G. 2011. A short history of Markov Chain Monte Carlo: Subjective recollections from incomplete data. Statistical Science, 26, 102–115.Google Scholar
Roberts, M. S. 1976. The rotation curves of galaxies. Comments on Astrophysics, 6 (July), 105.Google Scholar
Robertson, H. P. 1929. On the foundations of relativistic cosmology. Proceedings of the National Academy of Science, 15 (Nov.), 822–829.Google Scholar
Robertson, H. P. 1933. Relativistic cosmology. Reviews of Modern Physics, 5 (Jan.), 62–90.Google Scholar
Robertson, H. P. 1935. Kinematics and world-structure. ApJ, 82 (Nov.), 284.Google Scholar
Robertson, H. P. 1955. The theoretical aspects of the nebular redshift. PASP, 67 (Apr.), 82.Google Scholar
Robertson, H.P. 1927. Dynamical space-times which contain a conformal Euclidean 3-space. Trans. Am. Math. Soc., 29, 481–496.Google Scholar
Robertson, H.P. 1928. On relativistic cosmology. Philosophical Magazine, 5, 835.Google Scholar
Robson, J. M. 1950. Radioactive decay of the neutron. Physical Review, 78 (May), 311–312.Google Scholar
Robson, J. M. 1951. The radioactive decay of the neutron. Physical Review, 83 (July), 349–358.Google Scholar
Roll, P. G., and Wilkinson, D. T. 1966. Cosmic background radiation at 3.2 cm: Support for cosmic black-body radiation. Physical Review Letters, 16 (Mar.), 405–407.Google Scholar
Romero, C., Tavakol, R., and Zalaletdinov, R. 1996. The embedding of general relativity in five dimensions. General Relativity and Gravitation, 28 (Mar.), 365–376.Google Scholar
Roos, M. 2003. Introduction to Cosmology. 3rd. edn. Wiley–Blackwell.
Rosenfeld, L. 1940. Sur le tenseur d'impulsion-energie. Mem. Roy. Acad. Belg. Cl. Sci., 18.Google Scholar
Roth, K. C., Meyer, D. M., and Hawkins, I. 1993. Interstellar cyanogen and the temperature of the cosmic microwave background radiation. ApJ, 413 (Aug.), L67–L71.Google Scholar
Rozelot, J.-P., and Damiani, C. 2011. History of solar oblateness measurements and interpretation. European Physical Journal H, 36 (Nov.), 407–436.Google Scholar
Rubin, D., Knop, R. A., Rykoff, E. et al. (Supernova Cosmology Project) 2013. Precision measurement of the most distant spectroscopically confirmed supernova Ia with the Hubble Space Telescope. ApJ, 763 (Jan.), 35.Google Scholar
Rubin, V. C. 1983. The rotation of spiral galaxies. Science, 220 (June), 1339–1344.Google Scholar
Rubin, V. C., Thonnard, N., and Ford, Jr. W. K. 1978. Extended rotation curves of high-luminosity spiral galaxies. IV – Systematic dynamical properties, SA through SC. ApJ, 225(Nov.), L107–L111.Google Scholar
Rubin, V. C., Ford, W. K. J., and Thonnard, N. 1980. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 R = 4kpc to UGC 2885 R = 122 kpc. ApJ, 238(June), 471–487.Google Scholar
Ruhl, J. E. et al. 2003. Improved measurement of the angular power spectrum of temperature anisotropy in the cosmic microwave background from two new analyses of BOOMERANG observations. ApJ, 599 (Dec.), 786–805. Ruhl_etal_NewAnalysisOfBoomerangData_0212229v2.pdf.Google Scholar
Ruiz-Lapuente, P. (ed). 2010. Dark Energy: Observational and Theoretical Approaches. Cambridge Univerity Press.
Rust, B. W. 1974a (June). The use of supernovae light curves for testing the expansion hypothesis. Bulletin of the American Astronomical Society, 6, 309.Google Scholar
Rust, B. W. 1974b (Sept.). The velocity–distance relation for supernovae. Bulletin of the American Astronomical Society, 6, 450.Google Scholar
Rust, B. W. 1974c (Dec.). Use of supernovae light curves for testing the expansion hypothesis and other cosmological relations. PhD thesis, Oak Ridge National Lab., TN.
Rust, B. W. 1975 (Mar.). The use of supernovae for determining the Hubble constant and estimating extragalactic distances. Bulletin of the American Astronomical Society, 7, 236.Google Scholar
Ryden, B. 2003. Introduction to Cosmology. Addison-Wesley.
Ryle, M., and Scheuer, P. A. G. 1955. The spatial distribution and the nature of radio stars. Royal Society of London Proceedings Series A, 230 (July), 448–462.Google Scholar
Sachs, R. 1961. Gravitational waves in general relativity. VI. The outgoing radiation condition. Royal Society of London Proceedings Series A, 264 (Nov.), 309–338.Google Scholar
Sachs, R. K. 1967. Gravitational Waves. American Mathematical Society, pp. 129–140.
Sachs, R. K., and Wolfe, A. M. 1967. Perturbations of a cosmological model and angular variations of the microwave background. ApJ, 147 (Jan.), 73.Google Scholar
Sahni, V. 2002. The cosmological constant problem and quintessence. Classical and Quantum Gravity, 19 (July), 3435–3448.Google Scholar
Sakharov, A. D. 1966a. The initial stage of an expanding Universe and the appearance of a nonuniform distribution of matter. Soviet Journal of Experimental and Theoretical Physics, 22 (Jan.), 241. [Translation of 1965, J. Expt. Theor. Phys. (U.S.S.R), 49, 345].Google Scholar
Sandage, A. 1961a. The ability of the 200-inch telescope to discriminate between selected world models. ApJ, 133 (Mar.), 355.Google Scholar
Sandage, A. 1961b. The Hubble Atlas of Galaxies. Carnegie Institute of Washington.
Sandage, A. 1961c. The light travel time and the evolutionary correction to magnitudes of distant galaxies. ApJ, 134 (Nov.), 916.Google Scholar
Sandage, A. 1962. The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding Universes. ApJ, 136 (Sept.), 319.Google Scholar
Sandage, A. 1968. A new determination of the Hubble constant from globular clusters in M87. ApJ, 152 (June), L149.Google Scholar
Sandage, A. 1975. The Redshift, p. 761. University of Chicago Press.
Sandage, A., and Tammann, G. A. 1981. A Revised Shapley–Ames Catalog of Bright Galaxies. Carnegie Institue of Washington.
Sandage, A., Sandage, M., and Kristian, J. (eds). 1975. Stars and Stellar Systems IX: Galaxies and the Universe. University of Chicago Press.
Sandage, A. R. 1970. Cosmology: a search for two numbers. Physics Today, 23, 34–41.Google Scholar
Sandage, A. R. 1971. The age of the galaxies and globular clusters: Problems of finding the Hubble constant and deceleration parameter. In O'Connell, D. J. K. (ed), Study Week on Nuclei of Galaxies, p. 601.
Sandage, A. R. 1972. Distances to galaxies: the Hubble constant, the Friedmann time, and the edge of the world. QJRAS, 13 (Mar.), 282.Google Scholar
Sanders, R. H. 1986. Alternatives to dark matter. MNRAS, 223 (Dec.), 539–555.Google Scholar
Sanders, R. H. 2005. A tensor-vector-scalar framework for modified dynamics and cosmic dark matter. MNRAS, 363 (Oct.), 459–468.Google Scholar
Sanz, J. L. 1992. The Microwave Sky. ed. Sanchez, F., Collados, M. and Reboldo, R., p. 145.
Sanz, J. L. 1997. Elements of general relativity, cosmology and the cosmic microwave background. In Lineweaver, C. H., Bartlett, J. G., Blanchard, A., Signore, M., and Silk, J. (eds), Cosmological Background Radiation, pp. 33–65.
Sari, R., Piran, T., and Narayan, R. 1998. Spectra and light curves of gamma-ray burst afterglows. ApJ, 497 (Apr.), L17–L20.Google Scholar
Saro, A., Liu, J., Mohr, J. J. et al. 2014. Constraints on the CMB temperature evolution using multiband measurements of the Sunyaev-Zel'dovich effect with the South Pole Telescope. MNRAS, 440 (May), 2610–2615.Google Scholar
Sasaki, M., Nambu, Y., and Nakao, K.-I. 1988. Classical behavior of a scalar field in the inflationary universe. Nuclear Physics B, 308 (Oct.), 868–884.Google Scholar
Saslaw, W. C. 1999. The Distribution of the Galaxies. Cambridge University Press.
Sato, K. 1981a. Cosmological baryon-number domain structure and the first order phase transition of a vacuum. Physics Letters B, 99 (Feb.), 66–70.Google Scholar
Sato, K. 1981b. First-order phase transition of a vacuum and the expansion of the Universe. MNRAS, 195 (May), 467–479.Google Scholar
Sato, K. 1981c. The first order phase transition of a vacuum and baryon-number domain structure of the Universe. Progress in Particle and Nuclear Physics, 6, 311–317.Google Scholar
Sauer, T. 2007. Einstein equations and Hilbert action: What is missing on page 8 of the proofs for Hilbert's first communication on the foundations of physics? Renn, J., Janssen, M., Norton, J. D. et al. (eds), The Genesis of General Relativity, p. 975.
Schaefer, B. E. 2007. The Hubble diagram to redshift > 6 from 69 gamma-ray bursts. ApJ, 660(May), 16–46.Google Scholar
Scheuer, P. A. G. 1957. A statistical method for analysing observations of faint radio stars. Proceedings of the Cambridge Philosophical Society, 53, 764–773.Google Scholar
Schild, A. 1967. Lectures on General Relativity Theory. In Lectures in Applied Mathematics. Am. Math. Soc. ed. Ehlers, J. pp. 1–285.
Schmidt, B. P. et al. (Hi-Z team). 1998. The high-Z supernova search: Measuring cosmic deceleration and global curvature of the Universe using type IA supernovae. ApJ, 507(Nov.), 46–63.Google Scholar
Schmidt, M. 1963. 3C 273 : A star-like object with large red-shift. Nature, 197 (Mar.), 1040.Google Scholar
Schmidt, M. 1965. Large redshifts of five quasi-stellar sources. ApJ, 141 (Apr.), 1295.Google Scholar
Schmidt, M. 1970. Space distribution and luminosity functions of quasars. ApJ, 162 (Nov.), 371.Google Scholar
Schulmann, R., Kox, A. J., Janssen, M., and Illy, J. 1998. The Collected Papers of Albert Einstein. Vol.8: The Berlin Years: Correspondence 1914-1918. Springer.
Schutz. 1980. Geometrical Methods of Mathematical Physics. Cambridge University Press.
Schwarzschild, K. 1916. On the gravitational field of a mass point according to Einstein's theory. Abh. Konigl. Preuss. Akad. Wissenschaften Jahre 1906, 92, Berlin,1907, 189– 196.
Sciama, D. W. 1953. On the origin of inertia. MNRAS, 113, 34–42.Google Scholar
Sciama, D. W. 1967. Peculiar velocity of the Sun and the cosmic microwave background. Physical Review Letters, 18 (June), 1065–1067.Google Scholar
Sciama, D. W. 1972. Eppur Si Muove. Comments on Astrophysics and Space Physics, 4(Mar.), 35.Google Scholar
Scott, D. 1991. Against the delta-ln(1 + z) of about 0.205 periodicity in quasar redshifts. A&A, 242 (Feb.), 1–12.Google Scholar
Scott, D., and Smoot, G.F. 2014. Cosmic microwave background. In Olive, K.A. et al. (eds), Review of Particle Physics, C38. Chin. Phys., p. 24.Google Scholar
Seeliger, H. 1895. Über das Newton'sche Gravitationsgesetz. Astronomische Nachrichten, 137(Feb.), 129.Google Scholar
Serber, R. 1992. The Los Alamos Primer: The First Lectures on How To Build an Atomic Bomb. University of California Press. Originally published (classified) 1943.
Shakeshaft, J. R., Ryle, M., Baldwin, J. E., Elsmore, B., and Thomson, J. H. 1955. A survey of radio sources between declinations −38° and + 83°. MmRAS, 67, 106.Google Scholar
Shapiro, I. I., Ash, M. E., and Smith, W. B. 1968. Icarus: Further confirmation of the relativistic perihelion precession. Physical Review Letters, 20 (June), 1517–1518.Google Scholar
Shapiro, I. I., Smith, W. B., Ash, M. E., and Herrick, S. 1971. General relativity and the orbit of Icarus. AJ, 76 (Sept.), 588.Google Scholar
Shapiro, S. S., Davis, J. L., Lebach, D. E., and Gregory, J. S. 2004. Measurement of the solar gravitational deflection of radio waves using geodetic very-long-baseline interferometry data, 1979–1999. Physical Review Letters, 92 (12), 121101.Google Scholar
Shapley, H. 1918a. Studies based on the colors and magnitudes in stellar clusters. VI. On the determination of the distances of globular clusters. ApJ, 48 (Sept.), 89–124.Google Scholar
Shapley, H. 1918b. Studies based on the colors and magnitudes in stellar clusters. VIII. The luminosities and distances of 139 Cepheid variables. ApJ, 48 (Dec.), 279–294.Google Scholar
Shapley, H. 1919. On the existence of external galaxies. JRASC, 13 (Dec.), 438.Google Scholar
Shapley, H. 1921. The scale of the Universe. Bulletin of the National Research Council, 2, 171.Google Scholar
Shapley, H., and Ames, A. 1932. A survey of the external galaxies brighter than the thirteenth magnitude. Annals of Harvard College Observatory, 88, 41–76.Google Scholar
Shaw, J. R., and Chluba, J. 2011. Precise cosmological parameter estimation using COSMOREC. MNRAS, 415 (Aug.), 1343–1354.Google Scholar
Sherwin, B. D., Dunkley, J., Das, S. et al. 2011. Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements. Physical Review Letters, 107 (2), 021302.Google Scholar
Sievers, J. L., Hlozek, R. A., Nolta, M. R. et al. 2013. The Atacama Cosmology Telescope: cosmological parameters from three seasons of data. J.C.A.P., 10 (Oct.), 60.Google Scholar
Silk, J. 1967. Fluctuations in the primordial fireball. Nature, 215 (Sept.), 1155–1156.Google Scholar
Silk, J. 1968. Cosmic black-body radiation and galaxy formation. ApJ, 151 (Feb.), 459.Google Scholar
Simak, C. 1950. Cosmic Engineers. Gnome Press.
Simon, J., Verde, L., and Jimenez, R. 2005. Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D, 71 (12), 123001.Google Scholar
Singh, J. P., and Tiwari, R. K. 2008. Perfect fluid Bianchi Type-I cosmological models with time varying G and L. Pramana, 70 (Apr.), 565.Google Scholar
Skilling, J., and Bryan, R. K. 1984. Maximum entropy image reconstruction – general algorithm. MNRAS, 211 (Nov.), 111.Google Scholar
Skilling, J., Strong, A. W., and Bennett, K. 1979. Maximum-entropy image processing in gamma-ray astronomy. MNRAS, 187 (Apr.), 145–152.Google Scholar
Slee, O. B. 1959. Occultations of the Crab Nebula by the Solar Corona in June 1957 and 1958. Australian Journal of Physics, 12 (June), 134.Google Scholar
Slipher, V. M. 1915. Spectrographic observations of nebulae. Popular Astronomy, 23 (Jan.), 21–24.Google Scholar
Slipher, V. M. 1917. Nebulae. Proceedings of the American Philosophical Society, 56, 403–409.Google Scholar
Smarr, L., and York, Jr. J. W. 1978. Kinematical conditions in the construction of spacetime. Phys. Rev. D, 17 (May), 2529–2551.Google Scholar
Smeenk, C., and Martin, C. 2005. Mie's theories of matter and gravitation. In The Genesis of General Relativity. Boston Studies in the Philosophy of Science, Vol. 250, pp. 1543– 1553, Springer.
Smirnov, Y. N. 1965. Hydrogen and He4 formation in the pre-stellar Gamow Universe. Soviet Astronomy, 8 (June), 864.Google Scholar
Smolin, L. 2013. Matters of Gravity. American Scientist. [Online]. Available:. http://www.americanscientist.org/bookshelf/pub/matters-of-gravity.
Smoot, G., and Davidson, K. 1993. Wrinkles in Time. Avon Books.
Smoot, G. F., Gorenstein, M. V., and Muller, R. A. 1977. Detection of anisotropy in the cosmic blackbody radiation. Physical Review Letters, 39 (Oct.), 898–901.Google Scholar
Smoot, G. F., de Amici, G., Friedman, S. D. et al. 1985. Low-frequency measurements of the cosmic background radiation spectrum. ApJ, 291 (Apr.), L23–L27.Google Scholar
Smoot, G. F., Bennett, C. L., and Kogut, A. et al. 1991. Preliminary results from the COBE differential microwave radiometers – Large angular scale isotropy of the cosmic microwave background. ApJ, 371 (Apr.), L1–L5.Google Scholar
Smoot, G. F., Bennett, C. L., Kogut, A. et al. 1992. Structure in the COBE differential microwave radiometer first-year maps. ApJ, 396 (Sept.), L1–L5.Google Scholar
Snell, H., and Miller, L.C. 1948. On the radioactive decay of the neutron. Physical Review, 74, 1217A–1218A. Abstract of talk presented at the American Physical Society Washington meeting, 29 April–1 May 1948.Google Scholar
Solomon, C., and Breckon, T. 2010. Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab. Wiley-Blackwell.
Souradeep, T., and Sahni, V. 1992. Density perturbations, gravity waves and the cosmic microwave background. Modern Physics Letters A, 7, 3541–3551.Google Scholar
Sparke, L. S., and Gallagher, III|J. S. 2007. Galaxies in the Universe. Cambridge University Press.
Spergel, D. N., Flauger, R., and Hložek, R. 2015. Planck data reconsidered. Phys. Rev. D, 91(2), 023518.Google Scholar
Spitzer, Jr. L., and Greenstein, J. L. 1951. Continuous emission from planetary nebulae. ApJ, 114 (Nov.), 407.Google Scholar
Srianand, R., Petitjean, P., and Ledoux, C. 2000. The cosmic microwave background radiation temperature at a redshift of 2.34. Nature, 408 (Dec.), 931–935.Google Scholar
Starobinsky, A. A. 1979. Spectrum of relict gravitational radiation and the early state of the Universe. Soviet Journal of Experimental and Theoretical Physics Letters, 30 (Dec.), 682.Google Scholar
Starobinsky, A. A. 1982. Dynamics of phase transition in the new inflationary Universe scenario and generation of perturbations. Physics Letters B, 117 (Nov.), 175–178.Google Scholar
Starobinskii, A. A. 1983. The perturbation spectrum evolving from a nonsingular initially de sitter cosmology and the microwave background anisotropy. Soviet Astronomy Letters, 9 (June), 302–304.Google Scholar
Starobinskii, A. A. 1985. Cosmic background anisotropy induced by isotropic flat-spectrum gravitational-wave perturbations. Soviet Astronomy Letters, 11 (May), 133– 136.Google Scholar
Starobinsky, A. A. 1986. Stochastic de Sitter (inflationary) stage in the early universe. In de Vega, H. J., and Sánchez, N. (eds), Field Theory, Quantum Gravity and Strings. Lecture Notes in Physics, Vol. 246, p. 107 Berlin Springer Verlag.
Steigman, G. 1976. Observational tests of antimatter cosmologies. ARA&A, 14, 339–372.Google Scholar
Steigman, G. 2008. When clusters collide: constraints on antimatter on the largest scales. JCAP, 10 (Oct.), 001.Google Scholar
Steigman, G. 2012. Neutrinos and Big Bang nucleosynthesis. Advances in High Energy Physics, July, Article ID 268321.
Stein, C. 1956. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proc. Third Berkeley Symp. on Math. Statist. and Prob., Vol. 1, pp. 197– 206. Univ. of Calif. Press.Google Scholar
Stelmach, J., Byrka, R., and Dabrowski, M. P. 1990. Large- and small-angle anisotropies of the microwave background in cosmological models with nonzero term. Phys. Rev. D, 41(Apr.), 2434–2443.Google Scholar
Stephani, H. 2008. Relativity : an Introduction to Special and General Relativity. 3rd. edn. Cambridge University Press.
Stephani, H., Kramer, D., MacCallum, M. A. H., Hoenselaers, C., and Herlt, E. 2009. Exact Solutions of Einstein's Field Equations. Cambridge University Press.
Stephenson, G, and Kilmister, C.W. 1962. Special Relativity for Physicists. Longmans. Reprinted by Dover Pub. 1987.
Stern, D., Jimenez, R., Verde, L., Kamionkowski, M., and Stanford, S. A. 2010. Cosmic chronometers: constraining the equation of state of dark energy. I: H(z) measurements. JCAP, 2 (Feb.), 8.Google Scholar
Stewart, I. 2008. The Annotated Flatland: A Romance of Many Dimensions. Basic Books.
Stewart, J. M. 1971. Non-Equilibrium Relativistic Kinetic Theory. Lecture Notes in Physics, Vol. 10. Springer-Verlag.
Stigler, S.M. 1983. Who discovered Bayes's theorem? The American Statistician, 37, 290–296.Google Scholar
Story, K. T., Reichardt, C. L. et al. 2013. A measurement of the cosmic microwave background damping tail from the 2500-square-degree SPT-SZ survey. ApJ, 779 (Dec.), 86.Google Scholar
Strömgren, B. 1948. On the density distribution and chemical composition of the interstellar gas. ApJ, 108 (Sept.), 242.Google Scholar
Strukov, I. A., Skulachev, D. P., Boyarskiy, M. N., and Tkachev, A. N. 1987. Dipole component of RELICT radiation determined from Relikt experiment data. JPRS Report Science Technology USSR Space, 3 (Nov.), 59.Google Scholar
Strukov, I. A., Brukhanov, A. A., Skulachev, D. P., and Sazhin, M. V. 1992. Anisotropy of the microwave background radiation. Soviet Astronomy Letters, 18 (May), 153.Google Scholar
Sturrock, P. A. 1973. Evaluation of astrophysical hypotheses. ApJ, 182 (June), 569–580.Google Scholar
Sullivan, W. T. 1984. The Early Years of Radio Astronomy – Reflections Fifty Years after Jansky's Discovery. Cambridge University Press.
Sullivan, III|W. T. 1982. Classics in Radio Astronomy. Studies in the History of Modern Science, Vol. 10. Reidel.
Sung, R., and Coles, P. 2011. Temperature and polarization patterns in anisotropic cosmologies. JCAP, 6 (June), 36.Google Scholar
Sunyaev, R. A., and Chluba, J. 2009. Signals from the epoch of cosmological recombination (Karl Schwarzschild Award Lecture 2008). Astronomische Nachrichten, 330 (July), 657.Google Scholar
Sunyaev, R. A., and Zel'dovich, Ya. B. 1970a. Small-scale fluctuations of relic radiation. Ap&SS, 7 (Apr.), 3–19.Google Scholar
Sunyaev, R. A., and Zel'dovich, Ya. B. 1970b. The interaction of matter and radiation in the hot model of the Universe, II. Ap&SS, 7 (Apr.), 20–30.Google Scholar
Sunyaev, R. A., and Zel'dovich, Ya. B. 1972. The observations of relic radiation as a test of the nature of X-ray radiation from the clusters of galaxies. Comments on Astrophysics and Space Physics, 4 (Nov.), 173.Google Scholar
Sunyaev, R. A., and Zel'dovich, Ya. B. 1980. Microwave background radiation as a probe of the contemporary structure and history of the universe. ARA&A, 18, 537–560.Google Scholar
Sussman, R. A. 2008. Quasi-local variables and inhomogeneous cosmological sources with spherical symmetry. Herrera-Aguilar, A., Murillo, F. S. G., Gómez, U. N., and Quiros, I. (eds), American Institute of Physics Conference Series, Vol. 1083, pp. 228–235.
Sussman, R. A. 2009. Quasilocal variables in spherical symmetry: Numerical applications to dark matter and dark energy sources. Phys. Rev. D, 79 (2), 025009.Google Scholar
Suzuki, N., Rubin, D., Lidman, C. et al. Supernova Cosmology Project. 2012. The Hubble Space Telescope cluster supernova survey. V. Improving the dark-energy constraints above z > 1 and building an early-type-hosted supernova sample. ApJ, 746 (Feb.), 85.Google Scholar
Szapudi, I., Prunet, S., Pogosyan, D., Szalay, A. S., and Bond, J. R. 2000. Fast CMB analyses via correlation functions. arXiv astro-ph, 0010256.
Szapudi, I., Prunet, S., Pogosyan, D., Szalay, A. S., and Bond, J. R. 2001. Fast cosmic microwave background analyses via correlation functions. ApJ, 548 (Feb.), L115–L118.Google Scholar
Takahara, F., and Sasaki, S. 1991. Effect of Rayleigh scattering on cosmic microwave background anisotropies. Progress of Theoretical Physics, 86 (Nov.), 1021–1030.Google Scholar
Tammann, G. A. 1979. Precise determination of the distances of galaxies. NASA Conference Publication. Vol. 2111, pp. 263–293.Google Scholar
Tanvir, N. R., Fox, D. B., Levan, A. J. et al. 2009. A γ-ray burst at a redshift of z~8.2. Nature, 461 (Oct.), 1254–1257.Google Scholar
Tawfik, A., and Harko, T. 2012. Quark-hadron phase transitions in the viscous early Universe. Phys. Rev. D, 85 (8), 084032.Google Scholar
Taylor, J. H., Hulse, R. A., Fowler, L. A., Gullahorn, G. E., and Rankin, J. M. 1976. Further observations of the binary pulsar PSR 1913+16. ApJ, 206 (May), L53–L58.Google Scholar
Taylor, J. H., Fowler, L. A., and McCulloch, P. M. 1979. Measurements of general relativistic effects in the binary pulsar PSR 1913+16. Nature, 277 (Feb.), 437–440.Google Scholar
Teanby, N. A. 2006. An icosahedron-based method for even binning of globally distributed remote sensing data. Computers and Geosciences, 32 (Nov.), 1442–1450.Google Scholar
Tegmark, M. 1996. An icosahedron-based method for pixelizing the celestial sphere. ApJ, 470(Oct.), L81.Google Scholar
Terrell, J. 1977. The luminosity distance equation in Friedmann cosmology. American Journal of Physics, 45 (Sept.), 869–870.Google Scholar
Thaddeus, P., and Clauser, J. F. 1966. Cosmic microwave radiation at 2.63 mm from observations of interstellar CN. Physical Review Letters, 16 (May), 819–822.Google Scholar
Thomas, R. C., and Kantowski, R. 2000. Age-redshift relation for standard cosmology. Phys. Rev. D, 62 (10), 103507.Google Scholar
Tinsley, B. M. 1970. Possibility of a large evolutionary correction to the magnitude– redshift relation. Ap&SS, 6 (Mar.), 344–351.Google Scholar
Tinsley, B. M. 1972. Stellar evolution in elliptical galaxies. ApJ, 178 (Dec.), 319–336.Google Scholar
Tinsley, B. M. 1975 (Oct.). The evolution of galaxies and its significance for cosmology. In Bergman, P. G., Fenyves, E. J., and Motz, L. (eds), Seventh Texas Symposium on Relativistic Astrophysics. Annals of the New York Academy of Sciences, Vol. 262, pp. 436–448.
Tinsley, B. M. 1977a. Galaxy counts, color-redshift relations, and related quantities as probes of cosmology and galactic evolution. ApJ, 211 (Feb.), 621–637.Google Scholar
Tinsley, B. M. 1977b (Dec.). The cosmological constant and cosmological change. Papa-giannis, M. D. (ed), Eighth Texas Symposium on Relativistic Astrophysics. Annals of the New York Academy of Sciences, Vol. 302, p. 423.
Tinsley, B. M. 1977c. The cosmological constant and cosmological change. Physics Today, 30(June), 32–38.Google Scholar
Todorov, I. T. 2005. Einstein and Hilbert: The Creation of General Relativity. arXiv astroph 0504179
Tolman, R. C. 1931. Nonstatic model of Universe with reversible annihilation of matter. Physical Review, 38 (Aug.), 797–814.Google Scholar
Tolman, R. C. 1934a. Effect of inhomogeneity on cosmological models. Proceedings of the National Academy of Science, 20 (Mar.), 169–176.Google Scholar
Tolman, R. C. 1934b. Relativity, Thermodynamics, and Cosmology. Clarendon Press, Reprinted by Dover (1987).
Tolman, R. C. 1939. Static solutions of Einstein's field equations for spheres of fluid. Physical Review, 55 (Feb.), 364–373.Google Scholar
Tomita, K. 1969. Formation of gravitationally bound primordial gas clouds. II. Progress of Theoretical Physics, 42 (Oct.), 978–979.Google Scholar
Tomita, K., and Hayashi, C. 1963. The cosmical constant and the age of the Universe. Progress of Theoretical Physics, 30 (Nov.), 691–699.Google Scholar
Totsuji, H., and Kihara, T. 1969. The correlation function for the distribution of galaxies. PASJ, 21, 221.Google Scholar
Trautman, A. 1964. Foundations and Current Problems of General Relativity. Prentice Hall, ed. Trautman, A., Pirani, F. A. E. and Bondi, H. pp. 1–248.
Trimble, V. 1975. The origin and abundances of the chemical elements. Reviews of Modern Physics, 47 (Oct.), 877–976.Google Scholar
Trimble, V. 1982. Supernovae. Part I: the events. Reviews of Modern Physics, 54 (Oct.), 1183–1224.Google Scholar
Trimble, V. 1983. Supernovae. Part II: the aftermath. Reviews of Modern Physics, 55 (Apr.), 511–563.Google Scholar
Trimble, V. 1995. The 1920 Shapley–Curtis discussion: Background, issues, and aftermath. PASP, 107 (Dec.), 1133.Google Scholar
Trombetti, T., and Burigana, C. 2012a. CMB polarization anisotropies from cosmological reionization: extension to B-modes. arXiv astro-ph, 1205.0463
Trombetti, T., and Burigana, C. 2012b. Imprints on CMB angular power spectrum modes from cosmological reionization. J. Mod. Phys., 3, 1918–1944.Google Scholar
Truesdell, C. 1983. An Idiot's Fugitive Essays on Science. Springer. pp. 97–132.
Truran, J. W., Hansen, C. J., and Cameron, A. G. W. 1965a. Helium in the interstellar medium. AJ, 70 (Mar.), 149.Google Scholar
Truran, J. W., Hansen, C. J., and Cameron, A. G. W. 1965b. The helium content of the galaxy. Canadian Journal of Physics, 43, 1616.Google Scholar
Tryon, E. P. 1973. Is the Universe a vacuum fluctuation? Nature, 246 (Dec.), 396–397.Google Scholar
Tryon, E.P. 1984. What made the world? New Scientist, 101, 14–16.Google Scholar
Tucker, W. 1975. Radiation Processes in Astrophysics. MIT Press.
Tully, R. B. 2007. In Our CMB motion: The role of the local void. In Metcalfe, N. & Shanks, T. (ed), Cosmic Frontiers. Astronomical Society of the Pacific Conference Series, Vol. 379, p. 240.
Tully, R. B., Shaya, E. J., Karachentsev, I. D. et al. 2008. Our peculiar motion away from the local void. ApJ, 676 (Mar.), 184–205.Google Scholar
Urey, H. C., Brickwedde, F. G., and Murphy, G. M. 1932. A hydrogen isotope of mass 2. Physical Review, 39 (Jan.), 164–165.Google Scholar
van de Hulst, H.C. 1945. Herkomst der radiogolven uit het wereldruim. Ned. Tijdschrift vaar Natuurkunde, 11 (Dec), 210.Google Scholar
van de Weygaert, M. A. M. 1991. Voids and the geometry of large scale structure. PhD thesis, University of Leiden.
van de Weygaert, R. 2002. Froth across the Universe. In Plionis, M., and Cotsakis, S. (eds), Modern Theoretical and Observational Cosmology. Astrophysics and Space Science Library, Vol. 276, p. 119. arXiv astro-ph, 0206427
van de Weygaert, R., and van Kampen, E. 1993. Voids in gravitational instability scenarios: Part One: Global density and velocity fields in an einstein–de-Sitter Universe. MNRAS, 263(July), 481.Google Scholar
van den Bergh, S. 1975. The Extragalactic Distance Scale. The University of Chicago Press, ed. Sandage, A., Sandage, M. and Kristian, J., p. 509.
van Loan, C.F. 1987. Computational Frameworks for the Fast Fourier Transform. Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics.
Vennin, V., and Starobinsky, A. A. 2015. Correlation functions in stochastic inflation. European Physical Journal C, 75 (Sept.), 413.Google Scholar
Vessot, R. F. C., Levine, M. W., Mattison, E. M. et al. 1980. Test of relativistic gravitation with a space-borne hydrogen maser. Physical Review Letters, 45 (Dec.), 2081–2084.Google Scholar
Vilenkin, A. 1982. Creation of Universes from nothing. Physics Letters B, 117 (Nov.), 25– 28.Google Scholar
von Laue, M. 1911. Zur Dynamik der Relativitätstheorie. Annalen der Physik, 35, 524–542.Google Scholar
Waga, I. 1993. Decaying vacuum flat cosmological models – Expressions for some observable quantities and their properties. ApJ, 414 (Sept.), 436–448.Google Scholar
Wagoner, R. V., Fowler, W. A., and Hoyle, F. 1967. On the synthesis of elements at very high temperatures. ApJ, 148 (Apr.), 3.Google Scholar
Wald, R.M. 1984. General Relativity. Univ. Chicago Press.
Walke, H.J. 1935. Nuclear synthesis and stellar radiation. Phil. Mag., 19 (126), 341–367.Google Scholar
Walker, A. G. 1935. On Riemannian spaces with spherical symmetry about a line, and the conditions for isotropy in genj relativity. The Quarterly Journal of Mathematics, 6, 81–93.Google Scholar
Wall, J. V., and Cooke, D. J. 1975. Source counts at high spatial densities from pencil beam observations of background fluctuations. MNRAS, 171 (Apr.), 9–25.Google Scholar
Wang, L., and Steinhardt, P. J. 1998. Cluster abundance constraints for cosmological models with a time-varying, spatially inhomogeneous energy component with negative pressure. ApJ, 508 (Dec.), 483–490.Google Scholar
Ward, S. 1653. In Ismaelis Bullialdi astronomiae philolaicae fundamenta inquisitio brevis. Oxoniae, Leon Lichfield,.
Warwick, A. 2003. Masters of Theory: Cambridge and the Rise of Mathematical Physics. University of Chicago Press.
Waters, S. 1873. The distribution of clusters and nebulæ. MNRAS, 33 (June), 558.Google Scholar
Waterston, J.J. 1892. On the physics of media that are composed of free and perfectly elastic molecules in a state of motion. Phil. Trans. Roy. Soc. A, 183, 1–79.Google Scholar
Webb, J. K., King, J. A., Murphy, M. T. et al. 2011. Indications of a spatial variation of the fine structure constant. Physical Review Letters, 107 (19), 191101.Google Scholar
Weber, J. 1958. New Experiments in Gravitational Physics. 3rd. Prize Essay Award of the Gravity Research Foundation http://www.gravityresearchfoundation.org/pdf/awarded/1958/weber.pdf.
Weber, J. 1959. Gravitational Waves. Ist Prize Essay Award of the Gravity Research Foundation. http://www.gravityresearchfoundation.org/pdf/awarded/1959/weber.pdf (Document barely legible).
Weber, J. 1960. Detection and generation of gravitational waves. Physical Review, 117(Jan.), 306–313.Google Scholar
Weber, J. 1961. General Relativity and Gravitational Waves. Interscience (1961) and Dover (2013).
Weber, J. 1966. Observation of the thermal fluctuations of a gravitational-wave detector. Physical Review Letters, 17 (Dec.), 1228–1230.Google Scholar
Weber, J. 1967. Gravitational radiation. Physical Review Letters, 18 (Mar.), 498–501.Google Scholar
Weber, J. 1968. Gravitational-wave-detector events. Physical Review Letters, 20 (June), 1307–1308.Google Scholar
Weber, J. 1969. Evidence for discovery of gravitational radiation. Physical Review Letters, 22(June), 1320–1324.Google Scholar
Weber, J. 1970. Anisotropy and polarization in the gravitational-radiation experiments. Physical Review Letters, 25 (July), 180–184.Google Scholar
Webster, A. S. 1974. The spectrum of the galactic non-thermal background radiational observations at 408, 610 and 1407 MHz. MNRAS, 166 (Feb.), 355–372.Google Scholar
Weinberg, S. 1972. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley.
Weinberg, S. 1989. The cosmological constant problem. Reviews of Modern Physics, 61(Jan.), 1–23.Google Scholar
Weinberg, S. 1993. The First Three Minutes: A Modern View of the Origin of the Universe. 3rd. edn. Basic Books.
Weinberg, S. 2008. Cosmology. Oxford University Press.
Weinstein, G. 2012a. Albert Einstein's Methodology. arXiv hist-ph, 1209.5181
Weinstein, G. 2012b. From the Berlin ‘Entwurf’ Field Equations to the Einstein Tensor I: October 1914 until Beginning of November 1915. arXiv hist-ph, 1201.5352
Weinstein, G. 2012c. From the Berlin ‘Entwurf’ Field Equations to the Einstein Tensor II: November 1915 until March 1916. arXiv hist-ph, 1201.5353
Weisberg, J. M., and Taylor, J. H. 2005 (July). The relativistic binary pulsar B1913+16: Thirty years of observations and analysis. In Rasio, F. A., and Stairs, I. H. (eds.), Binary Radio Pulsars. Astronomical Society of the Pacific Conference Series, Vol. 328, p. 25.
Weiss, R. 1972. Electronically coupled broadband gravitational antenna. Quarterly Progress Report, Research Laboratory of Electronics (MIT) No. 105, 54–76. Available from http://www.hep.vanderbilt.edu/BTeV/test-DocDB/0009/000949/001/Weiss_1972.pdf.
Westphal, J. A., Kristian, J., and Sandage, A. 1975. Absorption-line redshifts of galaxies in remote clusters obtained with a sky-subtraction spectrograph using an SIT television detector. ApJ, 197 (May), L95–L98.Google Scholar
Weyl, H. 2009. Republication of: On the general relativity theory. General Relativity and Gravitation, 41 (July), 1661–1666.Google Scholar
Weymann, R. 1965. Diffusion approximation for a photon gas interacting with a plasma via the Compton effect. Physics of Fluids, 8 (Nov.), 2112–2114.Google Scholar
Weymann, R. 1966. The energy spectrum of radiation in the expanding Universe. ApJ, 145(Aug.), 560.Google Scholar
Will, C. M. 2006. The Confrontation between General Relativity and Experiment. Living Reviews in Relativity, 3. [Online]. Available:. http://www.livingreviews.org/lrr-2006-3.
Will, C. M. 2009. The confrontation between general relativity and experiment. Space Sci. Rev., 148 (Dec.), 3–13.Google Scholar
Will, C. M. 2014. The Confrontation between General Relativity and Experiment. Living Reviews in Relativity, 3. [Online]. Available:. http://www.livingreviews.org/lrr-2014-4.
Will, C. M. 2015. Focus issue: Gravity probe B. In: Classical and Quantum Gravity, 32.Google Scholar
Will, C. M., and Nordtvedt, Jr. K. 1972. Conservation laws and preferred frames in relativistic gravity. I. Preferred-frame theories and an extended PPN formalism. ApJ, 177(Nov.), 757.Google Scholar
Wilson, O. C. 1939. Possible applications of supernovae to the study of the nebular red shifts. ApJ, 90 (Nov.), 634.Google Scholar
Wilson, R. N. 1990. ‘Matching error’ (spherical aberration) in the Hubble Space Telescope (HST) – Some technical comments. The Messenger, 61 (Sept.), 22–24.Google Scholar
Wilson, R. W. 1979. The cosmic microwave background radiation. Reviews of Modern Physics, 51 (July), 433–446.Google Scholar
Wiltshire, D. L. 2009. Average observational quantities in the timescape cosmology. Phys. Rev. D, 80 (12), 123512.Google Scholar
Winterberg, F. 2003. On ‘Belated decision in the Hilbert–Einstein priority dispute’, published by L. Corry, J. Renn, and J. Stachel. Z. Naturforsch., 59a, 715–719.Google Scholar
Wirtz, C. 1918. Über die Bewegungen der Nebelflecke. Astronomische Nachrichten, 206, 109–116.Google Scholar
Wirtz, C. 1922. Notiz zur Radialbewegung der Spiralnebel. Astronomische Nachrichten, 216(Sept.), 451.Google Scholar
Wirtz, C. 1924. de Sitters Kosmologie und die Radialbewegungen der Spiralnebel. Astronomische Nachrichten, 222 (July), 21.Google Scholar
Wong, W. Y., Moss, A., and Scott, D. 2008. How well do we understand cosmological recombination? MNRAS, 386 (May), 1023–1028.Google Scholar
Wood-Vasey, W. M. et al. 2007. Observational constraints on the nature of dark energy: First cosmological results from the ESSENCE supernova survey. ApJ, 666 (Sept.), 694– 715.Google Scholar
Woody, D. P., and Richards, P. L. 1981. Near-millimeter spectrum of the microwave background. ApJ, 248 (Aug.), 18–37.Google Scholar
Wright, E. L., Smoot, G. F., Bennett, C. L., and Lubin, P. M. 1994a. Angular power spectrum of the microwave background anisotropy seen by the COBE differential microwave radiometer. ApJ, 436 (Dec.), 443–451.Google Scholar
Wright, E. L., Mather, J. C., Fixsen, D. J. et al. 1994b. Interpretation of the COBE FIRAS CMBR spectrum. ApJ, 420 (Jan.), 450–456.Google Scholar
Xu, L., Zhang, C., Chang, B., and Liu, H. 2007. Reconstruction of a deceleration parameter from the latest type ia supernovae gold dataset. arXiv astro-ph, 0701490
Xu, Y., Tegmark, M., and de Oliveira-Costa, A. 2002. CMB power spectrum at l=30–200 from QMASK. Phys. Rev. D, 65 (8), 083002.Google Scholar
Yue, A. T., Dewey, M. S., Gilliam, D. M. et al. 2013. Improved determination of the neutron lifetime. Physical Review Letters, 111 (22), 222501.Google Scholar
Yung, K.H. 1999. Explaining the Stein Paradox. Link may be volatile. [Online]. Available: https://www.cs.nyu.edu/~roweis/csc2515-2006/readings/stein_paradox.pdf.
Zaldarriaga, M., and Seljak, U. 1997. All-sky analysis of polarization in the microwave background. Phys. Rev. D, 55 (Feb.), 1830–1840.Google Scholar
Zangwill, A. 2013. Modern Electrodynamics. Cambridge University Press.
Zel'dovich, I. B., Einasto, J., and Shandarin, S. F. 1982. Giant voids in the universe. Nature, 300(Dec.), 407–413.Google Scholar
Zel'dovich, Y. B. 1963. Pre-stellar state of matter. Soviet Journal of Experimental and Theoretical Physics, 16, 1102.Google Scholar
Zel'dovich, Y. B. 1964. Special issue: the theory of the expanding Universe as originated by A. A. Fridman. Soviet Physics Uspekhi, 6 (Apr.), 475–494.Google Scholar
Zel'dovich, Y. B. 1972. A hypothesis, unifying the structure and the entropy of the Universe. MNRAS, 160, 1P.Google Scholar
Zel'dovich, Y. B., and Khlopov, M. Y. 1978. On the concentration of relic magnetic monopoles in the Universe. Physics Letters B, 79 (Nov.), 239–241.Google Scholar
Zel'dovich, Y. B., and Raizer, Y. P. 1967. Physics of shock waves and high-temperature hydrodynamic phenomena. Academic Press.
Zel'dovich, Y. B., and Sunyaev, R. A. 1969. The interaction of matter and radiation in a hot-model Universe. Ap&SS, 4 (July), 301–316.Google Scholar
Zel'dovich, Y. B., Kurt, V. G., and Syunyaev, R. A. 1969. Recombination of hydrogen in the hot model of the Universe. Soviet Journal of Experimental and Theoretical Physics, 28(Jan.), 146.Google Scholar
Zel'dovich, Y. B., Illarionov, A. F., and Syunyaev, R. A. 1972. The effect of energy release on the emission spectrum in a hot universe. Soviet Journal of Experimental and Theoretical Physics, 35, 643.Google Scholar
Zel'dovich, Ya. B. 1970. Gravitational instability: An approximate theory for large density perturbations. A&A, 5 (Mar.), 84–89.Google Scholar
Zwicky, F. 1937. On the masses of nebulae and of clusters of nebulae. ApJ, 86 (Oct.), 217.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Bernard J. T. Jones, Rijksuniversiteit Groningen, The Netherlands
  • Book: Precision Cosmology
  • Online publication: 04 May 2017
  • Chapter DOI: https://doi.org/10.1017/CBO9781139027809.039
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Bernard J. T. Jones, Rijksuniversiteit Groningen, The Netherlands
  • Book: Precision Cosmology
  • Online publication: 04 May 2017
  • Chapter DOI: https://doi.org/10.1017/CBO9781139027809.039
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Bernard J. T. Jones, Rijksuniversiteit Groningen, The Netherlands
  • Book: Precision Cosmology
  • Online publication: 04 May 2017
  • Chapter DOI: https://doi.org/10.1017/CBO9781139027809.039
Available formats
×