Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-19T12:03:55.871Z Has data issue: false hasContentIssue false

27 - Extrasolar planets

from Part V - Applications of astrometry to topics in astrophysics

Published online by Cambridge University Press:  05 December 2012

William F. van Altena
Affiliation:
Yale University, Connecticut
Get access

Summary

Introduction

The Doppler detection of the Jupiter-mass planet around the nearby, solar-type star 51 Pegasi (Mayor and Queloz 1995) heralded the new era of discoveries of extrasolar planets orbiting normal stars. Four different techniques have been successfully used for the purpose of exoplanet detection. Decade-long, high-precision (1–5 m/s) radial-velocity surveys of ˜3000 F-G-K-M dwarfs and subgiants (e.g. Butler et al. 2006, Udry and Santos 2007, Eggenberger and Udry 2010) in the solar neighborhood (d ≤ 50 pc) have yielded so far the vast majority of the objects in the present sample (a total of over 760 planets in ˜600 systems, as of June 2012). Ground-based photometric transit surveys (e.g. Char-bonneau et al. 2007, Collier Cameron 2011) are uncovering new transiting systems at a rate of ˜30 per year, while space-borne observatories such as CoRoT and particularly Kepler hold promise of increasing by an order of magnitude the present yield (over 230 transiting systems known to date). Finally, over three dozen sub-stellar companions have also been detected so far by means of gravitational microlensing (e.g. Bond et al. 2004, Beaulieu et al. 2006, Gaudi et al. 2008, Muraki et al. 2011), direct-imaging surveys (e.g. Chauvin et al. 2005, Kalas et al. 2008, Marois et al. 2008, 2010), and timing techniques (Silvotti et al. 2007, Lee et al. 2009, Beuermann et al. 2010).

Type
Chapter
Information
Astrometry for Astrophysics
Methods, Models, and Applications
, pp. 379 - 394
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agol, E., Steffen, J., Sari, R., and Clarkson, W. (2005). On detecting terrestrial planets with timing of giant planet transits. MNRAS, 359, 567.Google Scholar
Alibert, Y., Mordasini, C., Benz, W., and Winisdoerffer, C. (2005). Models of giant planet formation with migration and disc evolution. A&A, 434, 343.Google Scholar
Alibert, Y.,Mordasini, C., and Benz, W. (2011). Extrasolar planet population synthesis. III. Formation of planets around stars of different masses. A&A, 526, A63.Google Scholar
Baglin, A., Auvergne, M., Barge, P., et al. (2009). CoRoT: description of the mission and early results. Proc. IAU Symp., 253, 71.Google Scholar
Baraffe, I., Chabrier, G., and Barman, T. (2008). Structure and evolution of super-Earth to super-Jupiter exoplanets. I. Heavy element enrichment in the interior. A&A, 482, 315.Google Scholar
Baraffe, I., Chabrier, G., and Barman, T. (2010). The physical properties of extra-solar planets. Rep. Prog. Phys., 73, 016901.CrossRefGoogle Scholar
Barnes, R. and Quinn, T. (2004). The (in)stability of planetary systems. ApJ, 611, 494.Google Scholar
Batygin, K., Stevenson, D. J., and Bodenheimer, P. H. (2011). Evolution of ohmically heated hot Jupiters. ApJ, 738, a1.Google Scholar
Bean, J. L., McArthur, B. E., and Benedict, G. F. (2007). The mass of the candidate exoplanet companion to HD 33636 from Hubble Space Telescope astrometry and high-precision radial velocities. ApJ, 134, 749.CrossRefGoogle Scholar
Beaugé, C., Giuppone, C. A., Ferraz-Mello, S., and Michtchenko, T. A. (2008). Reliability of orbital fits for resonant extrasolar planetary systems: the case of HD82943. MNRAS, 385, 2151.Google Scholar
Beaulieu, J.-P., Bennett, D. P., Fouqué, P., et al. (2006). Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature, 439, 437.Google Scholar
Beichman, C. A., Fridlund, M., Traub, W. A., et al. (2007). Comparative planetology and the search for life beyond the Solar System. In Protostars and Planets V, ed. B., Reipurth, D., Jewitt, and K., Keil. Tuscon, AZ: University of Arizona Press, p. 915.Google Scholar
Benedict, G. F., McArthur, B. E., Forveille, T., et al. (2002). A mass for the extrasolar planet Gliese 876b determined from Hubble Space Telescope Fine Guidance Sensor 3 astrometry and high-precision radial velocities. ApJ Lett, 581, L115.Google Scholar
Benedict, G. F., McArthur, B. E., Gatewood, G., et al. (2006). The extrasolar planet ∊ Eridani b: orbit and mass. ApJ, 132, 2206.CrossRefGoogle Scholar
Benedict, G. F., McArthur, B. E., Bean, J. L., et al. (2010). The mass of HD 38529c from Hubble Space Telescope astrometry and high-precision radial velocities. ApJ, 139, 1844.CrossRefGoogle Scholar
Beuermann, K., Hessman, F. V., Dreizler, S., et al. (2010). Two planets orbiting the recently formed post-common envelope binary NN Serpentis. A&A, 521, L60.Google Scholar
Bond, I. A., Udalski, A., Jaroszński, M., et al. (2004). OGLE 2003-BLG-235/MOA 2003-BLG-53: A planetary microlensing event. ApJ Lett, 606, L155.Google Scholar
Borucki, W., Koch, D., Batalha, N., et al. (2009). Kepler: search for Earth-size planets in the habitable zone. Proc. IAU Symp., 253, 289–299.Google Scholar
Boss, A. P. (2001). Formation of planetary-mass objects by protostellar collapse and fragmentation. ApJ Lett, 551, L167.Google Scholar
Boss, A. P. (2002). Stellar metallicity and the formation of extrasolar gas giant planets. ApJ Lett, 567, L149.Google Scholar
Boss, A. P. (2006). Rapid formation of gas giant planets around M dwarf stars. ApJ, 643, 501.Google Scholar
Boss, A. P. (2011). Formation of giant planets by disk instability on wide orbits around protostars with varied masses. ApJ, 731, 74.Google Scholar
Burrows, A., Budaj, J., and Hubeny, I. (2008). Theoretical spectra and light curves of close-in extrasolar giant planets and comparison with data. ApJ, 678, 1436.Google Scholar
Butler, R. P., Marcy, G. W., Vogt, S. S., et al. (2003). Seven new Keck planets orbiting G and K dwarfs. ApJ, 582, 455.Google Scholar
Butler, R. P., Vogt, S. S., Marcy, G. W., et al. (2004). A Neptune-mass planet orbiting the nearby M dwarf GJ 436. ApJ, 617, 580.Google Scholar
Butler, R. P., Wright, J. T.,Marcy, G.W., et al. (2006). Catalog of nearby exoplanets. ApJ, 646, 505.Google Scholar
Casertano, S., Lattanzi, M. G., Sozzetti, A., et al. (2008). Double-blind test program for astrometric planet detection with Gaia. A&A, 482, 699.Google Scholar
Charbonneau, D., Brown, T. M., Burrows, A., and Laughlin, G. (2007). When extrasolar planets transit their parent stars. Protostars and Planets V, ed. B., Reipurth, D., Jewitt, and K., Keil. Tuscon, AZ: University of Arizona Press, p. 699.Google Scholar
Chauvin, G., Lagrange, A.-M., Zuckerman, B., et al. (2005). A companion to AB Pic at the planet/brown dwarf boundary. A&A, 438, L29.Google Scholar
Collier Cameron, A. (2011). Statistical patterns in ground-based transit surveys. Proc. IAU Symp., 276, 129.Google Scholar
Cumming, A., Butler, R.P., Marcy, G.W., et al. (2008). The Keck planet search: detectability and the minimum mass and orbital period distribution of extrasolar planets. PASP, 120, 531.CrossRefGoogle Scholar
Des Marais, D. J., Harwitt, M. D., Jucks, K. W., et al. (2002). Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiol., 2(2), 153.CrossRefGoogle ScholarPubMed
Durisen, R. H., Boss, A. P., Mayer, L., et al. (2007). Gravitational instabilities in gaseous protoplanetary disks and implications for giant planet formation. Protostars and Planets V, ed. B., Reipurth, D., Jewitt, and K., Keil. Tuscon, AZ: University of Arizona Press, p. 607.Google Scholar
Dvorak, R., Pilat-Lohinger, E., Bois, E., et al. (2010). Dynamical habitability of planetary systems. Astrobiol., 10, 33.CrossRefGoogle ScholarPubMed
Eggenberger, A. and Udry, S. (2010). Detection and characterization of extrasolar planets through doppler spectroscopy. EAS Pub. Ser., 41, 27.CrossRefGoogle Scholar
Endl, M., Cochran, W. D., Kürster, M., et al. (2006). Exploring the frequency of close-in jovian planets around m dwarfs. AJ, 649, 436.Google Scholar
Fabrycky, D. C. (2010). Non-Keplerian dynamics of exoplanets. In Exoplanets, ed. S., Seager. Tuscon, AZ: University of Arizona Press, p. 217.Google Scholar
Fischer, D. A., Marcy, G. W., Butler, R. P., et al. (2003). A planetary companion to HD 40979 and additional planets orbiting HD 12661 and HD 38529. AJ, 586, 1394.Google Scholar
Fischer, D. A. and Valenti, J. (2005). The planet–metallicity correlation. ApJ, 622, 1102.Google Scholar
Fischer, D. A., Vogt, S. S., Marcy, D. W., et al. (2007). Five intermediate-period planets from the n2k sample. ApJ, 669, 1336.Google Scholar
Ford, E. B. and Rasio, F. A. (2006). On the relation between hot Jupiters and the Roche limit. ApJ Lett, 638, L45.Google Scholar
Ford, E. B. and Rasio, F. A. (2008). Origins of eccentric extrasolar planets: testing the planet–planet scattering model. ApJ, 686, 621.Google Scholar
Fortney, J. J., Lodders, K., Marley, M. S., and Freedman, R. S. (2008). A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. ApJ, 678, 1419.Google Scholar
Fortney, J. J. and Nettelmann, N. (2010). The interior structure, composition, and evolution of giant planets. Space Sci. Rev., 152, 423.CrossRefGoogle Scholar
Gatewood, G. (1996). Lalande 21185. Bull. Am. Astron. Soc., 28, 885.Google Scholar
Gaudi, B. S., Seager, S., and Mallen-Ornelas, G. (2005). On the period distribution of close-in extrasolar giant planets. ApJ, 623, 472.Google Scholar
Gaudi, B. S., Bennett, D. P., Udalski, A., et al. (2008). Discovery of a Jupiter/Saturn analog with gravitational microlensing. Science, 319, 927.CrossRefGoogle ScholarPubMed
Gózdziewski, K., Migaszewski, C., and Konacki, M. (2008). A dynamical analysis of the 14 Herculis planetary system. MNRAS, 385, 957.Google Scholar
Han, I., Black, D. C., and Gatewood, G. (2001). Preliminary astrometric masses for proposed extrasolar planetary companions. ApJ Lett, 548, L57.Google Scholar
Hatzes, A. P., Fridlund, M., Nachmani, G., et al. (2011). The mass of CoRoT-7b. ApJ, 743, 75.Google Scholar
Hinse, T. C., Michelsen, R., Jorgensen, U. G., Gózdziewski, K., and Mikkola, S. (2008). Dynamics and stability of telluric planetswithin the habitable zone of extrasolar planetary systems. Numerical simulations of test particles within the HD 4208 and HD 70642 systems. A&A, 488, 1133.Google Scholar
Hitchcock, D. R. and Lovelock, J. E. (1967). Life detection by atmospheric analysis. Icarus, 7, 149.CrossRefGoogle Scholar
Holman, M. J. and Murray, N.W. (2005). The use of transit timing to detect terrestrial-mass extrasolar planets. Science, 307, 1288.CrossRefGoogle ScholarPubMed
Holman, M. J., Fabrycky, D. C., Ragozzine, D., et al. (2010). Kepler-9: a system of multiple planets transiting a Sun-like star, confirmed by timing variations. Science, 330(6000), 51.CrossRefGoogle ScholarPubMed
Howard, A. W., Marcy, G. W., Johnson, J. A., et al. (2010). The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters. Science, 330, 653.CrossRefGoogle ScholarPubMed
Howard, A. W., Marcy, G. W., Bryson, S. T., et al. (2011). Planet occurrence within 0.25 AU of solar-type stars from Kepler. ApJ, submitted (eprint arXiv:1103.2541).Google Scholar
Ida, S. and Lin, D. N. C. (2004a). Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. ApJ, 604, 388.Google Scholar
Ida, S. and Lin, D. N. C. (2004b). Toward a deterministic model of planetary formation. II. The formation and retention of gas giant planets around starswith a range of metallicities. ApJ, 616, 567.Google Scholar
Ida, S. and Lin, D. N. C. (2005) Toward a deterministic model of planetary formation. III. Mass distribution of short-period planets around stars of various masses. ApJ, 626, 1045.Google Scholar
Ida, S. and Lin, D. N. C. (2008). Toward a deterministic model of planetary formation. IV. Effects of type I migration. ApJ, 673, 487.Google Scholar
Ida, S. and Lin, D. N. C. (2010). Toward a deterministic model of planetary formation. VI. Dynamical interaction and coagulation of multiple rocky embryos and super-Earth systems around solar-type stars. ApJ, 719, 810.Google Scholar
Johnson, J. A., Aller, K. M., Howard, A.W., and Crepp, J. R. (2010). Giant planet occurrence in the stellar mass.metallicity plane. PASP, 122, 905.CrossRefGoogle Scholar
Johnson, J. A., Butler, R. P., Marcy, G. W., et al. (2007). A new planet around an M dwarf: revealing a correlation between exoplanets and stellar mass. ApJ, 670, 833.Google Scholar
Jones, B. W. and Sleep, P. N. (2010). Habitability of exoplanetary systems with planets observed in transit. MNRAS, 407, 1259.Google Scholar
Jones, H. R. A., Butler, R. P., Tinney, C. G., et al. (2003). An exoplanet in orbit around τ1 Gruis. MNRAS, 341, 948.CrossRefGoogle Scholar
Jones, B. W., Underwood, D. R., and Sleep, P. N. (2005) Prospects for habitable “Earths” in known exoplanetary systems. ApJ, 622, 1091.Google Scholar
Jones, H. R. A., Butler, R. P., Tinney, C. G., et al. (2006). High-eccentricity planets from the Anglo-Australian Planet Search. MNRAS, 369, 249.Google Scholar
Kalas, P., Graham, J. R., Chiang, E., et al. (2008). Optical images of an exosolar planet 25 light-years from Earth. Science, 322, 1345.CrossRefGoogle ScholarPubMed
Kaltenegger, L., Traub, W. A., and Jucks, K.W. (2007). Spectral evolution of an Earth-like planet. ApJ, 658, 598.Google Scholar
Kaltenegger, L., Selsis, F., Fridlund, M., et al. (2010). Deciphering spectral fingerprints of habitable exoplanets. Astrobiol., 10, 89.CrossRefGoogle ScholarPubMed
Kasting, J. F., Whitmire, D. P., and Reynolds, R. T. (1993). Habitable zones around main sequence stars. Icarus, 101, 108.CrossRefGoogle ScholarPubMed
Latham, D. W., Rowe, J. F., Quinn, S. N., et al. (2011). A first comparison of Kepler planet candidates in single and multiple systems. ApJ Lett, 732, L24.Google Scholar
Laughlin, G., Crismani, M., and Adams, F. C. (2011). On the anomalous radii of the transiting extrasolar planets. ApJ Lett, 729, L7.Google Scholar
Launhardt, R., Henning, T., Queloz, D., et al. (2008). The ESPRI project: narrow-angle astrometry with VLTI-PRIMA. Proc. IAU Symp., 248, 417.Google Scholar
Lee, J.W., Kim, S.-L., Kim, C.-H., et al. (2009). The sdB+Meclipsing system HW Virginis and its circumbinary planets. ApJ, 137, 3181.CrossRefGoogle Scholar
Lineweaver, C. H. and Grether, D. (2003). What fraction of Sun-like stars have planets?ApJ, 598, 1350.Google Scholar
Lippincott, S. L. (1960). The unseen companion of the fourth nearest star, Lalande 21185. ApJ, 65, 349.CrossRefGoogle Scholar
Lissauer, J. J., and Stevenson, D. J. (2007). Formation of giant planets. Protostars and Planets V, ed. B., Reipurth, D., Jewitt, and K., Keil. Tuscon, AZ: University of Arizona Press, p. 591.Google Scholar
Lissauer, J. J., Fabrycky, D. C., Ford, E. B., et al. (2011a). A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature, 470, 53.Google Scholar
Lissauer, J. J., Ragozzini, D., Fabrycky, D. E., et al. (2011b). Architecture and dynamics of Kepler's candidate multiple transiting planet systems. ApJS, 197, a8.CrossRefGoogle Scholar
Lovis, C., Mayor, M., Pepe, F., et al. (2006). An extrasolar planetary system with three Neptune-mass planets. Nature, 441(7091), 305.Google Scholar
Malbet, F. (2011). High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT). Exp. Astron., in press (eprint arXiv:1107.3643).Google Scholar
Malbet, F., Sozzetti, A., Lazorenko, P., et al. (2010). Review from the Blue Dots Astrometry Working Group. ASP Conf. Ser., 430, 84.Google Scholar
Marley, M. S., Fortney, J., Seager, S., and Barman, T. (2007). Atmospheres of extrasolar giant planets. Protostars and Planets V, ed. B., Reipurth, D., Jewitt, and K., Keil. Tuscon, AZ: University of Arizona Press, p. 733.Google Scholar
Marois, C., Macintosh, B., Barman, T., et al. (2008). Direct imaging of multiple planets orbiting the star HR 8799. Science, 322, 1348.CrossRefGoogle ScholarPubMed
Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B., and Barman, T. (2010). Images of a fourth planet orbiting HR 8799. Nature, 468, 1080.Google Scholar
Martioli, E., McArthur, B. E., Benedict, G. F., et al. (2010). The mass of the candidate exoplanet companion to HD 136118 from Hubble Space Telescope astrometry and highprecision radial velocities. ApJ, 708, 625.Google Scholar
Mayer, L., Quinn, T., Wadsley, J., and Stadel, J. (2002). Formation of giant planets by fragmentation of protoplanetary disks. Science, 298, 1756.CrossRefGoogle ScholarPubMed
Mayor, M. and Queloz, D. (1995). A Jupiter-mass companion to a solar-type star. Nature, 378, 355.Google Scholar
Mayor, M., Marmier, M., Lovis, C., et al. (2009). The HARPS search for southern extrasolar planets. XVIII. An Earth-mass planet in the GJ 581 planetary system. A&A, 507, 487.Google Scholar
McArthur, B. E., Endl, M., Cochran, W. D., et al. (2004). Detection of a Neptune-mass planet in the ρ1 Cancri system using the Hobby-Eberly Telescope. ApJ Lett, 614, L81.Google Scholar
McArthur, B. E., Benedict, G. F., Barnes, R., et al. (2010). New observational constraints on the ν Andromedae system with data from the Hubble Space Telescope and Hobby-Eberly Telescope. ApJ, 715, 1203.Google Scholar
Menou, K. and Tabachnik, S. (2003). Dynamical habitability of known extrasolar planetary systems. ApJ, 583, 473.Google Scholar
Mordasini, C., Alibert, Y., Benz, W., and Naef, D. (2009). Extrasolar planet population synthesis. II. Statistical comparison with observations. A&A, 501, 1161.Google Scholar
Muraki, Y., Han, C., Bennett, D. P., et al. (2011) Discovery and mass measurements of a cold, 10-Earth mass planet and its host star. ApJ, 741, a22.Google Scholar
Oppenheimer, B. R., Kulkarni, S. R., and Stauffer, J. R. (2000). Brown dwarfs. Protostars and Planets IV, ed. B., Reipurth, D., Jewitt, and K., Keil. Tuscon, AZ: University of Arizona Press, p. 1313.Google Scholar
Papaloizou, J. C. B.,Nelson, R. P., Kley, W., Masset, F. S., and Artymowicz, P. (2007). Disk. planet interactions during planet formation. Protostars and Planets V, ed. B., Reipurth, D., Jewitt, and K., Keil. Tuscon, AZ: University of Arizona Press, p. 655.Google Scholar
Pepe, F. A. and Lovis, C. (2008). From HARPS to CODEX: exploring the limits of Doppler measurements. Physica Scripta, 130, 014007.Google Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., et al. (1996). Formation of the giant planets by concurrent accretion of solids and gas. Icarus, 124, 62.CrossRefGoogle Scholar
Pont, F., Husnoo, N., Mazeh, T., and Fabrycky, D. (2011). Determining eccentricities of transiting planets: a divide in the mass–period plane. MNRAS, 414, 1278.Google Scholar
Pravdo, S. H. and Shaklan, S. B. (2009). An ultracool star's candidate planet. ApJ, 700, 623.Google Scholar
Ragozzine, D. and Holman, M. J. (2010). The value of systems with multiple transiting planets. ApJ, submitted (eprint arXiv:1006.3727).Google Scholar
Reffert, S. and Quirrenbach, A. (2011). Mass constraints on substellar companion candidates from the re-reduced Hipparcos intermediate astrometric data: nine confirmed planets and two confirmed brown dwarfs. A&A, 527, A140.Google Scholar
Reuyl, D. and Holmberg, E. (1943). On the existence of a third component in the system 70 Ophiuchi. ApJ, 97, 41.CrossRefGoogle Scholar
Ribas, I., and Miralda-Escudé, J. (2007). The eccentricity–mass distribution of exoplanets: signatures of different formation mechanisms?A&A, 464, 779.Google Scholar
Sahlmann, J., Segransan, D., Queloz, D., et al. (2011). Search for brown-dwarf companions of stars. A&A, 525, A95+.Google Scholar
Santos, N. C., Israelian, G., and Mayor, M. (2004). Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation. A&A, 415, 1153.Google Scholar
Seager, S. and Deming, D. (2010). Exoplanet atmospheres. ARAA, 48, 631.CrossRefGoogle Scholar
Seager, S., Turner, E. L., Schafer, J., and Ford, E. B. (2005). Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiol., 5, 372.CrossRefGoogle ScholarPubMed
Sozzetti, A. (2005). Astrometric methods and instrumentation to identify and characterize extrasolar planets: a review. PASP, 117, 1021.CrossRefGoogle Scholar
Sozzetti, A. (2010). Detection and characterization of planetary systems with μas astrometry. EAS Publ. Ser., 42, 55.CrossRefGoogle Scholar
Sozzetti, A. (2011). Astrometry and exoplanets: the Gaia era and beyond. EAS Publ. Ser., 45, 273.CrossRefGoogle Scholar
Sozzetti, A. and Desidera, S. (2010). Hipparcos preliminary astrometric masses for the two close-in companions to HD 131664 and HD 43848. A brown dwarf and a low-mass star. A&A, 509, A103.Google Scholar
Sozzetti, A., Casertano, S., Lattanzi, M. G., and Spagna, A. (2003). The Gaia astrometric survey of the solar neighborhood and its contribution to the target database for DARWIN/TPF. ESA Special Publication SP539, 605.
Silvotti, R., Schuh, S., Janulis, R., et al. (2007). A giant planet orbiting the “extreme horizontal branch” star V391 Pegasi. Nature, 449, 189.Google Scholar
Sozzetti, A., Torres, G., Latham, D. W., et al. (2009). A Keck HIRES Doppler search for planets orbitingmetal-poor dwarfs. II. On the frequency of giant planets in the metal-poor regime. ApJ, 697, 544.Google Scholar
Strand, K. A. (1943). 61 Cygni as a triple system. PASP, 55, 29.CrossRefGoogle Scholar
Tabachnik, S. and Tremaine, S. (2002). Maximum-likelihood method for estimating the mass and period distributions of extrasolar planets. MNRAS, 335, 151.CrossRefGoogle Scholar
Tinetti, G., Vidal-Madjar, A., Liang, M.-C., et al. (2007). Water vapour in the atmosphere of a transiting extrasolar planet. Nature, 448, 169.Google Scholar
Tinetti, G., Griffith, C. A., Swain, M. R., et al. (2010). Exploring extrasolar worlds: from gas giants to terrestrial habitable planets. Faraday Discuss., 147, 369.CrossRefGoogle ScholarPubMed
Tremaine, S. and Dong, S. (2011). The statistics of multi-planet systems. AJ, 143, a94.CrossRefGoogle Scholar
Udry, S. and Santos, N. C. (2007). Statistical properties of exoplanets. ARAA, 45, 397.CrossRefGoogle Scholar
Udry, S., Mayor, M., and Santos, N. C. (2003). Statistical properties of exoplanets. I. The period distribution: constraints for the migration scenario. A&A, 407, 369.Google Scholar
Udry, S., Bonfils, X., Delfosse, X., et al. (2007). The HARPS search for southern extra-solar planets. XI. Super-Earths (5 and 8 M.) in a 3-planet system. A&A, 469, L43.Google Scholar
Valencia, D. (2011). Composition of transiting and transiting-only super-Earths. Proc. IAU Symp., 276, 181.Google Scholar
Valencia, D., Sasselov, D. D., and O'Connell, R. J. (2007). Detailed models of super-Earths: how well can we infer bulk properties?ApJ, 665, 1413.Google Scholar
Valencia, D., Ikoma, M., Guillot, T., and Nettelmann, N. (2010). Composition and fate of short-period super-Earths. The case of CoRoT-7b. A&A, 516, A20.Google Scholar
van de Kamp, P. (1963). Astrometric study of Barnard's star from plates taken with the 24-inch Sproul refractor. ApJ, 68, 515.CrossRefGoogle Scholar
Wittenmyer, R. A., Tinney, C. G., O'Toole, S. J., Jones, H. R. A., Butler, R. P., Carter, B. D., and Bailey, J. (2011). On the frequency of Jupiter analogs. ApJ, 727, a102.Google Scholar
Wright, J. T., Upadhyay, S., Marcy, G. W., et al. (2009). Ten new and updated multiplanet systems and a survey of exoplanetary systems. ApJ, 693, 1084.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×