Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T14:32:32.248Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2014

Eric Priest
Affiliation:
University of St Andrews, Scotland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbett, W. P. and Fisher, G. H. (2003). A coupled model for the emergence of active region magnetic flux into the solar corona. Astrophys. J. 582, 475–485.CrossRefGoogle Scholar
Acheson, D. J. (1978). On the instability of toroidal magnetic fields and differential rotation in stars. Phil.Trans.Roy.Soc. Lond. A 289, 459–500.CrossRefGoogle Scholar
Acheson, D. J. (1979). Instability by magnetic buoyancy. Solar Phys. 62, 23–50.CrossRefGoogle Scholar
Alexander, D. and Fletcher, L. (1999). High-resolution observations of plasma jets in the solar corona. Solar Phys. 190, 167–184.CrossRefGoogle Scholar
Altschuler, M. D. and Newkirk, G. (1969). Magnetic fields and the structure of the solar corona. I. Methods of calculating coronal fields. Solar Phys. 9, 131–149.CrossRefGoogle Scholar
Aly, J. J. (1991). How much energy can be stored in a three-dimensional force-free magnetic field?Astrophys. J. Letts. 375, L61–L64.CrossRefGoogle Scholar
Amari, T. and Aly, J. J. (1989). Interaction between a line current and a two-dimensional constant-alpha force-free field – an analytical model for quiescent prominences. Astron. Astrophys. 208, 261–270.Google Scholar
Amari, T. and Aly, J. J. (1990). Current sheets in two-dimensional potential magnetic fields. II. Asymptotic limits of indefinitely sheared force-free fields. Astron. Astrophys. 227, 628–633.Google Scholar
Amari, T., Aly, J. J., Luciani, J. F., Boulmezaoud, T. Z., and Mikic, Z. (1997). Reconstructing the solar coronal magnetic field as a force-free magnetic field. Solar Phys. 174, 129–149.CrossRefGoogle Scholar
Amari, T., Aly, J. J., Mikic, Z., and Linker, J. (2007). Coronal mass ejection initiation and complex topology configurations in the flux cancellation and breakout models. Astrophys. J. Letts. 671, L189–L192.CrossRefGoogle Scholar
Amari, T., Aly, J. J., Mikic, Z., and Linker, J. (2010). Coronal mass ejection initiation: on the nature of the flux cancellation model. Astrophys. J. Letts. 717, L26–L30.CrossRefGoogle Scholar
Amari, T., Boulmezaoud, T. Z., and Aly, J. J. (2006). Well-posed reconstruction of the solar coronal magnetic field. Astron. Astrophys. 446, 691–705.CrossRefGoogle Scholar
Amari, T., Boulmezaoud, T. Z., and Maday, Y. (1998). A regularization method for the extrapolation of the photospheric solar magnetic field. I. Linear force-free field. Astron. Astrophys. 339, 252–260.Google Scholar
Amari, T., Boulmezaoud, T. Z., and Mikic, Z. (1999). An iterative method for the reconstruction of the solar coronal magnetic field. I. Method for regular solutions. Astron. Astrophys. 350, 1051–1059.Google Scholar
Amari, T. and Luciani, J. F. (2000). Helicity redistribution during relaxation of astrophysical plasmas. Phys. Rev. Letts. 84, 1196–1199.CrossRefGoogle ScholarPubMed
Amari, T., Luciani, J. F., and Aly, J. J. (2005). Non-current-free coronal closure of subphotospheric MHD models. Astrophys. J. Letts. 629, L37–L40.CrossRefGoogle Scholar
Amari, T., Luciani, J. F., Mikic, Z., and Linker, J. (2000). A twisted flux rope model for coronal mass ejections and two-ribbon flares. Astrophys. J. 529, L49–L52.CrossRefGoogle ScholarPubMed
Anderson, J. E. (1963). MHD Shock Waves. (MIT Press, Cambridge, Mass.).Google Scholar
Antiochos, S. K. (1998). The magnetic topology of solar eruptions. Astrophys. J. Letts. 502, L181–L184.CrossRefGoogle Scholar
Antiochos, S. K., Dahlburg, R., and Klimchuk, J. A. (1994). The magnetic field of solar prominences. Astrophys. J. 420, L41–L44.CrossRefGoogle Scholar
Antiochos, S. K., DeVore, C. R., Karpen, J. T., and Mikic, Z. (2007). Structure and dynamics of the Sun's open magnetic field. Astrophys. J. 671, 936–946.CrossRefGoogle Scholar
Antiochos, S. K., DeVore, C. R., and Klimchuk, J. A. (1999). A model for solar coronal mass ejections. Astrophys. J. 510, 485–493.CrossRefGoogle Scholar
Antiochos, S. K., Karpen, J. T., DeLuca, E. E., Golub, L., and Hamilton, P. (2003). Constraints on active region coronal heating. Astrophys. J. 590, 547–553.CrossRefGoogle Scholar
Antiochos, S. K. and Klimchuk, J. A. (1991). A model for the formation of solar prominences. Astrophys. J. 378, 372–377.CrossRefGoogle Scholar
Antiochos, S. K., MacNeice, P. J., and Spicer, D. S. (2000). The thermal nonequilibrium of prominences. Astrophys. J. 536, 494–499.CrossRefGoogle Scholar
Antiochos, S. K., MacNeice, P. J., Spicer, D. S., and Klimchuk, J. A. (1999). The dynamic formation of prominence condensations. Astrophys. J. 512, 985–991.CrossRefGoogle Scholar
Antiochos, S. K., Mikic, Z., Titov, V. S., Lionello, R., and Linker, J. A. (2011). A model for the sources of the slow solar wind. Astrophys. J. 731, 112.CrossRefGoogle Scholar
Antiochos, S. K. and Sturrock, P. A. (1978). Evaporative cooling of flare plasma. Astrophys. J. 220, 1137–1143.CrossRefGoogle Scholar
Antolin, P., Shibata, K., and Vissers, G. (2010). Coronal rain as a marker for coronal heating mechanisms. Astrophys. J. 716, 154–166.CrossRefGoogle Scholar
Antolin, P., Vissers, G., and Rouppe, van der Voort|L. (2012). On-disk coronal rain. Solar Phys. 280, 457–474.CrossRefGoogle Scholar
Anzer, U. (1968). The stability of force-free magnetic fields with cylindrical symmetry in the context of solar flares. Solar Phys. 3, 298–315.CrossRefGoogle Scholar
Anzer, U. (1972). A method to calculate electric currents in quiescent prominences. Solar Phys. 24, 324–335.CrossRefGoogle Scholar
Anzer, U. (1978). Can coronal loop transients be driven magnetically?Solar Phys. 57, 111–118.CrossRefGoogle Scholar
Arber, T. D., Botha, G. J. J., and Brady, C. S. (2009). Effect of solar chromospheric neutrals on equilibrium field structures. Astrophys. J. 705, 1183–1188.CrossRefGoogle Scholar
Arber, T. D., Haynes, M., and Leake, J. E. (2007). Emergence of a flux tube through a partially ionized solar atmosphere. Astrophys. J. 666, 541–546.CrossRefGoogle Scholar
Archontis, V. (2008). Magnetic flux emergence in the Sun. J. Geophys. Res. 113, 12, 3–15.CrossRefGoogle Scholar
Archontis, V. and Hood, A. W. (2008). A flux emergence model for solar eruptions. Astrophys. J. Letts. 674, L113–L116.CrossRefGoogle Scholar
Archontis, V. and Hood, A. W. (2010). Flux emergence and coronal eruption. Astron. Astrophys. 514, A56.CrossRefGoogle Scholar
Archontis, V. and Hood, A. W. (2012). Magnetic flux emergence: a precursor of solar plasma expulsion. Astron. Astrophys. 537, A62.CrossRefGoogle Scholar
Arendt, U. and Schindler, K. (1988). On the existence of three-dimensional magnetohydrostatic equilibria. Astron. Astrophys. 204, 229–234.Google Scholar
Arnol'd, V. (1974). The asymptotic Hopf invariant and its applications. Sel. Math. Sov. 5, 327–345.Google Scholar
Arregui, I., Oliver, R., and Ballester, J. L. (2012). Prominence oscillations. Liv. Rev. Solar Phys. 9, 2.Google Scholar
Asai, A., Masuda, S., Yokoyama, T., Shimojo, M., Isobe, H., Kurokawa, H., and Shibata, K. (2002). Difference between spatial distributions of the Ha kernels and hard X-ray sources in a solar flare. Astrophys. J. Letts. 578, L91–L94.CrossRefGoogle Scholar
Asai, A., Shimojo, M., Isobe, H., Morimoto, T., Yokoyama, T., Shibasaki, K., and Nakajima, H. (2001). Periodic acceleration of electrons in the 1998 November 10 solar flare. Astrophys. J. Letts. 562, L103–L106.CrossRefGoogle Scholar
Asai, A., Yokoyama, T., Shimojo, M., and Shibata, K. (2004). Downflow motions associated with impulsive nonthermal emissions observed in the 2002 July 23 solar flare. Astrophys. J. Letts. 605, L77–L80.CrossRefGoogle Scholar
Aschwanden, M. J. (2001). An evaluation of coronal heating models for active regions based on Yohkoh, SOHO, and TRACE observations. Astrophys. J. 560, 1035–1044.CrossRefGoogle Scholar
Aschwanden, M. J. and Benz, A. O. (1997). Electron densities in solar flare loops, chromospheric evaporation upflows, and acceleration sites. Astrophys. J. 480, 825–839.CrossRefGoogle Scholar
Aschwanden, M. J., Fletcher, L., Schrijver, C. J., and Alexander, D. (1999). Coronal loop oscillations observed with the Transition Region and Coronal Explorer. Astrophys. J. 520, 880–894.CrossRefGoogle Scholar
Aschwanden, M. J., Schrijver, C. J., and Alexander, D. (2001). Modeling of coronal EUV loops observed with TRACE. I. Hydrostatic solutions with nonuniform heating. Astrophys. J. 550, 1036–1050.CrossRefGoogle Scholar
Aschwanden, M. J., Stern, R. A., and Güdel, M. (2008). Scaling laws of solar and stellar flares. Astrophys. J. 672, 659–673.CrossRefGoogle Scholar
Aschwanden, M. J., Tarbell, T. D., Nightingale, R. W., Schrijver, C. J., Title, A., Kankelborg, C. C., Martens, P., and Warren, H. P. (2000). Time variability of the “Quiet” Sun observed with TRACE. II. Physical parameters, temperature evolution, and energetics of extreme-ultraviolet nanoflares. Astrophys. J. 535, 1047–1065.Google Scholar
Asplund, M., Grevesse, N., and Sauval, A. J. (2005). The solar chemical composition. Astron.Soc.Pac.Conf.Ser .336, 25–38.Google Scholar
Atanasiu, C. V., Guünter, S., Lackner, K., and Miron, I. G. (2004). Analytical solutions to the Grad-Shafranov equation. Phys. Plasmas 11, 3510–3518.CrossRefGoogle Scholar
Athay, R. G. and Moreton, G. E. (1961). Impulsive phenomena of the solar atmosphere. I. Some optical events associated with flares showing explosive phase. Astrophys. J. 133, 935–945.CrossRefGoogle Scholar
Aulanier, G., DeLuca, E. E., Antiochos, S. K., McMullen, R. A., and Golub, L. (2000). The topology and evolution of the Bastille Day flare. Astrophys. J. 540, 1126–1142.CrossRefGoogle Scholar
Aulanier, G. and Demoulin, P. (1998). 3D magnetic configurations supporting prominences. I. The natural presence of lateral feet. Astron. Astrophys. 329, 1125–1137.Google Scholar
Aulanier, G. and Demoulin, P. (2003). Amplitude and orientation of prominence magnetic fields from constant-alpha magnetohydrostatic models. Astron. Astrophys. 402, 769–780.CrossRefGoogle Scholar
Aulanier, G., Demoulin, P., Mein, N., van Driel-Gesztelyi, L., Mein, P., and Schmieder, B. (1999). 3D magnetic configurations supporting prominences. III. Evolution of fine structures observed in a filament channel. Astron. Astrophys. 342, 867–880.Google Scholar
Aulanier, G., Demoulin, P., Schmieder, B., Fang, C., and Tang, Y. H. (1998). Magnetohydrostatic model of a bald-patch flare. Solar Phys. 183, 369-388.CrossRefGoogle Scholar
Aulanier, G., Demoulin, P., van Driel-Gesztelyi, L., Mein, P., and Deforest, C. (1998). 3D magnetic configurations supporting prominences. II. The lateral feet as a perturbation of a twisted flux-tube. Astron. Astrophys. 335, 309–322.Google Scholar
Aulanier, G., DeVore, C., and Antiochos, S. K. (2002). Prominence magnetic dips in three-dimensional sheared arcades. Astrophys. J. Letts. 567, L97–L101.CrossRefGoogle Scholar
Aulanier, G., Golub, L., DeLuca, E. E., Cirtain, J. W., Kano, R., Lundquist, L. L., Narukage, N., Sakao, T., and Weber, M. A. (2007). Slipping magnetic reconnection in coronal loops. Science 318, 1588–1591.CrossRefGoogle ScholarPubMed
Aulanier, G., Pariat, E., and Demoulin, P. (2005). Current-sheet formation in quasi-separatrix layers and hyperbolic flux tubes. Astron. Astrophys. 444, 961–976.CrossRefGoogle Scholar
Aulanier, G., Pariat, E., Demoulin, P., and DeVore, C. R. (2006). Slip-running reconnection in quasi-separatrix layers. Solar Phys. 238, 347–376.CrossRefGoogle Scholar
Aulanier, G. and Schmieder, B. (2002). The magnetic nature of wide EUV filament channels and their role in the mass loading of CMEs. Astron. Astrophys. 386, 1106–1122.CrossRefGoogle Scholar
Aulanier, G., Srivastava, N., and Martin, S. F. (2000). Model prediction for an observed filament. Astrophys. J. 543, 447–456.CrossRefGoogle Scholar
Aulanier, G., Torok, T., Demoulin, P., and DeLuca, E. E. (2010). Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys. J. 708, 314–333.CrossRefGoogle Scholar
Aurass, H., Vrsnak, B., and Mann, G. (2002). Shock-excited radio burst from reconnection outflow jet?Astron. Astrophys. 384, 273–281.CrossRefGoogle Scholar
Avrett, E. H. and Loeser, R. (2008). Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of Hydrogen, Carbon, and Oxygen. Astrophys. J. Suppl. 175, 229–276.CrossRefGoogle Scholar
Axford, W. and McKenzie, J. (1992). The origin of high-speed solar-wind streams. In Solar Wind Seven, E., Marsch, and R., Schwenn, eds. COSPAR Colloquia Series, vol. 3. (Pergamon Press Ltd, Oxford), 1–5.Google Scholar
Babcock, H. W. (1961). The topology of the Sun's magnetic field and the 22-year cycle. Astrophys. J. 133, 572–587.CrossRefGoogle Scholar
Babcock, H. W. and Babcock, H. D. (1952). Mapping the magnetic fields of the Sun. Pub. Astron.Soc.Pac. 64, 282–287.CrossRefGoogle Scholar
Babcock, H. W. and Babcock, H. D. (1955). The Sun's magnetic field, 1952–1954. Astrophys. J. 121, 349–366.CrossRefGoogle Scholar
Bak-Steslicka, U., Gibson, S. E., Fan, Y. E., Bethge, C. W., Forland, B., and Rachmeler, L. A. (2013). The magnetic structure of solar prominence cavities: New observational signature revealed by coronal magnetometry. Astrophys. J. Letts., 770, L28.CrossRefGoogle Scholar
Bagenal, F. and Gibson, S. (1991). Modeling the large-scale structure of the solar corona. J. Geophys. Res. 96, 17663–17674.CrossRefGoogle Scholar
Balbus, S. A. and Hawley, J. F. (1991). A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214–222.CrossRefGoogle Scholar
Baldwin, P. and Roberts, P. H. (1972). On resistive instabilities. Phil.Trans.Roy.Soc.Lond .272, 303–330.CrossRefGoogle Scholar
Baliunas, S. L., Donahue, R. A., Soon, W. H., Horne, J. H., Frazer, J., Woodard-Eklund, L., Bradford, M., Rao, L. M., Wilson, O. C., Zhang, Q., Bennett, W., Briggs, J., Carroll, S. M., Duncan, D. K., Figueroa, D., Lanning, H. H., Misch, T., Mueller, J., Noyes, R. W., Poppe, D., Porter, A. C., Robinson, C. R., Russell, J., Shelton, J. C., Soyumer, T., Vaughan, A. H., and Whitney, J. H. (1995). Chromospheric variations in main-sequence stars. Astrophys. J. 438, 269–287.CrossRefGoogle Scholar
Ballester, J. L. (2006). Seismology of prominence fine structures: observations and theory. Space Sci. Rev. 122, 129–135.CrossRefGoogle Scholar
Ballester, J. L. and Priest, E. R. (1987). A 2D model for a solar prominence. Solar Phys. 109, 335–350.CrossRefGoogle Scholar
Ballester, J. L. and Priest, E. R. (1989). Model for the fibril structure of solar prominences. Astron. Astrophys. 225, 213–221.Google Scholar
Banerjee, D., Erdelyi, R., Oliver, R., and O'Shea, E. (2007). Present and future observing trends in atmospheric magnetoseismology. Solar Phys. 246, 3–29.CrossRefGoogle Scholar
Banerjee, D., Perez-Suarez, D., and Doyle, J. G. (2009). Signatures of Alfven waves in the polar coronal holes as seen by EIS/Hinode. Astron. Astrophys. 501, L15–L18.CrossRefGoogle Scholar
Bareford, M. R., Browning, P. K., and van der Linden, R. A. M. (2011). The flare-energy distributions generated by kink-unstable ensembles of zero-net-current coronal loops. Solar Phys. 273, 93–115.CrossRefGoogle Scholar
Barta, M., Karlicky, M., and Zemlicka, R. (2008). Plasmoid dynamics in flare reconnection and the frequency drift of the drifting pulsating structure. Solar Phys. 253, 173–189.CrossRefGoogle Scholar
Basu, S. and Antia, H. M. (2003). Changes in solar dynamics from 1995 to 2002. Astrophys. J. 585, 553–565.CrossRefGoogle Scholar
Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. (Cambridge University Press, Cambridge, UK).Google Scholar
Bateman, G. (1978). MHD Instabilities. (MIT Press, Cambridge, USA).Google Scholar
Baty, H., Priest, E. R., and Forbes, T. G. (2009a). Effect of nonuniform resistivity in Petschek reconnection. Phys. Plasmas 13, 022312/1–7.Google Scholar
Baty, H., Priest, E. R., and Forbes, T. G. (2009b). Petschek reconnection with a nonlocalized resistivity. Phys. Plasmas 16, 012102/1–6.Google Scholar
Baum, P. and Bratenahl, A. (1980). Flux linkages of bipolar sunspot groups – a computer study. Solar Phys. 67, 245–258.CrossRefGoogle Scholar
Bazer, J. and Ericson, W. B. (1959). Hydromagnetic shocks. Astrophys. J. 129, 758–785.CrossRefGoogle Scholar
Beck, J. G. and Schou, J. (2000). Supergranulation rotation. Solar Phys. 193, 333–343.CrossRefGoogle Scholar
Beckers, J. M. (1972). Solar spicules. Ann. Rev. Astron. Astrophys. 10, 73–100.CrossRefGoogle Scholar
Beckers, J. M. and Schultz, R. B. (1972). Oscillatory motions in sunspots. Solar Phys. 27, 61–70.CrossRefGoogle Scholar
Beckers, J. M. and Tallant, P. (1969). Chromospheric inhomogeneities in sunspot umbrae. Solar Phys. 7, 351–365.CrossRefGoogle Scholar
Beer, J. (2000). Long-term indirect indices of solar variability. Space Sci. Rev. 94, 53–66.CrossRefGoogle Scholar
Beer, J., Tobias, S., and Weiss, N. O. (1998). An active Sun throughout the Maunder minimum. Solar Phys. 181, 237–249.CrossRefGoogle Scholar
Belien, A. J. C., Martens, P. C. H., and Keppens, R. (1999). Coronal heating by resonant absorption: the effects of chromospheric coupling. Astrophys. J. 526, 478–493.CrossRefGoogle Scholar
Bellot Rubio, L. R., Balthasar, H., Collados, M., and Schlichenmaier, R. (2003). Field-aligned Evershed flows in the photosphere of a sunspot penumbra. Astron. Astrophys. 403, L47–L50.CrossRefGoogle Scholar
Bender, C. M. and Orszag, S. A. (1999). Advanced Mathematical Methods for Scientists and Engineers. (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Benz, A. O. and Krucker, S. (2002). Energy distribution of microevents in the quiet solar corona. Astrophys. J. 568, 413–421.CrossRefGoogle Scholar
Berdyugina, S. V. (2005). Starspots: a key to the stellar dynamo. Liv. Rev. in Solar Phys. 2, 8, 1–46.Google Scholar
Berger, M. A. (1984). Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30, 79–104.CrossRefGoogle Scholar
Berger, M. A. (1988). An energy formula for nonlinear force-free magnetic fields. Astron. Astrophys. 201, 355–361.Google Scholar
Berger, M. A. (1999). Magnetic helicity in space physics. In Magnetic Helicity in Space and Laboratory Plasmas, M. R., Brown, R. C., Canfield, and A. A., Pevtsov, eds. (Washington, DC), 1–11.Google Scholar
Berger, M. A. and Field, G. (1984). The topological properties of magnetic helicity. J. Fluid Mech. 147, 133–148.CrossRefGoogle Scholar
Berger, T. E., De Pontieu, B., Fletcher, L., Schrijver, C. J., Tarbell, T. D., and Title, A. M. (1999). What is moss?Solar Phys. 190, 409–418.CrossRefGoogle Scholar
Berger, T. E., Liu, W., and Low, B. C. (2012). SDO/AIA detection of solar prominence formation within a coronal cavity. Astrophys. J. Letts. 758, L37.CrossRefGoogle Scholar
Berger, T.E., Rouppe van der Voort, L., and Löfdahl, M. (2007). Contrast analysis of solar faculae and magnetic bright points. Astrophys. J. 661, 1272–1288.CrossRefGoogle Scholar
Berger, T.E., RouppevanderVoort, L., Löofdahl, M. G., Carlsson, M., Fossum, A., Hansteen, V. H., Marthinussen, E., Title, A., and Scharmer, G. (2004). Solar magnetic elements at 0.1 arcsec resolution. General appearance and magnetic structure. Astron. Astrophys. 428, 613–628.CrossRefGoogle Scholar
Berger, T. E., Shine, R. A., Slater, G. L., Tarbell, T. D., Title, A. M., Okamoto, T. J., Ichimoto, K., Katsukawa, Y., Suematsu, Y., Tsuneta, S., Lites, B. W., and Shimizu, T. (2008). Hinode SOT observations of solar quiescent prominence dynamics. Astrophys. J. Letts. 676, L89–L92.CrossRefGoogle Scholar
Berger, T. E., Slater, G., Hurlburt, N., Shine, R., Tarbell, T., Title, A., Lites, B. W., Okamoto, T. J., Ichimoto, K., Katsukawa, Y., Magara, T., Suematsu, Y., and Shimizu, T. (2010). Quiescent prominence dynamics observed with the Hinode Solar Optical Telescope. I. Turbulent upflow plumes. Astrophys. J. 716, 1288–1307.CrossRefGoogle Scholar
Berger, T. E., Testa, P., Hillier, A., Boerner, P., Low, B. C., Shibata, K., Schrijver, C., Tarbell, T., and Title, A. (2011). Magneto-thermal convection in solar prominences. Nature 472, 197–200.CrossRefGoogle ScholarPubMed
Berghmans, D. and Clette, F. (1999). Active region EUV transient brightenings – first Results by EIT of SOHO JOP80. Solar Phys. 186, 207–229.CrossRefGoogle Scholar
Bernstein, I., Frieman, E., Kruskal, M. D., and Kulsrud, R. M. (1958). An energy principle for hydromagnetic stability problems. Proc.Roy.Soc.Lond. A244, 17–40.Google Scholar
Beveridge, C. and Longcope, D. W. (2006). A hierarchical application of the minimum current corona. Astrophys. J. 636, 453–461.CrossRefGoogle Scholar
Bewsher, D., Innes, D. E., Parnell, C. E., and Brown, D. S. (2005). Comparison of blinkers and explosive events: a case study. Astron. Astrophys. 432, 307–317.CrossRefGoogle Scholar
Bhattacharjee, A., Huang, Y. M., Yang, H., and Rogers, B. (2009). Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16, 11 (Nov.), 112102.CrossRefGoogle Scholar
Biermann, L. (1941). Der gegenwrtige Stand der Theorie konvektiver Sonnenmodelle. Vierteljahresschr. Astron. Ges. 76, 194–200.Google Scholar
Biermann, L. (1946). Zur Deutung der chromosphaörischen Turbulenz und des Exzesses der UV-Strahlung der Sonne. Naturwissenschaften 33, 118–119.CrossRefGoogle Scholar
Biermann, L. (1951). Kometenschweife und solare Korpuskularstrahlung. Zeitschrift fr Astrophysik 29, 274–286.Google Scholar
Biernat, H. K. (1987). Unsteady Petschek reconnection. J. Geophys. Res. 92, 3392–3396.CrossRefGoogle Scholar
Bineau, M. (1972). Existence of force-free magnetic fields. Comm. on Pure and Applied Mathematics 25, 77.CrossRefGoogle Scholar
Bingert, S. and Peter, H. (2011). Intermittent heating in the solar corona employing a 3D MHD model. Astron. Astrophys. 530, A112.CrossRefGoogle Scholar
Birn, J., Drake, J. F., Shay, M. A., Rogers, B. N., Denton, R. E., Hesse, M., Kuznetsova, M., Ma, Z. W., Bhattacharjee, A., Otto, A., and Pritchett, P. L. (2001). Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715–3720.Google Scholar
Birn, J., Goldstein, H., and Schindler, K. (1978). A theory of the onset of solar eruptive processes. Solar Phys. 57, 81–101.CrossRefGoogle Scholar
Birn, J., Hesse, M., and Schindler, K. (1989). Filamentary structure of a three-dimensional plasmoid. J. Geophys. Res. 94, 241–251.CrossRefGoogle Scholar
Birn, J. and Priest, E. R. (2007). Reconnection of Magnetic Fields: MHD and Collisionless Theory and Observations. (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Biskamp, D. (1982). Effect of secondary tearing instability on the coalescence of magnetic islands. Phys. Lett 87A, 357–360.Google Scholar
Biskamp, D. (1986). Magnetic reconnection via current sheets. Phys. Fluids 29, 1520–1531.CrossRefGoogle Scholar
Biskamp, D. (1993). Nonlinear Magnetohydrodynamics. (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Biskamp, D. (1994). Magnetic reconnection. Physics Reports 237, 4, 179–247.CrossRefGoogle Scholar
Bloomfield, D. S., Lagg, A., and Solanki, S. K. (2007). The nature of running penumbral waves revealed. Astrophys. J. 671, 1005–1012.CrossRefGoogle Scholar
Bobra, M. G., van Ballegooijen, A. A., and DeLuca, E. E. (2008). Modeling nonpotential magnetic fields in solar active regions. Astrophys. J. 672, 1209–1220.CrossRefGoogle Scholar
Bobrova, N. A. and Syrovatsky, S. I. (1979). Singular lines of one-dimensional force-free magnetic fields. Solar Phys. 61, 379–387.CrossRefGoogle Scholar
Bogdan, T. J., Carlsson, M., Hansteen, V. H., McMurry, A., Rosenthal, C. S., Johnson, M., Petty-Powell, S., Zita, E. J., Stein, R. F., Mcintosh, S. W., and Nordlund, A. (2003). Waves in the magnetized solar atmosphere. II. Waves from localized sources in magnetic flux concentrations. Astrophys. J. 599, 626–660.CrossRefGoogle Scholar
Bogdan, T. J. and Judge, P. G. (2006). Observational aspects of sunspot oscillations. Phil. Trans. Roy. Soc. Lond. Series A 364, 313–331.Google ScholarPubMed
Bogdan, T. J. and Knölker, M. (1991). Scattering of acoustic waves from a magnetic flux tube embedded in a radiating fluid. Astrophys. J. 369, 219–2236.CrossRefGoogle Scholar
Bogdan, T. J. and Low, B. C. (1986). The three-dimensional structure of magnetostatic atmospheres. II – Modeling the large-scale corona. Astrophys. J. 306, 271–283.CrossRefGoogle Scholar
Böhm-Vitense, Z. (1958). Uber die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Zeitschrift fur Astrophysik 46, 108–143.Google Scholar
Bommier, V. and Leroy, J. L. (1998). Global pattern of the magnetic field vectors above neutral lines from 1974 to 1982: Pic-du-Midi observations of prominences. Astron.Soc.Pac.Conf.Ser .150, 434–438.Google Scholar
Bommier, V. and Stein, R. (2013). The internetwork magnetic flux tube diameter inferred from THEMIS and HINODE observations compared to simulations. Solar Phys., in press.Google Scholar
Bondi, H. (1952). On spherically symmetrical accretion. Mon. Not. Roy. Astron. Soc. 112, 195–204.CrossRefGoogle Scholar
Bonet, J. A., Márquez, I., Sanchez Almeida, J., Cabello, I., and Domingo, V. (2008). Convectively driven vortex flows in the Sun. Astrophys. J. Letts. 687, L131–L134.CrossRefGoogle Scholar
Bonet, J. A., Márquez, I., Sanchez Almeida, J., Palacios, J., Martínez Pillet, V., Solanki, S. K., del Toro Iniesta, J. C., Domingo, V., Berkefeld, T., Schmidt, W., Gandorfer, A., Barthol, P., and Knolker, M. (2010). SUNRISE/IMaX observations of convectively driven vortex flows in the Sun. Astrophys. J. Letts. 723, L139–L143.CrossRefGoogle Scholar
Bonnet, R. M. and Dupree, A. K. (1981). Solar Phenomena in Stars and Stellar Systems.(D.Reidel, Dordrecht).CrossRefGoogle Scholar
Boström, R. (1973). Models of force-free magnetic fields in a passive medium. Astrophys. Space Sci. 22, 353–380.CrossRefGoogle Scholar
Botha, G. J. J., Arber, T. D., Nakariakov, V. M., and Zhugzhda, Y. D. (2011). Chromospheric resonances above sunspot umbrae. Astrophys. J. 728, 84.CrossRefGoogle Scholar
Boulmezaoud, T. Z. and Amari, T. (2000). On the existence of non-linear force-free fields in three-dimensional domains. Zeitschrift Angewandte Mathematik und Physik 51, 942–967.CrossRefGoogle Scholar
Boyd, T. J. M. and Sanderson, J. J. (2003). The Physics of Plasmas.(Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Bradshaw, S. J. and Cargill, P. J. (2006). Explosive heating of low-density coronal plasma. Astron. Astrophys. 458, 987–995.CrossRefGoogle Scholar
Bradshaw, S. J. and Cargill, P. J. (2010). A new enthalpy-based approach to the transition region in an impulsively heated corona. Astrophys. J. Letts. 710, L39–L43.CrossRefGoogle Scholar
Bradshaw, S. J., Klimchuk, J. A., and Reep, J. W. (2012). Diagnosing the Time-dependence of Active Region Core Heating from the Emission Measure. I. Low-frequency Nanoflares. Astrophys. J. 758, 53.CrossRefGoogle Scholar
Braginsky, S. I. (1965a). Self-excitation of a magnetic field during the motion of a highly conducting fluid. Sov. Phys. JETP 20, 726–735.Google Scholar
Braginsky, S. I. (1965b). Transport processes in a plasma. In Reviews of Plasma Physics, M. A., Leontovich, ed. (Consultants Bureau, New York), 205–311.Google Scholar
Braithwaite, J. (2006). A differential rotation driven dynamo in a stably stratified star. Astron. Astrophys. 449, 451–460.CrossRefGoogle Scholar
Brandenburg, A. and Schmidt, D. (1998). Simulations of an alpha-effect due to magnetic buoyancy. Astron. Astrophys. 338, L55–L58.Google Scholar
Brandt, J. C. (1970). Introduction to the Solar Wind. (Freeman, San Francisco).Google Scholar
Brizard, A. J. and Hahm, T. S. (2007). Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421–468.CrossRefGoogle Scholar
Brooks, D. H. and Warren, H. P. (2011). Establishing a connection between active region outflows and the solar wind: abundance measurements with EIS/Hinode. Astrophys. J. Letts. 727, L13.CrossRefGoogle Scholar
Brown, D. S. and Priest, E. R. (1999). Topological bifurcations in 3D magnetic fields. Proc. Roy. Soc. Lond. A455, 3931–3951.Google Scholar
Brown, D. S. and Priest, E. R. (2001). The topological behaviour of 3D null points in the Sun's corona. Astron. Astrophys. 367, 339–346.CrossRefGoogle Scholar
Brown, J. C. (1971). The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Phys. 18, 489–502.CrossRefGoogle Scholar
Brown, T. M., Christensen-Dalsgaard, J., Dziembowski, W. A., Goode, P. R., Gough, D. O., and Morrow, C. A. (1989). Inferring the Sun's angular velocity from observed p-mode frequency splittings. Astrophys. J. 343, 526–546.CrossRefGoogle Scholar
Browning, M. K., Brun, A. S., Miesch, M. S., and Toomre, J. (2007). Dynamo action in simulations of penetrative solar convection with an imposed tachocline. Astron. Nachr. 328, 1100–1103.CrossRefGoogle Scholar
Browning, P. K., Gerrard, C., Hood, A. W., Kevis, R., and van der Linden, R. A. M. (2008). Heating the corona by nanoflares: simulations of energy release triggered by a kink instability. Astron. Astrophys. 485, 837–848.CrossRefGoogle Scholar
Browning, P. K. and Priest, E. R. (1982). The structure of untwisted magnetic flux tubes. Geophys. Astrophys. Fluid Dyn. 21, 237–263.CrossRefGoogle Scholar
Browning, P. K. and Priest, E. R. (1984). Kelvin-Helmholtz instability of a phased-mixed Alfvyen wave. Astron. Astrophys. 131, 283–290.Google Scholar
Browning, P. K., Sakurai, T., and Priest, E. R. (1986). Coronal heating in closely-packed flux tubes – a Taylor-Heyvaerts relaxation theory. Astron. Astrophys. 158, 217–227.Google Scholar
Brueckner, G. and Bartoe, J.-D. F. (1983). Observations of high-energy jets in the corona above the quiet Sun, the heating of the corona, and the acceleration of the solar wind. Astrophys. J. 272, 329–348.CrossRefGoogle Scholar
Brummell, N. H., Hurlburt, N. E., and Toomre, J. (1996). Turbulent compressible convection with rotation. I. Flow structure and evolution. Astrophys. J. 473, 494–513.CrossRefGoogle Scholar
Brummell, N. H., Hurlburt, N. E., and Toomre, J. (1998). Turbulent compressible convection with rotation. II. Mean flows and differential rotation. Astrophys. J. 493, 955–969.CrossRefGoogle Scholar
Brun, A. S. (2004). On the interaction between differential rotation and magnetic fields in the Sun. Solar Phys. 220, 333–345.CrossRefGoogle Scholar
Brun, A. S., Miesch, M. S., and Toomre, J. (2004). Global-scale turbulent convection and magnetic dynamo action in the solar envelope. Astrophys. J. 614, 1073–1098.CrossRefGoogle Scholar
Brun, A. S., Miesch, M. S., and Toomre, J. (2011). Modeling the dynamical coupling of solar convection with the radiative interior. Astrophys. J. 742, 79.CrossRefGoogle Scholar
Brun, A. S., Turcke-Chieze, S., and Zahn, J.-P. (1999). Standard solar models in the light of new helioseismic constraints. II. Mixing below the convective zone. Astrophys. J. 525, 1032–1041.CrossRefGoogle Scholar
Brun, A. S. and Zahn, J.-P. (2006). Magnetic confinement of the solar tachocline. Astron. Astrophys. 457, 665–674.CrossRefGoogle Scholar
Bruno, R. and Carbone, V. (2005). The solar wind as a turbulence laboratory. Liv. Rev. in Solar Phys. 2, 4.Google Scholar
Buöchner, J. (2006). Locating current sheets in the solar corona. Space Sci. Rev. 122, 149–160.Google Scholar
Böhler, D., Lagg, A., and Solanki, S. K. (2013). Quiet Sun magnetic fields observed by Hinode: support for a local dynamo. Astron. Astrophys., 555, A33.CrossRefGoogle Scholar
Bulanov, S. V., Sakai, D. I., and Syrovatsky, S. I. (1979). Tearing instability in quasi-stationary magnetohydrodynamic configurations. Soviet J. Plasma Phys. 5, 280–290.Google Scholar
Bulanov, S. V. and Sasorov, P. V. (1978). Tearing of a current sheet and reconnection of magnetic lines of force. Soviet J. Plasma Phys. 4, 746–757.Google Scholar
Bulanov, S. V., Shasharaina, S., and Pegoraro, F. (1990). MHD modes near the X-line of a magnetic configuration. Plasma Phys. and Control. Fusion 32, 377–389.CrossRefGoogle Scholar
Bungey, T. N. and Priest, E. R. (1995). Current sheet configurations in potential and force-free fields. Astron. Astrophys. 293, 215–224.Google Scholar
Burgess, D. (1995). Collisionless shocks. In Introduction to Space Physics, M. G., Kivelson and C. T., Russell, eds. (Cambridge University Press, Cambridge, UK), 129–163.Google Scholar
Burlaga, L., Sittler, E., Mariani, F., and Schwenn, R. (1981). Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673–6684.CrossRefGoogle Scholar
Bushby, P. J., Houghton, S. M., Proctor, M. R. E., and Weiss, N. O. (2008). Convective intensification of magnetic fields in the quiet Sun. Mon. Not. Roy. Astron. Soc. 387, 698–706.CrossRefGoogle Scholar
Caligari, P., Moreno-Insertis, F., and Schössler, M. (1995). Emerging flux tubes in the solar convection zone. I. Asymmetry, tilt, and emergence latitude. Astrophys. J. 441, 886–902.CrossRefGoogle Scholar
Cally, P. S. and Bogdan, T. J. (1997). Simulation of f- and p-mode interactions with a stratified magnetic field concentration. Astrophys. J. Letts. 486, L67–L70.CrossRefGoogle Scholar
Cally, P. S., Crouch, A. D., and Braun, D. C. (2003). Probing sunspot magnetic fields with p-mode absorption and phase shift data. Mon. Not. Roy. Astron. Soc. 346, 381–389.CrossRefGoogle Scholar
Cally, P. S. and Goossens, M. (2008). Three-dimensional MHD wave propagation and conversion to Alfvyen waves near the solar surface. I. Direct numerical solution. Solar Phys. 251, 251–265.CrossRefGoogle Scholar
Cameron, A. C. (2007). Differential rotation on rapidly rotating stars. Astron. Nach. 328, 1030–1033.Google Scholar
Cameron, R. H., Jiang, J., Schmitt, D., and Schüssler, M. (2010). Surface Flux Transport Modeling for Solar Cycles 15-21: Effects of Cycle-Dependent Tilt Angles of Sunspot Groups. Astrophys. J. 719, 264-270.CrossRefGoogle Scholar
Cameron, R. H. and Schüssler, M. (2012). Are the strengths of solar cycles determined by converging flows towards the activity belts?Astron. Astrophys. 548, A57.CrossRefGoogle Scholar
Canfield, R. C., Cheng, C.-C., Dere, K. P., Dulk, G. A., McLean, D. J., Schmahl, E. J., Robinson, R. D., and Schoolman, S. A. (1980). Radiative energy output of the 5 September 1973 flare. In Skylab Solar Workshop II, P.A., Sturrock, ed. (Colorado Ass. Univ. Press, Boulder, Colorado), 451–469.Google Scholar
Canfield, R. C., Hudson, H. S., and McKenzie, D. E. (1999). Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett. 26, 627–630.CrossRefGoogle Scholar
Canfield, R. C., Reardon, K. P., Leka, K. D., Shibata, K., Yokoyama, T., and Shimojo, M. (1996). H-alpha surges and X-ray jets in AR 7260. Astrophys. J. 464, 1016–1029.CrossRefGoogle Scholar
Canou, A. and Amari, T. (2010). A twisted flux rope as the magnetic structure of a filament in active region 10953 observed by Hinode. Astrophys. J. 715, 1566–1574.CrossRefGoogle Scholar
Canou, A., Amari, T., Bommier, V., Schmieder, B., Aulanier, G., and Li, H. (2009). Evidence for a pre-eruptive twisted flux rope using the Themis vector magnetograph. Astrophys. J. Letts. 693, L27–L30.CrossRefGoogle Scholar
Canuto, V. and Mazzitelli, I. (1991). Stellar turbulent convection – a new model and applications. Astrophys. J. 370, 295–311.CrossRefGoogle Scholar
Carcedo, L., Brown, D. S., Hood, A. W., Neukirch, T., and Wiegelmann, T. (2003). A quantitative method to optimise magnetic field line fitting of observed coronal loops. Solar Phys. 218, 29–40.CrossRefGoogle Scholar
Cargill, P. J. (1994). Some implications of the nanoflare concept. Astrophys. J. 422, 381–393.CrossRefGoogle Scholar
Cargill, P. J., Bradshaw, S. J., and Klimchuk, J. A. (2012a). Enthalpy-based thermal evolution of loops. II. Improvements to the model. Astrophys. J. 752, 161.CrossRefGoogle Scholar
Cargill, P. J., Bradshaw, S. J., and Klimchuk, J. A. (2012b). Enthalpy-based thermal evolution of loops. III. Comparison of zero-dimensional models. Astrophys. J. 758, 5.CrossRefGoogle Scholar
Cargill, P. J. and De Moortel, I. (2011). Solar physics: waves galore. Nature 475, 463–464.CrossRefGoogle ScholarPubMed
Cargill, P. J. and Klimchuk, J. A. (1997). A nanoflare explanation for the heating of coronal loops observed by Yohkoh. Astrophys. J. 478, 799–806.CrossRefGoogle Scholar
Cargill, P. J. and Klimchuk, J. A. (2004). Nanoflare heating of the corona revisited. Astrophys. J. 605, 911–920.CrossRefGoogle Scholar
Cargill, P. J., Mariska, J. T., and Antiochos, S. K. (1995). Cooling of solar flares plasmas. I. Theoretical considerations. Astrophys. J. 439, 1034–1043.CrossRefGoogle Scholar
Cargill, P. J. and Priest, E. R. (1980). Siphon flows in coronal loops. Solar Phys. 65, 251–269.CrossRefGoogle Scholar
Cargill, P. J. and Priest, E. R. (1982). Slow shock heating and the Kopp-Pneuman model for post-flare loops. Solar Phys. 76, 357–375.CrossRefGoogle Scholar
Carlsson, M. and Hansteen, V. (2005). Chromospheric waves. In Chromospheric and Coronal Magnetic Fields, D. E., Innes, A., Lagg, and S. A., Solanki, eds. (ESA SP-596, Noordwijk), 39.1–39.11.Google Scholar
Carlsson, M., Hansteen, V. H., De Pontieu, B., McIntosh, S., Tarbell, T. D., Shine, D., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Suematsu, Y., Shimizu, T., and Nagata, S. (2007). Can high frequency acoustic waves heat the quiet Sun chromosphere?Publ. Astron. Soc. Japan 59, 663–668.CrossRefGoogle Scholar
Carlsson, M., Hansteen, V. H., and Gudiksen, B. V. (2010). Chromospheric heating and structure as determined from high resolution 3D simulations. Mem. della Soc. Astron. Ital. 81, 582–587.Google Scholar
Carlsson, M. and Stein, R. F. (1995). Does a nonmagnetic solar chromosphere exist?Astrophys. J. Letts. 440, L29–L32.CrossRefGoogle Scholar
Carlsson, M. and Stein, R. F. (1997). Formation of solar calcium H and K bright grains. Astrophys. J. 481, 500–514.CrossRefGoogle Scholar
Carlsson, M., Stein, R. F., Nordlund, A., and Scharmer, G. B. (2004). Observational manifestations of solar magnetoconvection: center-to-limb variation. Astrophys. J. Letts. 610, L137–L140.CrossRefGoogle Scholar
Carmichael, H. (1964). A process for flares. In AAS-NASA Symposium on Physics of Solar Flares. (NASA, SP-50, Washington), 451–456.Google Scholar
Cartledge, N., Titov, V. S., and Priest, E. R. (1996). A 2-D model for the support of a polar-crown solar prominence. Solar Phys. 166, 287–310.CrossRefGoogle Scholar
Casini, R., Bevilacqua, R., and Lopez Ariste, A. (2005). Principal component analysis of the He I D3 polarization profiles from solar prominences. Astrophys. J. 622, 1265–1274.CrossRefGoogle Scholar
Cattaneo, F. (1999). On the origin of magnetic fields in the quiet photosphere. Astrophys. J. 515, L39–L42.CrossRefGoogle Scholar
Cattaneo, F., Emonet, T., and Weiss, N. O. (2003). On the interaction between convection and magnetic fields. Astrophys. J. 588, 1183–1198.CrossRefGoogle Scholar
Cattaneo, F. and Hughes, D. W. (1988). The nonlinear breakup of a magnetic layer: instability to interchange modes. J. Fluid Mech. 196, 323–344.CrossRefGoogle Scholar
Cattaneo, F. and Hughes, D. W. (1996). Nonlinear saturation of the turbulent a-effect. Phs. Rev. E 54, 4532–4535.Google Scholar
Cattaneo, F. and Hughes, D. W. (2006). Dynamo action in a rotating convective layer. J. Fluid Mech. 553, 401–418.CrossRefGoogle Scholar
Cattaneo, F. and Hughes, D. W. (2009). Problems with kinematic mean-field electrodynamics at high magnetic Reynolds numbers. Mon. Not. Roy. Astron. Soc. 395, L48–L51.CrossRefGoogle Scholar
Centeno, R., Socas-Navarro, H., Lites, B., Kubo, M., Frank, Z., Shine, R., Tarbell, T., Title, A., Ichimoto, K., Tsuneta, S., Katsukawa, Y., Suematsu, Y., Shimizu, T., and Nagata, S. (2007). Emergence of small-scale magnetic loops in the quiet-Sun internetwork. Astrophys. J. Letts. 666, L137–L140.CrossRefGoogle Scholar
Chamberlain, J. W. (1960). Interplanetary gas. II. Expansion of a model solar corona. Astrophys. J. 131, 47–58.CrossRefGoogle Scholar
Chandran, B. D. G. and Hollweg, J. V. (2009). Alfven wave reflection and turbulent heating in the solar wind from 1 solar radius to 1 AU: an analytical treatment. Astrophys. J. 707, 1659–1667.CrossRefGoogle Scholar
Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability. (Cambridge University Press, Cambridge, UK).Google Scholar
Chaplin, W. J. (2006). Music of the Sun. (Oneworld Publications, Oxford).Google Scholar
Chaplin, W. J., Christensen-Dalsgaard, J., Elsworth, Y., Howe, R., Isaak, G. R., Larsen, R. M., New, R., Schou, J., Thompson, M. J., and Tomczyk, S. (1999). Rotation of the solar core from BiSON and LOWL frequency observations. Mon. Not. Roy. Astron. Soc. 308, 405–414.CrossRefGoogle Scholar
Chaplin, W. J., Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P., Miller, B. A., van der Raay, H. B., Wheeler, S. J., and New, R. (1996). BiSON performance. Solar Phys. 168, 1–18.CrossRefGoogle Scholar
Chapman, S. (1929). Solar streams of corpuscles: their geometry, absorption of light, and penetration. Mon. Not. Roy. Astron. Soc. 89, 456–470.CrossRefGoogle Scholar
Chapman, S. and Zirin, H. (1957). Notes on the solar corona and the terrestrial ionosphere. Smithsonian Contributions to Astrophysics 2, 1–11.CrossRefGoogle Scholar
Charbonneau, P. (2010). Dynamo models of the solar cycle. Liv. Rev. in Solar Phys. 7, 3.Google Scholar
Charbonneau, P. (2013). Solar and Stellar Dynamos. Vol. 39. (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Charbonneau, P., Beaubien, G., and St-Jean, C. (2007). Fluctuations in Babcock-Leighton dynamos. II. Revisiting the Gnevyshev-Ohl rule. Astrophys. J. 658, 657–662.CrossRefGoogle Scholar
Charbonneau, P. and MacGregor, K. B. (1997). Solar interface dynamos: II linear, kinematic models in spherical geometry. Astrophys. J. 486, 502–520.CrossRefGoogle Scholar
Chatterjee, P., Nandy, D., and Choudhuri, A. R. (2004). Full-sphere simulations of a circulation-dominated solar dynamo: exploring the parity issue. Astron. Astrophys. 427, 1019–1030.CrossRefGoogle Scholar
Chemin, J.-Y., Gallagher, I., Desjardins, B., and Grenier, E. (2006). Mathematical Geophysics. (Oxford University Press, Oxford).Google Scholar
Chen, C. J. and Lykoudis, P. S. (1972). Velocity oscillations in solar plage regions. Solar Phys. 25, 380–401.CrossRefGoogle Scholar
Chen, J. (1989). Effects of toroidal forces in current loops embedded in a background plasma. Astrophys. J. 338, 453–470.CrossRefGoogle Scholar
Chen, L. and Hasegawa, A. (1974). Plasma heating by spatial resonance of Alfváen wave. Physics of Fluids 17, 1399–1403.Google Scholar
Chen, P. F. (2011). Coronal mass ejections: models and their observational basis. Liv. Rev. in Solar Phys. 8, 1.Google Scholar
Chen, P. F., Wu, S. T., Shibata, K., and Fang, C. (2002). Evidence of EIT and Moreton waves in numerical simulations. Astrophys. J. Letts. 572, L99–L102.CrossRefGoogle Scholar
Chen, Y., Li, X., Song, H. Q., Shi, Q. Q., Feng, S. W., and Xia, L. D. (2009). Intrinsic instability of coronal streamers. Astrophys. J. 691, 1936–1942.CrossRefGoogle Scholar
Cheung, M. C. M., Moreno-Insertis, F., and Schuössler, M. (2006). Moving magnetic tubes: fragmentation, vortex sheets and the limit of the approximation of thin flux tubes. Astron. Astrophys. 451, 303–317.CrossRefGoogle Scholar
Cheung, M. C. M., Rempel, M., Title, A. M., and Schuössler, M. (2010). Simulation of the formation of a solar active region. Astrophys. J. 720, 233–244.CrossRefGoogle Scholar
Cheung, M. C. M., Schössler, M., and Moreno-Insertis, F. (2007). Magnetic flux emergence in granular convection: radiative MHD simulations and observational signatures. Astron. Astrophys. 467, 703–719.CrossRefGoogle Scholar
Chiu, Y. T. and Hilton, H. H. (1977). Exact Green's function method of solar force-free magnetic field computations with constant alpha. I. Theory and basic test cases. Astrophys. J. 212, 873–885.CrossRefGoogle Scholar
Chou, Y. P. and Low, B. C. (1994). A class of force-free magnetic fields for modeling pre-flare coronal magnetic configurations. Solar Phys. 153, 255–285.CrossRefGoogle Scholar
Choudhuri, A. R. (1990). On the possibility of an «2w-type dynamo in a thin layer inside the Sun. Astrophys. J. 355, 733–744.CrossRefGoogle Scholar
Choudhuri, A. R. (1998). Physics of Fluids and Plasmas. (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Choudhuri, A. R. (1999). The solar dynamo. Current Science 77, 1475–1485.Google Scholar
Choudhuri, A. R. (2003). On the connection between mean-field dynamo theory and flux tubes. Solar Phys. 215, 31–55.CrossRefGoogle Scholar
Choudhuri, A. R., Chatterjee, P., and Jiang, J. (2007). Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Letts. 98, 131103–131107.CrossRefGoogle ScholarPubMed
Choudhuri, A. R., Chatterjee, P., and Nandy, D. (2004). Helicity of solar active regions from a dynamo model. Astrophys. J. Letts. 615, L57–L60.CrossRefGoogle Scholar
Choudhuri, A. R. and Dikpati, M. (1999). On the large-scale diffuse magnetic field of the Sun – II. The contribution of active regions. Solar Phys. 184, 61–76.CrossRefGoogle Scholar
Choudhuri, A. R. and Gilman, P. A. (1987). The influence of the Coriolis force on flux tubes rising through the solar convection zone. Astrophys. J. 316, 788–800.CrossRefGoogle Scholar
Choudhuri, A. R., Schuössler, M., and Dikpati, M. (1995). The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29–L32.Google Scholar
Christensen-Dalsgaard, J., Dappen, W., Ajukov, S. V., Anderson, E. R., Antia, H. M., Basu, S., Baturin, V. A., Berthomieu, G., Chaboyer, B., Chitre, S. M., Cox, A. N., Demarque, P., Donatowicz, J., Dziembowski, W. A., Gabriel, M., Gough, D. O., Guenther, D. B., Guzik, J. A., Harvey, J. W., Hill, F., Houdek, G., Iglesias, C. A., Kosovichev, A. G., Leibacher, J. W., Morel, P., Proffitt, C. R., Provost, J., Reiter, J., Rhodes, Jr., E. J., Rogers, F. J., Roxburgh, I. W., Thompson, M. J., and Ulrich, R. K. (1996). The current state of solar modeling. Science 272, 1286–1292.CrossRefGoogle ScholarPubMed
Christensen-Dalsgaard, J., Duvall, T. L., Gough, D. O., Harvey, J. W., and Rhodes, E. J. (1985). Speed of sound in the solar interior. Nature 315, 378–382.CrossRefGoogle Scholar
Christensen-Dalsgaard, J. and Gough, D. O. (1976). Towards a heliological inverse problem. Nature 259, 89–92.CrossRefGoogle Scholar
Christensen-Dalsgaard, J., Gough, D. O., and Thompson, M. J. (1991). The depth of the solar convection zone. Astrophys. J. 378, 431–437.CrossRefGoogle Scholar
Ciaravella, A. and Raymond, J. C. (2008). The current sheet associated with the 2003 November 4 coronal mass ejection: density, temperature, thickness, and line width. Astrophys. J. 686, 1372–1382.CrossRefGoogle Scholar
Cirtain, J. W., Golub, L., Lundquist, L., van Ballegooijen, A. A., Savcheva, A., Shimojo, M., DeLuca, E., Tsuneta, S., Sakao, T., Reeves, K., Weber, M., Kano, R., Narukage, N., and Shibasaki, K. (2007). Evidence for Alfvyen waves in solar X-ray jets. Science 318, 1580–1582.CrossRefGoogle ScholarPubMed
Claverie, A., Isaak, G. R., McLeod, C. P., van der Raay, H. B., and Cortes, T. R. (1979). Solar structure from global studies of the 5-minute oscillation. Nature 282, 591–594.CrossRefGoogle Scholar
Close, R. M., Parnell, C., Mackay, D. H., and Priest, E. R. (2004). Statistical flux tube properties of 3D magnetic carpet fields. Solar Phys. 212, 251–275.Google Scholar
Close, R. M., Parnell, C. E., Longcope, D. W., and Priest, E. R. (2005). Coronal flux recycling times. Solar Phys. 231, 45–70.CrossRefGoogle Scholar
Close, R. M., Parnell, C. E., and Priest, E. R. (2004). Recycling of the solar corona's magnetic field. Astrophys. J. 612, L81–L84.CrossRefGoogle Scholar
Coppi, B., Pellat, R., Rosenbluth, M., Rutherford, P., and Galvao, R. (1976). Resistive internal kink modes. Soviet J. Plasma Phys. 2, 961–966.Google Scholar
Courant, R. and Hilbert, D. (1963). Methods of Mathematical Physics, Vol. 2. (Interscience, New York). p. 367.Google Scholar
Courvoisier, A., Hughes, D. W., and Tobias, S. M. (2006). a-effect in a family of chaotic flows. Phys. Rev. Letts. 96,034503, 1–4.CrossRefGoogle Scholar
Cowling, T. G. (1934). The magnetic field of sunspots. Mon. Not. Roy. Astron. Soc. 94, 39–48.Google Scholar
Cowling, T. G. (1953). Solar electrodynamics. In The Sun, G., Kuiper, ed. (Univ. Chicago Press, Chicago), 532–591.Google Scholar
Cowling, T. G. (1958). Magnetohydrodynamics. (Interscience, New York).Google Scholar
Cowling, T. G. (1976). Magnetohydrodynamics. (Adam Hilger, Bristol, UK).Google Scholar
Cox, D. P. and Tucker, W. H. (1969). Ionization equilibrium and radiative cooling of a low-density plasma. Astrophys. J. 157, 1157–1167.CrossRefGoogle Scholar
Craig, I. J. D. and Fabling, R. B. (1996). Exact solutions for steady-state, spine, and fan magnetic reconnection. Astrophys. J. 462, 969–976.CrossRefGoogle Scholar
Craig, I. J. D., Fabling, R. B., Henton, S. M., and Rickard, G. J. (1995). An exact solution for steady-state magnetic reconnection in three dimensions. Astrophys. J. Letts. 455, L197–L199.CrossRefGoogle Scholar
Craig, I. J. D. and Henton, S. M. (1995). Exact solutions for steady-state incompressible magnetic reconnection. Astrophys. J. 450, 280–288.CrossRefGoogle Scholar
Craig, I. J. D. and McClymont, A. N. (1991). Dynamic magnetic reconnection at an X-type neutral point. Astrophys. J. 371, L41–L44.CrossRefGoogle Scholar
Craig, I. J. D. and McClymont, A. N. (1993). Linear theory of fast reconnection at an X-type neutral point. Astrophys. J. 405, 207–215.CrossRefGoogle Scholar
Craig, I. J. D., McClymont, A. N., and Underwood, J. H. (1978). The temperature and density structure of active region coronal loops. Astron. Astrophys. 70, 1–11.Google Scholar
Craig, I. J. D. and Sneyd, A. D. (1986). A dynamic relaxation technique for determining the structure and stability of coronal magnetic fields. Astrophys. J. 311, 451–459.CrossRefGoogle Scholar
Craig, I. J. D. and Sneyd, A. D. (2005). The Parker problem and the theory of coronal heating. Solar Phys. 232, 41–62.CrossRefGoogle Scholar
Cranmer, S. R. (2004). New views of the solar wind with the Lambert W function. American Journal of Physics 72, 1397–1403.CrossRefGoogle Scholar
Cranmer, S. R. (2009). Coronal holes. Liv. Rev. in Solar Phys. 6, 3.Google ScholarPubMed
Cranmer, S. R. (2010). An efficient approximation of the coronal heating rate for use in global Sun-heliosphere simulations. Astrophys. J. 710, 676–688.CrossRefGoogle Scholar
Cranmer, S. R. (2012). Self-consistent models of the solar wind. Space Sci. Rev. 172, 145–156.CrossRefGoogle Scholar
Cranmer, S. R., Matthaeus, W. H., Breech, B. A., and Kasper, J. C. (2009). Empirical constraints on proton and electron heating in the fast solar wind. Astrophys. J. 702, 1604–1614.CrossRefGoogle Scholar
Cranmer, S. R. and van Ballegooijen, A. A. (2005). On the generation, propagation, and reflection of Alfven waves from the solar photosphere to the distant heliosphere. Astrophys. J. Suppl. 156, 265–293.CrossRefGoogle Scholar
Cranmer, S. R. and van Ballegooijen, A. A. (2010). Can the solar wind be driven by magnetic reconnection in the Sun's magnetic carpet?Astrophys. J. 720, 824–847.CrossRefGoogle Scholar
Cranmer, S. R. and van Ballegooijen, A. A. (2012). Proton, electron, and ion heating in the fast solar wind from nonlinear coupling between Alfvenic and fast-mode turbulence. Astrophys. J. 754, 92.CrossRefGoogle Scholar
Cranmer, S. R., van Ballegooijen, A. A., and Edgar, R. J. (2007). Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Supp. 171, 520–551.CrossRefGoogle Scholar
Culhane, L., Harra, L. K., Baker, D., van Driel-Gesztelyi, L., Sun, J., Doschek, G. A., Brooks, D. H., Lundquist, L. L., Kamio, S., Young, P. R., and Hansteen, V. H. (2007). Hinode EUV study of jets in the Sun's south polar corona. Publ. Astron. Soc. Japan 59, 751–756.Google Scholar
Curdt, W., Tian, H., and Kamio, S. (2012). Explosive events: Swirling transition region jets. Solar Phys. 280, 417–424.CrossRefGoogle Scholar
Czaykowska, A., De Pontieu, B., Alexander, D., and Rank, G. (1999). Evidence for chromospheric evaporation in the late gradual flare phase from SOHO/CDS observations. Astrophys. J. Letts. 521, L75–L78.CrossRefGoogle Scholar
Demoulin, P., Cuperman, S., and Semel, M. (1992). Determination of force-free magnetic fields above the photosphere using three-component boundary conditions. II. Analysis and minimization of scale-related growing modes and of computational induced singularities. Astron. Astrophys. 263, 351–360.Google Scholar
Dahlburg, R. B., Antiochos, S. K., and Klimchuk, J. A. (1998). Prominence formation by localized heating. Astrophys. J. 495, 485–490.CrossRefGoogle Scholar
Dahlburg, R. B., Klimchuk, J. A., and Antiochos, S. K. (2005). An explanation for the “switch-on” nature of magnetic energy release and its application to coronal heating. Astrophys. J. 622, 1191–1201.CrossRefGoogle Scholar
Dalda, A. S. and Martinez Pillet, V. M. (2008). In-situ flux losses in active regions. Astron.Soc.Pac.Conf. Ser. 383, 115–122.Google Scholar
Danielson, R. E. (1961). The structure of sunspot penumbras. II. Theoretical. Astrophys. J. 134, 289–311.Google Scholar
Danielson, R. E. (1964). The structure of sunspot umbras. I. Observations. Astrophys. J. 139, 45–47.CrossRefGoogle Scholar
Danilovic, S., Beeck, B., Pietarila, A., Schössler, M., Solanki, S. K., Martinez Pillet, V., Bonet, J. A., del Toro Iniesta, J. C., Domingo, V., Barthol, P., Berkefeld, T., Gandorfer, A., Knöolker, M., Schmidt, W., and Title, A. M. (2010). Transverse component of the magnetic field in the solar photosphere observed by SUNRISE. Astrophys. J. Letts. 723, L149–L153.CrossRefGoogle Scholar
Danilovic, S., Schössler, M., and Solanki, S. K. (2010). Magnetic field intensification: comparison of 3D MHD simulations with Hinode/SP results. Astron. Astrophys. 509, A76.CrossRefGoogle Scholar
Davis, R. Jr., and Evans, J. C. (1978). Experimental limits on extraterrestrial sources of neutrinos. Proceedings 13th International Cosmic Ray Conference 3, 2001–2006.Google Scholar
De Groof, A. and Goossens, M. (2002). Fast and Alfven waves driven by azimuthal footpoint motions. II. Random driver. Astron. Astrophys. 386, 691–698.Google Scholar
De Moortel, I. and Galsgaard, K. (2006). Numerical modelling of 3D reconnection. II. Comparison between rotational and spinning footpoint motions. Astron. Astrophys. 459, 627–639.CrossRefGoogle Scholar
De Moortel, I., Hood, A. W., Ireland, J., and Arber, T. D. (1999). Phase mixing of Alfven waves in a stratified and open atmosphere. Astron. Astrophys. 346, 641–651.Google Scholar
De Moortel, I., Hood, A. W., Ireland, J., and Walsh, R. (2002). Longitudinal intensity oscillations in coronal loops observed with TRACE. I. Overview of measured parameters. Solar Phys. 209, 61–88.Google Scholar
De Moortel, I., Ireland, J., and Walsh, R. W. (2000). Observation of oscillations in coronal loops. Astron. Astrophys. 355, L23–L26.Google Scholar
De Moortel, I. and Nakariakov, V. M. (2012). Magnetohydrodynamic waves and coronal seismology: an overview of recent results. Phil.Trans.Roy.Soc.Lond.A 370, 3193–3216.CrossRefGoogle ScholarPubMed
De Moortel, I. and Pascoe, D. J. (2012). The effects of line-of-sight integration on multistrand coronal loop oscillations. Astrophys. J. 746, 31.CrossRefGoogle Scholar
De Pontieu, B. (2002). High-resolution observations of small-scale emerging flux in the photosphere. Astrophys. J. 569, 474–486.CrossRefGoogle Scholar
De Pontieu, B., Carlsson, M., Rouppe van der Voort, L., Rutten, R. J., Hansteen, V. H., and Watanabe, H. (2012). Ubiquitous torsional motions in type II spicules. Astrophys. J. Letts. 752, L12.CrossRefGoogle Scholar
De Pontieu, B., Erdeelyi, R., and James, S. P. (2004). Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature 430, 536–539.CrossRefGoogle ScholarPubMed
De Pontieu, B. and McIntosh, S. W. (2010). Quasi-periodic propagating signals in the solar corona: the signature of magnetoacoustic waves or high-velocity upflows?Astrophys. J. 722, 1013–1029.CrossRefGoogle Scholar
De Pontieu, B., McIntosh, S. W., Carlsson, M., Hansteen, V. H., Tarbell, T. D., Boerner, P., Martinez-Sykora, J., Schrijver, C. J., and Title, A. M. (2011). The origins of hot plasma in the solar corona. Science 331, 55–58.CrossRefGoogle ScholarPubMed
DePontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Schrijver, C.J., Title, A.M., Shine, R.A., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Suematsu, Y., Shimizu, T., and Nagata, S. (2007). Chromospheric Alfveenic waves strong enough to power the solar wind. Science 318, 1574–1577.Google Scholar
De Pontieu, B., McIntosh, S. W., Hansteen, V. H., Carlsson, M., Schrijver, C. J., Tarbell, T. D., Title, A. M., Shine, R. A., Suematsu, Y., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Shimizu, T., and Nagata, S. (2007). A tale of two spicules: the impact of spicules on the magnetic chromosphere. Publ. Astron. Soc. Japan 59, 655–662.CrossRefGoogle Scholar
De Pontieu, B., McIntosh, S. W., Hansteen, V. H., and Schrijver, C. J. (2009). Observing the roots of solar coronal heating in the chromosphere. Astrophys. J. Letts. 701, L1–L6.CrossRefGoogle Scholar
De Rosa, M. L. and Toomre, J. (2004). Evolution of solar supergranulation. Astrophys. J. 616, 1242–1260.Google Scholar
De Wijn, A. G., Stenflo, J. O., Solanki, S. K., and Tsuneta, S. (2009). Small-scale solar magnetic fields. Space Sci. Rev. 144, 275–315.CrossRefGoogle Scholar
DeBenedetti, M. and Pegoraro, F. (1995). Resistive modes at a magnetic X-point. Plasma Physics and Controlled Fusion 37, 103–116.Google Scholar
DeForest, C. E. (2007). On the size of structures in the solar corona. Astrophys. J. 661, 532–542.CrossRefGoogle Scholar
DeForest, C. E., Lamy, P. L., and Llebaria, A. (2001). Solar polar plume lifetime and coronal hole expansion: determination from long-term observations. Astrophys. J. 560, 490–498.CrossRefGoogle Scholar
Degenhardt, D. and Wiehr, E. (1991). Spatial variation of the magnetic field inclination in a sunspot penumbra. Astron. Astrophys. 252, 821–826.Google Scholar
Deinzer, W. (1965). On the magneto-hydrostatic theory of sunspots. Astrophys. J. 141, 548–563.CrossRefGoogle Scholar
Del Zanna, G. (2008). Flows in active region loops observed by Hinode EIS. Astron. Astrophys. 481, L49–L52.CrossRefGoogle Scholar
Delaboudiniere, J.-P., Artzner, G. E., Brunaud, J., Gabriel, A. H., Hochedez, J. F., Millier, F., Song, X. Y., Au, B., Dere, K. P., Howard, R. A., Kreplin, R., Michels, D. J., Moses, J. D., Defise, J. M., Jamar, C., Rochus, P., Chauvineau, J. P., Marioge, J. P., Catura, R. C., Lemen, J. R., Shing, L., Stern, R. A., Gurman, J. B., Neupert, W. M., Maucherat, A., Clette, F., Cugnon, P., and van Dessel, E. L. (1995). EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291–312.CrossRefGoogle Scholar
Delanneee, C., Töoröok, T., Aulanier, G., and Hochedez, J.-F. (2008). A new model for propagating parts of EIT waves: a current shell in a CME. Solar Phys. 247, 123–150.CrossRefGoogle Scholar
DeLuca, E. E. and Gilman, P. A. (1986). Dynamo theory for the interface between the convection zone and the radiative interior of a star: I. Model equations and exact solutions. Geophys. Astrophys. Fluid Dyn. 37, 85–127.CrossRefGoogle Scholar
Demoulin, P. and Aulanier, G. (2010). Criteria for flux rope eruption: non-equilibrium versus torus instability. Astrophys. J. 718, 1388–1399.CrossRefGoogle Scholar
Deemoulin, P., Bagala, L. G., Mandrini, C. H., Heenoux, J. C., and Rovira, M. G. (1997). Quasi-separatrix layers in solar flares. II. Observed magnetic configurations. Astron. Astrophys. 325, 305–317.Google Scholar
Demoulin, P., Henoux, J., and Mandrini, C. H. (1994). Are magnetic null points important in solar flares? Astron. Astrophys. 285, 1023–1037.
Demoulin, P., Henoux, J. C., Mandrini, C. H., and Priest, E. R. (1997). Can we extrapolate a magnetic field when its topology is complex?Solar Phys. 174, 73–89.CrossRefGoogle Scholar
Demoulin, P., Henoux, J. C., Priest, E. R., and Mandrini, C. H. (1996). Quasi-separatrix layers in solar flares. I. Method. Astron. Astrophys. 308, 643–655.Google Scholar
Demoulin, P. and Priest, E. R. (1988). Instability of a prominence supported in a linear force-free field. Astron. Astrophys. 206, 336–347.Google Scholar
Demoulin, P. and Priest, E. R. (1989). A twisted flux model for solar prominences. II. Formation of a dip in a magnetic structure before the formation of a solar prominence. Astron. Astrophys. 214, 360–368.Google Scholar
Demoulin, P. and Priest, E. R. (1992). The properties of sources and sinks of a linear force-free field. Astron. Astrophys. 258, 535–541.Google Scholar
Deemoulin, P. and Priest, E. R. (1993). A model for an inverse-polarity prominence supported in a dip of a quadrupolar region. Solar Phys. 144, 283–305.CrossRefGoogle Scholar
Deemoulin, P., Priest, E. R., and Anzer, U. (1989). A three-dimensional model for solar prominences. Astron. Astrophys. 221, 326–337.Google Scholar
Deemoulin, P., van Driel-Gesztelyi, L., Schmieder, B., Henoux, J., Csepura, G., and Hagyard, M. (1993). Evidence for magnetic reconnection in solar flares. Astron. Astrophys. 271, 292–307.Google Scholar
Deng, Y. Y., Schmieder, B., Engvold, O., DeLuca, E., and Golub, L. (2000). Emergence of sheared magnetic flux tubes in an active region observed with the SVST and TRACE. Solar Phys. 195, 347–366.CrossRefGoogle Scholar
Dere, K. P., Barto, J.-D. F., and Brueckner, G. E. (1989). Explosive events in the solar transition zone. Solar Phys. 123, 41–68.CrossRefGoogle Scholar
Dere, K. P., Brueckner, G. E., Howard, R. A., Michels, D. J., and Delaboudiniere, J. P. (1999). LASCO and EIT observations of helical structure in coronal mass ejections. Astrophys. J. 516, 465–474.CrossRefGoogle Scholar
Dere, K. P., Landi, E., Young, P. R., Del Zanna, G., Landini, M., and Mason, H. E. (2009). CHIANTI – an atomic database for emission lines. IX. Ionization rates, recombination rates, ionization equilibria for the elements hydrogen through zinc and updated atomic data. Astron. Astrophys. 498, 915–929.CrossRefGoogle Scholar
Deubner, F. L. (1975). Observations of low-wavenumber nonradial eigenmodes of the Sun. Astron. Astrophys. 44, 371–375.Google Scholar
DeVore, C. R. and Antiochos, S. K. (2000). Dynamical formation and stability of helical prominence magnetic fields. Astrophys. J. 539, 954–963.CrossRefGoogle Scholar
DeVore, C. R. and Antiochos, S. K. (2005). Magnetic free energies of breakout coronal mass ejections. Astrophys. J. 628, 1031–1045.CrossRefGoogle Scholar
DeVore, C. R. and Antiochos, S. K. (2008). Homologous confined filament eruptions via magnetic breakout. Astrophys. J. 680, 740–756.CrossRefGoogle Scholar
DeVore, C. R., Boris, J. P., and Sheeley, N. R. (1984). The concentration of the large-scale solar magnetic field by a meridional surface flow. Solar Phys. 92, 1–14.CrossRefGoogle Scholar
Diamond, P. H., Hazeltine, R. D., An, Z. G., Carreras, B. A., and Hicks, H. R. (1984). Theory of anomalous tearing mode growth and the major tokamak disruption. Phys. Fluids 27, 1449–1462.CrossRefGoogle Scholar
Diaz, A. J., Soler, R., and Ballester, J. L. (2012). Rayleigh-Taylor instability in partially ionized compressible plasmas. Astrophys. J. 754, 41.CrossRef
Dikpati, M. and Choudhuri, A. R. (1994). The evolution of the Sun's poloidal field. Astron. Astrophys. 291, 975–989.Google Scholar
Dikpati, M. and Gilman, P. A. (2006). Simulating and predicting solar cycles using a flux-transport dynamo. Astrophys. J. 649, 498–514.CrossRefGoogle Scholar
Dikpati, M. and Gilman, P. A. (2007). Global solar dynamo models: simulations and predictions of cyclic photospheric fields and long-term non-reversing interior fields. New Journal of Physics 9, 297–321.CrossRefGoogle Scholar
Dixon, A., Browning, P., and Priest, E. R. (1988). Coronal heating by relaxation in a sunspot magnetic field. Geophys. Astrophys. Fluid Dyn. 40, 294–327.CrossRefGoogle Scholar
Dobrowolny, M., Veltri, P., and Mangeney, A. (1983). Dissipative instabilities of magnetic neutral layers with velocity shear. J. Plasma Phys. 29, 393–407.CrossRef
Donati, J.-F. (1999). Magnetic cycles of HR 1099 and LQ Hydrae. Mon. Not. Roy. Astron. Soc. 302, 457–481.CrossRefGoogle Scholar
Donati, J.-F., Cameron, A.C., Semel, M., Hussain, G.A.J., Petit, P.,Carter, B. D., Marsden, S. C., Mengel, M., Lopez Ariste, A., Jeffers, S. V., and Rees, D. E. (2003). Dynamo processes and activity cycles of the active stars AB Doradus, LQ Hydrae and HR 1099. Mon. Not. Roy. Astron. Soc. 345, 1145–1186.CrossRefGoogle Scholar
Donati, J.-F., Forveille, T., Cameron, A. C., Barnes, J. R., Delfosse, X., Jardine, M. M., and Valenti, J. A. (2006). The large-scale axisymmetric magnetic topology of a very-low-mass fully convective star. Science 311, 633–635.CrossRefGoogle ScholarPubMed
Donati, J.-F. and Semel, M. (1990). Zeeman-Doppler imaging – A new option for magnetic field study of AP and solar-type stars. Solar Phys. 128, 227–242.CrossRefGoogle Scholar
Dorch, S. B. F. and Nordlund, A. (2001). On the transport of magnetic fields by solar-like stratified convection. Astron. Astrophys. 365, 562–570.CrossRefGoogle Scholar
Dormy, E. and Soward, A. M. (2007). Mathematical Aspects of Natural Dynamos. (CRC Press, London).CrossRefGoogle Scholar
Doschek, G. A. (2012). The dynamics and heating of active-region loops. Astrophys. J. 754, 153.CrossRefGoogle Scholar
Doschek, G. A., Warren, H. P., Mariska, J. T., Muglach, K., Culhane, J. L., Hara, H., and Watanabe, T. (2008). Flows and nonthermal velocities in solar active regions observed with the EUV Imaging Spectrometer on Hinode: a tracer of active region sources of heliospheric magnetic fields?Astrophys. J. 686, 1362–1371.CrossRefGoogle Scholar
Dove, J. B., Gibson, S. E., Rachmeler, L. A., Tomczyk, S., and Judge, P. (2011). A ring of polarized light: evidence for twisted coronal magnetism in cavities. Astrophys. J. Letts. 731, L1.CrossRefGoogle Scholar
Dowdy, J. F., Rabin, D., and Moore, R. L. (1986). On the magnetic structure of the quiet transition region. Solar Phys. 105, 35–45.CrossRefGoogle Scholar
Downs, C., Roussev, I. I., van der Holst, B., Lugaz, N., Sokolov, I. V., and Gombosi, T. I. (2010). Toward a realistic thermodynamic magnetohydrodynamic model of the global solar corona. Astrophys. J. 712, 1219–1231.CrossRefGoogle Scholar
Drake, J. F., Cassak, P. A., Shay, M. A., Swisdak, M., and Quataert, E. (2009). A magnetic reconnection mechanism for ion acceleration and abundance enhancements in impulsive flares. Astrophys. J. Letts. 700, L16–L20.CrossRefGoogle Scholar
Drazin, P. G. and Reid, W. H. (1981). Hydrodynamic Stability. (Cambridge University Press, Cambridge, UK).Google Scholar
D'Silva, S. and Choudhuri, A. R. (1993). A theoretical model for tilts of bipolar magnetic regions. Astron. Astrophys. 272, 621–633.Google Scholar
Dud ik, J., Aulanier, G., Schmieder, B., Bommier, V., and Roudier, T. (2008). Topological departures from translational invariance along a filament observed by THEMIS. Solar Phys. 248, 29–50.Google Scholar
Dud ik, J., Aulanier, G., Schmieder, B., Zapior, M., and Heinzel, P. (2012). Magnetic topology of bubbles in quiescent prominences. Astrophys. J. 761, 9.CrossRefGoogle Scholar
Dungey, J. W. (1953). Conditions for the occurrence of electrical discharges in astrophysical systems. Phil. Mag 44, 725–738.CrossRefGoogle Scholar
Dunn, R. B. and Zirker, J. B. (1973). The solar filigree. Solar Phys. 33, 281–304.Google Scholar
Durney, B. (1971). A new type of supersonic solution for the inviscid equations of the solar wind. Astrophys. J. 166, 669–673.CrossRefGoogle Scholar
Durney, B. R. (1995). On a Babcock-Leighton dynamo model with a deep-seated generating layer for the toroidal magnetic field. Solar Phys. 160, 213–235.CrossRefGoogle Scholar
Durney, B. R. (1997). On a Babcock-Leighton solar dynamo model with a deep-seated generating layer for the toroidal magnetic field. IV. Astrophys. J. 486, 1065–1077.CrossRefGoogle Scholar
Duvall, T. L. (1979). Large-scale solar velocity fields. Solar Phys. 63, 3–15.CrossRefGoogle Scholar
Duvall, T. L. (1982). A dispersion law for solar oscillations. Nature 300, 242–243.CrossRefGoogle Scholar
Duvall, T. L., Dziembowski, W. A., Goode, P. R., Gough, D. O., Harvey, J. W., and Leibacher, J. W. (1984). Internal rotation of the Sun. Nature 310, 22–25.CrossRefGoogle Scholar
Duvall, T. L. and Harvey, J. W. (1983). Observations of solar oscillations of low and intermediate degree. Nature 302, 24–27.CrossRefGoogle Scholar
Duvall, T. L. and Harvey, J. W. (1984). Rotational frequency splitting of solar oscillations. Nature 310, 19–22.CrossRefGoogle Scholar
Duvall, T. L., Jefferies, S. M., Harvey, J. W., Osaki, Y., and Pomerantz, M. A. (1993). Asymmetries of solar oscillation line profiles. Astrophys. J. 410, 829–836.CrossRefGoogle Scholar
Duvall, T. L., Jefferies, S. M., Harvey, J. W., and Pomerantz, M. A. (1993). Time-distance helioseismology. Nature 362, 430–432.CrossRefGoogle Scholar
Duvall, T. L., Kosovichev, A. G., Scherrer, P. H., Bogart, R. S., Bush, R. I., DeForest, C., Hoeksema, J. T., Schou, J., Saba, J. L. R., Tarbell, T. D., Title, A. M., Wolfson, C. J., and Milford, P. N. (1997). Time-distance helioseismology with the MDI instrument: initial results. Solar Phys. 170, 63–73.CrossRefGoogle Scholar
Dymova, M. V. and Ruderman, M. S. (2005). Non-axisymmetric oscillations of thin prominence fibrils. Solar Phys. 229, 79–94.CrossRefGoogle Scholar
Eddy, J. A. (1976). The Maunder minimum. Science 192, 1189–1202.CrossRefGoogle ScholarPubMed
Edenstrasser, J. W. (1980). The only three classes of symmetric MHD equilibria. J. Plasma Phys. 24, 515–518.Google Scholar
Edlen, B. (1943). Die Deutung der Emissionslinien im Spektrum der Sonnenkorona. Mit 6 Abbildungen. Zeitschrift fur Astrophysik 22, 30–64.Google Scholar
Edwin, P. M. and Roberts, B. (1982). Wave propagation in a magnetically structured atmosphere. III. The slab in a magnetic environment. Solar Phys. 76, 239–259.CrossRefGoogle Scholar
Edwin, P. M. and Roberts, B. (1983). Wave propagation in a magnetic cylinder. Solar Phys. 88, 179–191.CrossRefGoogle Scholar
Egbers, C. and Pfister, G. (2000). Physics of Rotating Fluids. (Springer Verlag, Berlin).CrossRefGoogle Scholar
Einaudi, G., Boncinelli, P., Dahlburg, R. B., and Karpen, J. T. (1999). Formation of the slow solar wind in a coronal streamer. J. Geophys. Res. 104, 521–534.CrossRefGoogle Scholar
Elsasser, W. M. (1950). The hydromagnetic equations. Physical Review 79, 183–183.CrossRefGoogle Scholar
Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P., and New, R. (1990). Variation of low-order acoustic solar oscillations over the solar cycle. Nature 345, 322–324.CrossRefGoogle Scholar
Emonet, T. and Moreno-Insertis, F. (1998). The physics of twisted magnetic tubes rising in a stratified medium: two-dimensional results. Astrophys. J. 492, 804–821.CrossRefGoogle Scholar
Emslie, A. G., Dennis, B. R., Holman, G. D., and Hudson, H. S. (2005). Refinements to flare energy estimates: a followup to “Energy partition in two solar flare/CME events” by A. G. Emslie et al. J. Geophys. Res. 110, A11103.CrossRefGoogle Scholar
Evershed, J. (1909). Radial movement in sun-spots. Mon. Not. Roy. Astron. Soc. 69, 454–457.CrossRefGoogle Scholar
Fabbian, D., Khomenko, E., Moreno-Insertis, F., and Nordlund, AA. (2010). Solar abundance corrections derived through three-dimensional magnetoconvection simulations. Astrophys. J. 724, 1536–1541.CrossRefGoogle Scholar
Falconer, D. A., Moore, R. L., Porter, J. G., and Hathaway, D. H. (1999). Large-scale coronal heating, clustering of coronal bright points, and concentration of magnetic flux. Space Sci. Rev. 87, 181–184.CrossRefGoogle Scholar
Fan, Y. (2001). Nonlinear growth of the three-dimensional undular instability of a horizontal magnetic layer and the formation of arching flux tubes. Astrophys. J. 546, 509–527.CrossRefGoogle Scholar
Fan, Y. (2005). Coronal mass ejections as loss of confinement of kinked magnetic flux ropes. Astrophys. J. 630, 543–551.CrossRefGoogle Scholar
Fan, Y. (2008). The three-dimensional evolution of buoyant magnetic flux tubes in a model solar convective envelope. Astrophys. J. 676, 680–697.CrossRefGoogle Scholar
Fan, Y. (2010). On the eruption of coronal flux ropes. Astrophys. J. 719, 728–736.CrossRefGoogle Scholar
Fan, Y. and Gibson, S. E. (2004). Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes. Astrophys. J. 609, 1123–1133.CrossRefGoogle Scholar
Fan, Y. and Gibson, S. E. (2007). Onset of coronal mass ejections due to loss of confinement of coronal flux ropes. Astrophys. J. 668, 1232–1245.CrossRefGoogle Scholar
Faurobert-Scholl, M. (1991). Hanle effect with partial frequency redistribution. I. Numerical methods and first applications. Astron. Astrophys. 246, 469–480.Google Scholar
Fedun, V., Shelyag, S., and Erdelyi, R. (2011). Numerical modeling of footpoint-driven magneto-acoustic wave propagation in a localized solar flux tube. Astrophys. J. 727, 17.CrossRefGoogle Scholar
Feldman, U., Widing, K. G., and Warren, H. P. (1999). Morphology of the quiet solar upper atmosphere in the 4 x 104 e 1.4 X 106 K temperature regime. Astrophys. J. 522, 1133–1147.CrossRefGoogle Scholar
Felipe, T., Khomenko, E., and Collados, M. (2010). Magneto-acoustic waves in sunspots: first results from a new three-dimensional nonlinear magnetohydrodynamic code. Astrophys. J. 719, 357–377.CrossRefGoogle Scholar
Ferraro, V. C. A. and Plumpton, C. (1961). An Introduction to Magnetofluid Mechanics. (Oxford University Press, Oxford).Google Scholar
Ferriz-Mas, A., Schmitt, D., and Schüssler, M. (1994). A dynamo effect due to instability of magnetic flux tubes. Astron. Astrophys. 289, 949–956.Google Scholar
Ferriz-Mas, A. and Schüssler, M. (1994). Instabilities of magnetic flux tubes in a stellar convection zone. I. Equatorial flux rings in differentially rotating stars. Geophys. Astrophys. Fluid Dyn. 72, 209–247.Google Scholar
Ferriz-Mas, A. and Schüssler, M. (1995). Instabilities of magnetic flux tubes in a stellar convection zone. II. Flux rings outside the equatorial plane. Geophys. Astrophys. Fluid Dyn. 81, 233–265.CrossRefGoogle Scholar
Field, G. B. (1965). Thermal instability. Astrophys. J. 142, 531–567.CrossRefGoogle Scholar
Finn, J. M. and Kaw, P. K. (1977). Coalescence instability of magnetic islands. Phys. Fluids 20, 72–78.CrossRefGoogle Scholar
Fisher, G. H., Canfield, R. C., and McClymont, A. N. (1985a). Flare loop radiative hydrodynamics – part seven – dynamics of the thick target heated chromosphere. Astrophys. J. 289, 434–441.Google Scholar
Fisher, G. H., Canfield, R. C., and McClymont, A. N. (1985b). Flare loop radiative hydrodynamics – part six – chromospheric evaporation due to heating by nonthermal electrons. Astrophys. J. 289, 425–433.Google Scholar
Fisher, G. H., Fan, Y., Longcope, D. W., Linton, M. G., and Pevtsov, A. A. (2000). The solar dynamo and emerging flux (invited review). Solar Phys. 192, 119–139.CrossRefGoogle Scholar
Fisher, G. H., Longcope, D. W., Metcalf, T. R., and Pevtsov, A. A. (1998). Coronal heating in active regions as a function of global magnetic variables. Astrophys. J. 508, 885–898.CrossRefGoogle Scholar
Fisk, L. A. (2003). Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops. J. Geophys. Res. 108, 1157.CrossRefGoogle Scholar
Fisk, L. A. (2005). The open magnetic flux of the Sun. I. Transport by reconnections with coronal loops. Astrophys. J. 626, 563–573.CrossRefGoogle Scholar
Fisk, L. A., Schwadron, N. A., and Zurbuchen, T. H. (1999). Acceleration of the fast solar wind by the emergence of new magnetic flux. J. Geophys. Res. 104, 19765–19772.CrossRefGoogle Scholar
Fletcher, L. and De Pontieu, B. (1999). Plasma diagnostics of transition region “moss” using SOHO/CDS and TRACE. Astrophys. J. Letts. 520, L135–L138.CrossRefGoogle Scholar
Fletcher, L., Metcalf, T. R., Alexander, D., Brown, D. S., and Ryder, L. A. (2001). Evidence for the flare trigger site and three-dimensional reconnection in multiwavelength observations of a solar flare. Astrophys. J. 554, 451–463.CrossRefGoogle Scholar
Fletcher, L., Pollock, J. A., and Potts, H. E. (2004). Tracking of TRACE ultraviolet flare footpoints. Solar Phys. 222, 279–298.CrossRefGoogle Scholar
Fontenla, J. M., Curdt, W., Haberreiter, M., Harder, J., and Tian, H. (2009). Semiempirical models of the solar atmosphere. III. Set of non-LTE models for far-ultraviolet/extreme-ultraviolet irradiance computation. Astrophys. J. 707, 482–502.CrossRefGoogle Scholar
Forbes, T. G. (1990). Numerical simulation of a catastrophe model for coronal mass ejections. J. Geophys. Res. 95, 11919–11931.CrossRefGoogle Scholar
Forbes, T. G. (1996). Reconnection theory for flares. Astron.Soc.Pac.Conf. Ser. 111, 259–267.Google Scholar
Forbes, T. G. (2000). A review on the genesis of coronal mass ejections. J. Geophys. Res. 105, 23153–23166.CrossRefGoogle Scholar
Forbes, T. G. (2010). Models of coronal mass ejections and flares. In Heliophysics: Space Storms and Radiation: Causes and Effects, C. J., Schrijver, and G. L., Siscoe, eds. (Cambridge University Press, Cambridge, UK), 159–194.Google Scholar
Forbes, T. G. and Acton, L. W. (1996). Reconnection and field line shrinkage in solar flares. Astrophys. J. 459, 330–341.CrossRefGoogle Scholar
Forbes, T. G. and Isenberg, P. (1991). A catastrophe mechanism for coronal mass ejections. Astrophys. J. 373, 294–307.CrossRefGoogle Scholar
Forbes, T. G. and Malherbe, J. M. (1986). A shock-condensation mechanism for loop prominences. Astrophys. J. 302, L67–L70.CrossRefGoogle Scholar
Forbes, T. G., Malherbe, J. M., and Priest, E. R. (1989). The formation flare loops by magnetic reconnection and chromospheric ablation. Solar Phys. 120, 285–307.CrossRefGoogle Scholar
Forbes, T. G. and Priest, E. R. (1983). A numerical experiment relevant to line-tied reconnection in two-ribbon flares. Solar Phys. 84, 169–188.CrossRef
Forbes, T. G. and Priest, E. R. (1984a). Numerical simulation of reconnection in an emerging magnetic flux region. Solar Phys. 94, 315–340.CrossRef
Forbes, T. G. and Priest, E. R. (1984b). Reconnection in solar flares. In Solar Terrestrial Phys.: Present and Future, D., Butler and K., Papadopoulos, eds. (NASA RP-1120, Washington, DC), 1–35.Google Scholar
Forbes, T. G. and Priest, E. R. (1987). A comparison of analytical and numerical models for steadily-driven magnetic reconnection. Rev. Geophys. 25, 1583–1607.CrossRefGoogle Scholar
Forbes, T. G. and Priest, E. R. (1995). Photospheric magnetic field evolution and eruptive flares. Astrophys. J. 446, 377–389.CrossRefGoogle Scholar
Forbes, T. G., Priest, E. R., and Isenberg, P. (1994). On the maximum energy release in flux-rope models of eruptive flares. Solar Phys. 150, 245–266.CrossRefGoogle Scholar
Forbes, T. G., Priest, E. R., Seaton, D. B., and Litvinenko, Y. E. (2013). Indeterminacy and instability in Petschek reconnection. Phys. Plasmas 20, 052902.CrossRefGoogle Scholar
Fossat, E. (1991). The IRIS network for full disk helioseismology – present status of the programme. Solar Phys. 133, 1–12.CrossRefGoogle Scholar
Fossum, A. and Carlsson, M. (2006). Determination of the acoustic wave flux in the lower solar chromosphere. Astrophys. J. 646, 579–592.CrossRefGoogle Scholar
Franz, M. and Schlichenmaier, R. (2009). The velocity field of sunspot penumbrae. I. A global view. Astron. Astrophys. 508, 1453–1460.CrossRefGoogle Scholar
Frazier, E. N. (1968a). An observational study of the hydrodynamics of the lower solar photosphere. Astrophys. J. 152, 557–575.CrossRefGoogle Scholar
Frazier, E. N. (1968b). A spatio-temporal analysis of velocity fields in the solar photosphere. Zeit. f. Astrophys. 68, 345–356.Google Scholar
Friedberg, J. P. (1987). Ideal Magnetohydrodynamics. (Plenum Press, New York).CrossRefGoogle Scholar
Frieman, F. and Rotenberg, M. (1960). On hydromagnetic stability of stationary equilibria. Rev. Mod. Phys. 32, 898–902.CrossRefGoogle Scholar
Frisch, U., Pouquet, A., Leorat, J., and Mazure, A. (1975). Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J. Fluid Mech. 68, 769–778.CrossRefGoogle Scholar
Fuentes-Fernández, J., Parnell, C. E., Hood, A. W., Priest, E. R., and Longcope, D. W. (2012). Consequences of spontaneous reconnection at a two-dimensional non-force-free current layer. Phys. Plasmas 19,2 (Feb.), 022901.Google Scholar
Fuller, J. and Gibson, S. E. (2009). A survey of coronal cavity density profiles. Astrophys. J. 700, 1205–1215.CrossRefGoogle Scholar
Furth, H. P., Killeen, J., and Rosenbluth, M. N. (1963). Finite-resistivity instabilities of a sheet pinch. Phys. Fluids 6, 459–484.CrossRefGoogle Scholar
Furth, H. P., Rutherford, P. H., and Selberg, H. (1973). Tearing mode in the cylindrical tokamak. Phys. Fluids 16, 1054–1063.CrossRefGoogle Scholar
Gabriel, A. H. (1976). A magnetic model of the solar transition region. Phil. Trans. Roy. Soc. Lond. A 281, 339–352.CrossRefGoogle Scholar
Gaizauskas, V. (2008). Development of flux imbalances in solar activity nests and the evolution of filament channels. Astrophys. J. 686, 1432–1446.CrossRefGoogle Scholar
Gaizauskas, V., Zirker, J. B., Sweetland, C., and Kovacs, A. (1997). Formation of a solar filament channel. Astrophys. J. 479, 448–457.CrossRefGoogle Scholar
Galloway, D. J. and Proctor, M. R. E. (1983). The kinematics of hexagonal magnetoconvection. Geophys. Astrophys. Fluid Dyn. 24, 109–136.CrossRefGoogle Scholar
Galloway, D. J., Proctor, M. R. E., and Weiss, N. O. (1978). Magnetic flux ropes and convection. J. Fluid Mech. 87, 243–261.CrossRefGoogle Scholar
Galloway, D. J. and Weiss, N. O. (1981). Convection and magnetic fields in stars. Astrophys. J. 243, 945–953.CrossRefGoogle Scholar
Galsgaard, K. (2002). Flux braiding in a stratified atmosphere. In ESA SP-505: SOLMAG 2002. Proceedings of the Magnetic Coupling of the Solar Atmosphere Euroconference. Noordwijk, 269–271.Google Scholar
Galsgaard, K., Mackay, D., Priest, E. R., and Nordlund, A. (1999). On the location of energy release and temperature profiles along coronal loops. Solar Phys. 189, 95–108.CrossRefGoogle Scholar
Galsgaard, K. and Nordlund, A. (1996a). The heating and activity of the solar corona: I. Boundary shearing of an initially homogeneous magnetic field. J. Geophys. Res. 101, 13445–13460.CrossRefGoogle Scholar
Galsgaard, K. and Nordlund, AA. (1996b). Heating and activity of the solar corona. III. Dynamics of a low-beta plasma with 3D null points. J. Geophys. Res. 102, 231–248.Google Scholar
Galsgaard, K., Priest, E. R., and Titov, V. S. (2003). Numerical experiments on wave propagation towards a 3D null point due to rotational motions. J. Geophys. Res. 108, A1, SSH 10.1–10.9.Google Scholar
Garaud, P. (2007). Magnetic confinement of the solar tachocline. In The Solar Tachocline, D.W., HughesR., Rosner, and N. O., Weiss, eds. (Cambridge University Press, Cambridge, UK), 147–181.Google Scholar
Garaud, P. and Garaud, J. (2008). Dynamics of the solar tachocline – II. The stratified case. Mon. Not. Roy. Astron. Soc. 391, 1239–1258.CrossRefGoogle Scholar
Gebhardt, U. and Kiessling, M. (1992). The structure of ideal magnetohydrodynamics with incompressible steady flow. Phys. Fluids B 4, 1689–1701.CrossRefGoogle Scholar
Gelly, B., Fierry-Fraillon, D., Fossat, E., Palle, P., Cacciani, A., Ehgamberdiev, S., Grec, G., Hoeksema, J. T., Khalikov, S., Lazrek, M., Loudagh, S., Pantel, A., Regulo, C., and Schmider, F. X. (1997). Solar p-mode frequencies from the IRIS network. Astron. Astrophys. 323, 235–242.Google Scholar
Gerrard, C. L. and Hood, A. W. (2004). Current build-up as a result of the kink instability in a loop. Solar Phys. 223, 143–154.CrossRefGoogle Scholar
Gerrard, C. L., Hood, A. W., and Brown, D. S. (2004). Effect of photospheric twisting motions on a confined toroidal loop. Solar Phys. 222, 79–94.CrossRefGoogle Scholar
Ghizaru, M., Charbonneau, P., and Smolarkiewicz, P. K. (2010). Magnetic cycles in global large-eddy simulations of solar convection. Astrophys. J. Letts. 715, L133–L137.CrossRefGoogle Scholar
Gibson, S. E. and Bagenal, F. (1995). Large-scale magnetic field and density distribution in the solar minimum corona. J. Geophys. Res. 100, 19865–19880.CrossRefGoogle Scholar
Gibson, S. E. and Fan, Y. (2006). Coronal prominence structure and dynamics: a magnetic flux rope interpretation. J. Geophys. Res. 111, A12103.CrossRefGoogle Scholar
Gibson, S. E. and Fan, Y. (2008). Partially ejected flux ropes: implications for interplanetary coronal mass ejections. J. Geophys. Res. 113, A09103.CrossRefGoogle Scholar
Gibson, S. E., Fan, Y., Mandrini, C., Fisher, G., and Demoulin, P. (2004). Observational consequences of a magnetic flux rope emerging into the corona. Astrophys. J. 617, 600–613.CrossRefGoogle Scholar
Gibson, S. E., Foster, D., Burkepile, J., De Toma, G., and Stanger, A. (2006). The calm before the storm: the link between quiescent cavities and coronal mass ejections. Astrophys. J. 641, 590–605.CrossRefGoogle Scholar
Gibson, S. E., Kucera, T. A., Rastawicki, D., Dove, J., De Toma, G., Hao, J., Hill, S., Hudson, H. S., Marque, C., McIntosh, P. S., Rachmeler, L., Reeves, K. K., Schmieder, B., Schmit, D. J., Seaton, D. B., Sterling, A. C., Tripathi, D., Williams, D. R., and Zhang, M. (2010). Three-dimensional morphology of a coronal prominence cavity. Astrophys. J. 724, 1133–1146.CrossRefGoogle Scholar
Gilman, P. A. (1970). Instability of magnetohydrostatic stellar interiors from magnetic buoyancy. I. Astrophys. J. 162, 1019–1029.CrossRefGoogle Scholar
Gilman, P. A. (1977). Nonlinear dynamics of Boussinesq convection in a deep rotating spherical shell. I. Geophys. Astrophys. Fluid Dyn. 8, 93–135.CrossRefGoogle Scholar
Gilman, P. A. (1983). Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. II – Dynamos with cycles and strong feedbacks. Astrophys. J. Suppl. 53, 243–268.CrossRefGoogle Scholar
Gilman, P. A. and Glatzmaier, G. A. (1981). Compressible convection in a rotating spherical shell. I – III. Astrophys. J. Suppl. 45, 335–388.CrossRefGoogle Scholar
Gilman, P. A. and Miller, J. (1981). Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. Astrophys. J. Suppl. 246, 211–238.Google Scholar
Giman, P. A. (2007). Global MHD instabilities of the tachocline. In The Solar Tachocline, D. W., HughesR., Rosner, and N. O., Weiss, eds. (Cambridge University Press, Cambridge, UK), 243–274.Google Scholar
Gingerich, O., Noyes, R. W., Kalkofen, W., and Cuny, Y. (1971). The Harvard-Smithsonian Reference Atmosphere. Solar Phys. 18, 347–365.CrossRefGoogle Scholar
Giovanelli, R. G. (1972). Oscillations and waves in a sunspot. Solar Phys. 27, 71–79.CrossRefGoogle Scholar
Gizon, L., Birch, A. C., and Spruit, H. C. (2010). Local helioseismology: three-dimensional imaging of the solar interior. Ann. Rev. Astron. Astrophys. 48, 289–338.CrossRefGoogle Scholar
Glatzmaier, G. A. (1985). Numerical simulations of stellar convective dynamos. II. Field propagation in the convection zone. Astrophys. J. 291, 300–307.CrossRefGoogle Scholar
Glatzmaier, G. A. and Gilman, P. A. (1981). Compressible convection in a rotating spherical shell. IV. Effects of viscosity, conductivity, boundary conditions and zone depth. Astrophys. J. Suppl. 47, 103–115.CrossRefGoogle Scholar
Glatzmaier, G. A. and Gilman, P. A. (1982). Compressible convection in a rotating spherical shell. V. Induced differential rotation and meridional circulation. Astrophys. J. 256, 316–330.CrossRefGoogle Scholar
Gloeckler, G., Zurbuchen, T. H., and Geiss, J. (2003). Implications of the observed anticorrelation between solar wind speed and coronal electron temperature. J. Geophys. Res. 108, 1158.CrossRefGoogle Scholar
Goedbloed, J. P. and Halberstadt, G. (1994). Magnetohydrodynamic waves in coronal flux tubes. Astron. Astrophys. 281, 265–301.Google Scholar
Goedbloed, J. P., Keppens, R., and Poedts, S. (2004). Principles of Magnetohydrodynamics. (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Goldstein, B. E., Neugebauer, M., Phillips, J. L., Bame, S., Gosling, J. T., McComas, D., Wang, Y.-M., Sheeley, N. R., and Suess, S. T. (1996). ULYSSES plasma parameters: latitudinal, radial, and temporal variations. Astron. Astrophys. 316, 296–303.Google Scholar
Goldstein, B. E., Smith, E. J., Balogh, A., Horbury, T. S., Goldstein, M. L., and Roberts, D. A. (1995). Properties of magnetohydrodynamic turbulence in the solar wind as observed by Ulysses at high heliographic latitudes. Geophys. Res. Lett. 22, 3393–3396.Google Scholar
Golub, L., Davis, J. M., and Krieger, A. S. (1979). Anticorrelation of X-ray bright points with sunspot number, 1970–1978. Astrophys. J. 229, L145–L150.CrossRefGoogle Scholar
Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., and Varisco, S. (2007). The X-Ray Telescope (XRT) for the Hinode mission. Solar Phys. 243, 63–86.CrossRefGoogle Scholar
Golub, L., Krieger, A., Silk, J., Timothy, A., and Vaiana, G. (1974). Solar X-ray bright points. Astrophys. J. 189, L93–L97.CrossRefGoogle Scholar
Golub, L. and Pasachoff, J. M. (1997). The Solar Corona. (Cambridge University Press, Cambridge, UK).Google Scholar
Gomez, D. O. and Ferro Fontan, C. (1988). Coronal heating by selective decay of MHD turbulence. Solar Phys. 116, 33–44.CrossRefGoogle Scholar
Gomez, D. O., Martens, P. C. H., and Golub, L. (1993). Normal Incidence X-Ray Telescope power spectra of X-ray emission from solar active regions. II. Theory. Astrophys. J. 405, 773–781.Google Scholar
Gomory, P., Beck, C., Balthasar, H., Rybak, J., Kucera, A., Koza, J., and Wöhl, H. (2010). Magnetic loop emergence within agranule. Astron. Astrophys. 511, A14.CrossRefGoogle Scholar
Goossens, M. (2003). An Introduction to Plasma Astrophysics and Magnetohydrodynamics. (Kluwer Academic, London).CrossRefGoogle Scholar
Goossens, M. (2008). Seismology of kink oscillations in coronal loops: two decades of resonant damping. IAU Symposium 247, 228–242.Google Scholar
Goossens, M., Erdelyi, R., and Ruderman, M. S. (2011). Resonant MHD waves in the solar atmosphere. Space Sci. Rev. 158, 289–338.CrossRefGoogle Scholar
Goossens, M., Ruderman, M. S., and Hollweg, J. V. (1995). Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes. Solar Phys. 157, 75–102.CrossRefGoogle Scholar
Gorbachev, V. and Somov, B. (1988). Photospheric vortex flows as a cause for two-ribbon flares – a topological model. Solar Phys. 117, 77–88.CrossRefGoogle Scholar
Gosling, J. T., Birn, J., and Hesse, M. (1995). Three-dimensional magnetic reconnection and the magnetic topology of coronal mass ejection events. Geophys. Res. Lett. 22, 869–872.CrossRefGoogle Scholar
Gough, D. O. (1969). The anelastic approximation for thermal convection. J. Atmos. Sci. 26, 448–456.2.0.CO;2>CrossRefGoogle Scholar
Gough, D. O. (1977). Random remarks on solar hydrodnamics. In IAU Colloquium No. 36, R. M., Bonnet and P., Delache, eds. (G. de Bussac, Clairmont-Ferrand), 3–36.Google Scholar
Gough, D. O. and McIntyre, M. E. (1998). Inevitability of a magnetic field in the Sun's radiative interior. Nature 394, 755–757.CrossRefGoogle Scholar
Gough, D. O. and Scherrer, P. H. (2001). The solar interior. In The Century of Space Science, J., Bleeker, J., Geiss, and M., Huber, eds. (Kluwer, Dordrecht), 1–29.Google Scholar
Gough, D. O. and Thompson, M. J. (1991). The inversion problem. In Solarlnteriorand Atmosphere, A. N., Cox, W.C., Livingston, and M. S., Matthews, eds. (University of Arizona Press, Tucson, AZ), 519–561.Google Scholar
Gourgouliatos, K. N. (2008). Self-similar magnetic arcades. Mon. Not. Roy. Astron. Soc. 385, 875–882.CrossRefGoogle Scholar
Grad, H. and Rubin, H. (1958). Hydromagnetic equilibria and force-free fields. Proc. 2nd Internat. Conf. on Peaceful Uses of Atomic Energy 31, 190–197.Google Scholar
Grec, G., Fossat, E., and Pomerantz, M. (1980). Solar oscillations – full disk observations from the geographic South Pole. Nature 288, 541–544.CrossRefGoogle Scholar
Green, L. M. and Kliem, B. (2009). Flux rope formation preceding coronal mass ejection onset. Astrophys. J. Letts. 700, L83–L87.CrossRefGoogle Scholar
Green, L. M., Kliem, B., and Wallace, A. J. (2011). Photospheric flux cancellation and associated flux rope formation and eruption. Astron. Astrophys. 526, A2.CrossRefGoogle Scholar
Green, R. M. (1965). Modes of annihilation and reconnection in magnetic fields. In Stellar and Solar Magnetic Fields. Proc. IAU Symp. 22, R., Lust, ed. (North-Holland, Amsterdam), 398–404.Google Scholar
Grotrian, W. (1939). Zur Frage der Deutung der Linien in Spektrum der Sonnenkorona. Naturwissenschaften 27, 214.CrossRefGoogle Scholar
Guarrasi, M., Reale, F., and Peres, G. (2010). Coronal fuzziness modeled with pulse-heated multi-stranded loop systems. Astrophys. J. 719, 576–582.CrossRefGoogle Scholar
Guödel, M. (2004). X-ray astronomy of stellar coronae. Astron. and Astrophys. Rev. 12, 71–237.Google Scholar
Gudiksen, B. V., Carlsson, M., Hansteen, V. H., Hayek, W., Leenaarts, J., and Martinez-Sykora, J. (2011). The stellar atmosphere simulation code Bifrost. Code description and validation. Astron. Astrophys. 531, A154.CrossRefGoogle Scholar
Gudiksen, B. V. and Nordlund, Å. (2005). An ab initio approach to the solar coronal heating problem. Astrophys. J. 618, 1020–1030.Google Scholar
Guo, Y., Schmieder, B., Demoulin, P., Wiegelmann, T., Aulanier, G., Torok, T., and Bommier, V. (2010). Coexisting flux rope and dipped arcade sections along one solar filament. Astrophys. J. 714, 343–354.CrossRefGoogle Scholar
Gurnett, D. A. and Bhattacharjee, A. (2005). Introduction to Plasma Physics. (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Habbal, S. R. and Tsinganos, K. (1983). Multiple transonic solutions with a new class of shock transitions in steady isothermal solar and stellar winds. J. Geophys. Res. 88, 1965–1975.CrossRefGoogle Scholar
Hagenaar, H. J. (2001). Ephemeral regions on a sequence of full-disk Michelson Doppler Imager magnetograms. Astrophys. J. 555, 448–461.CrossRefGoogle Scholar
Hagenaar, H. J., De Rosa, M. L., and Schrijver, C. J. (2008). The dependence of ephemeral region emergence on local flux imbalance. Astrophys. J. 678, 541–548.CrossRefGoogle Scholar
Hagenaar, H. J., Schrijver, C. J., and Title, A. M. (1997). The distribution of cell sizes of the solar chromospheric network. Astrophys. J. 481, 988–995.CrossRefGoogle Scholar
Hagenaar, H. J., Schrijver, C. J., and Title, A. M. (2003). The properties of small magnetic regions on the solar surface and the implications for the solar dynamo(s). Astrophys. J. 584, 1107–1119.CrossRefGoogle Scholar
Haigh, J. D. (2007). The Sun and the Earth's climate. Liv. Rev. in Solar Phys. 4, 2.Google Scholar
Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., Bruner, M.E., Caravalho, R., Catura, R.C., Chevalier, R., Duncan, D. W., Edwards, C. G., Feinstein, C. N., Freel and, S. L., Friedlaender, F. M., Hoffmann, C. H., Hurlburt, N. E., Jurcevich, B. K., Katz, N. L., Kelly, G. A., Lemen, J. R., Levay, M., Lindgren, R. W., Mathur, D. P., Meyer, S. B., Morrison, S. J., Morrison, M. D., Nightingale, R. W., Pope, T. P., Rehse, R. A., Schrijver, C. J., Shine, R. A., Shing, L., Strong, K. T., Tarbell, T. D., Title, A. M., Torgerson, D. D., Golub, L., Bookbinder, J. A., Caldwell, D., Cheimets, P. N., Davis, W. N., Deluca, E. E., McMullen, R. A., Warren, H. P., Amato, D., Fisher, R., Maldonado, H., and Parkinson, C. (1999). The Transition Region and Coronal Explorer. Solar Phys. 187, 229–260.CrossRefGoogle Scholar
Hannah, I. G., Hudson, H. S., Battaglia, M., Christe, S., Kasparova, J., Krucker, S., Kundu, M. R., and Veronig, A. (2011). Microflares and the statistics of X-ray flares. Space Sci. Rev. 159, 263–300.CrossRefGoogle Scholar
Hansteen, V. H., De Pontieu, B., Rouppe van der Voort, L., van Noort, M., and Carlsson, M. (2006). Dynamic fibrils are driven by magnetoacoustic shocks. Astrophys. J. Letts. 647, L73–L76.CrossRefGoogle Scholar
Hansteen, V. H., Hara, H., De Pontieu, B., and Carlsson, M. (2010). On redshifts and blueshifts in the transition region and corona. Astrophys. J. 718, 1070–1078.CrossRefGoogle Scholar
Hansteen, V. H. and Leer, E. (1995). Coronal heating, densities, and temperatures and solar wind acceleration. J. Geophys. Res. 100, 21577–21594.CrossRefGoogle Scholar
Hara, H., Watanabe, T., Harra, L. K., Culhane, J. L., and Young, P. R. (2011). Plasma motions and heating by magnetic reconnection in a 2007 May 19 flare. Astrophys. J. 741, 107.CrossRefGoogle Scholar
Hara, H., Watanabe, T., Harra, L. K., Culhane, J. L., Young, P. R., Mariska, J. T., and Doschek, G. A. (2008). Coronal plasma motions near footpoints of active region loops revealed from spectroscopic observations with Hinode EIS. Astrophys. J. Letts. 678, L67–L71.CrossRefGoogle Scholar
Harra, L. K., Hara, H., Imada, S., Young, P. R., Williams, D. R., Sterling, A. C., Korendyke, C., and Attrill, G. D. R. (2007). Coronal dimming observed with Hinode: outflows related to a coronal mass ejection. Pub. Astron. Soc. Japan 59, 801–806.Google Scholar
Harrison, R. A. (1986). Solar coronal mass ejections and flares. Astron. Astrophys. 162, 283–291.Google Scholar
Harrison, R. A. (1996). Coronal magnetic storms: a new perspective on flares and the ‘Solar Flare Myth’ debate. Solar Phys. 166, 441–444.CrossRef
Harrison, R. A. (1997). EUV blinkers: the significance of variations in the extreme ultraviolet quiet Sun. Solar Phys. 175, 467–485.CrossRefGoogle Scholar
Harrison, R. A., Davies, J. A., Mostl, C., Liu, Y., Temmer, M., Bisi, M. M., Eastwood, J. P., De Koning, C. A., Nitta, N., Rollett, T., Farrugia, C.J., Forsyth, R.J., Jackson, B.V., Jensen, E.A., Kilpua, E.K.J., Odstrcil, D., and Webb, D.F. (2012). An analysis of the origin and propagation of the multiple coronal mass ejections of 2010 August 1. Astrophys. J. 750, 45.CrossRefGoogle Scholar
Harrison, R. A., Davies, J. A., Rouillard, A. P., Davis, C. J., Eyles, C. J., Bewsher, D., Crothers, S. R., Howard, R. A., Sheeley, N. R., Vourlidas, A., Webb, D. F., Brown, D. S., and Dorrian, G. D. (2009). Two years of the STEREO Heliospheric Imagers. Invited review. Solar Phys. 256, 219–237.CrossRefGoogle Scholar
Hart, A. B. (1954). Motions in the Sun at the photospheric level. IV. The equatorial rotation and possible velocity fields in the photosphere. Mon. Not. Roy. Astron. Soc. 114, 17–38.CrossRefGoogle Scholar
Hartle, R. E. and Sturrock, P. A. (1968). Two-fluid model of the solar wind. Astrophys. J. 151, 1155–1170.CrossRefGoogle Scholar
Harvey, J. W. (1969). Magnetic fields associated with solar active-region prominences. Ph.D. thesis, University of Colorado at Boulder.Google Scholar
Harvey, K. L. (1996). Observations of X-ray bright points. Astron.Soc.of Pacif. Conf. Series 111, 9–18.Google Scholar
Harvey, K. L. and Harvey, J. W. (1973). Observations of moving magnetic features near sunspots. Solar Phys. 28, 61–71.CrossRefGoogle Scholar
Harvey, K. L. and Martin, S. F. (1973). Ephemeral active regions. Solar Phys. 32, 389–402.CrossRefGoogle Scholar
Hassler, D. M., Dammasch, I. E., Lemaire, P., Brekke, P., Curdt, W., Mason, H. E., Vial, J.-C., and Wilhelm, K. (1999). Solar wind outflow and the chromospheric magnetic network. Science 283, 810–813.CrossRefGoogle ScholarPubMed
Hathaway, D. H. (1996). Doppler measurements of the Sun's meridional flow. Astrophys. J. 460, 1027–1033.CrossRefGoogle Scholar
Hathaway, D. H. (2012a). Supergranules as probes of solar convection zone dynamics. Astrophys. J. Letts. 749, L13.CrossRefGoogle Scholar
Hathaway, D. H. (2012b). Supergranules as probes of the Sun's meridional circulation. Astrophys. J. 760, 84.CrossRefGoogle Scholar
Hathaway, D. H., Beck, J. G., Bogart, R. S., Bachmann, K. T., Khatri, G., Petitto, J. M., Han, S., and Raymond, J. (2000). The photospheric convection spectrum. Solar Phys. 193, 299–312.CrossRefGoogle Scholar
Hathaway, D. H., Beck, J. G., Han, S., and Raymond, J. (2002). Radial flows in supergranules. Solar Phys. 205, 25–38.CrossRefGoogle Scholar
Hathaway, D. H. and Rightmire, L. (2010). Variations in the Sun's meridional flow over a solar cycle. Science 327, 1350–1352.CrossRefGoogle Scholar
Haynes, A. L. and Parnell, C. E. (2010). A method for finding three-dimensional magnetic skeletons. Phys. Plasmas 17, 9, 092903.CrossRefGoogle Scholar
Haynes, A. L., Parnell, C. E., Galsgaard, K., and Priest, E. R. (2007). Magnetohydrodynamic evolution of magnetic skeletons. Proc. Roy. Soc. Lond. 463, 1097–1115.CrossRefGoogle Scholar
Heasley, J. N. and Mihalas, D. (1976). Structure and spectrum of quiescent prominences: energy balance and hydrogen spectrum. Astrophys. J. 205, 273–285.CrossRefGoogle Scholar
Heinemann, T., Nordlund, A., Scharmer, G. B., and Spruit, H. C. (2007). MHD simulations of penumbra fine structure. Astrophys. J. 669, 1390–1394.CrossRefGoogle Scholar
Heinzel, P., Schmieder, B., and Tziotziou, K. (2001). Why are solar filaments more extended in extreme-ultraviolet lines than in Ha?Astrophys. J. Letts. 561, L223–L227.CrossRefGoogle Scholar
Herzenberg, A. (1958). Geomagnetic dynamos. Phil.Trans.Roy.Soc.Lond. A 250, 543–583.CrossRefGoogle Scholar
Hesse, M. and Birn, J. (1990). Parallel electric fields in a simulation of magnetotail reconnection and plasmoid evolution. In Phys. of Magnetic Flux Ropes. (A.G.U., Washington), 679–685.Google Scholar
Hesse, M., Forbes, T. G., and Birn, J. (2005). On the relation between reconnected magnetic flux and parallel electric fields in the solar corona. Astrophys. J. 631, 1227–1238.CrossRefGoogle Scholar
Hesse, M. and Schindler, K. (1988). A theoretical foundation of General Magnetic Reconnection. J. Geophys. Res. 93, 5539–5567.CrossRefGoogle Scholar
Heyn, M. F. (1996). Rapid reconnection in compressible plasma. Phys. Plasmas 3, 2725–2741.CrossRefGoogle Scholar
Heyvaerts, J. (1974). The thermal instability in a magnetohydrodynamic medium. Astron. Astrophys. 37, 65–73.Google Scholar
Heyvaerts, J. and Norman, C. (2003). Global asymptotic solutions for nonrelativistic magnetohydrodynamic jets and winds. Astrophys. J. 596, 1270–1294.Google Scholar
Heyvaerts, J. and Priest, E. R. (1983). Coronal heating by phase-mixed shear Alfven waves. Astron. Astrophys. 117, 220–234.Google Scholar
Heyvaerts, J. and Priest, E. R. (1984). Coronal heating by reconnection in DC current systems – a theory based on Taylor's hypothesis. Astron. Astrophys. 137, 63–78.Google Scholar
Heyvaerts, J. and Priest, E. R. (1992). A self-consistent model for solar coronal heating. Astrophys. J. 390, 297–308.CrossRefGoogle Scholar
Heyvaerts, J., Priest, E. R., and Rust, D. M. (1977). An emerging flux model for the solar flare phenomenon. Astrophys. J. 216, 123–137.CrossRefGoogle Scholar
Hickey, J. R., Stowe, L. L., Jacobowitz, H., Pellegrino, P., Maschhoff, R. H., House, F., and Vonder Haar, T. H. (1980). Initial solar irradiance determinations from Nimbus 7 cavity radiometer measurements. Science 208, 281–283.CrossRefGoogle ScholarPubMed
Hildner, E. (1974). The formation of solar quiescent prominences by condensation. Solar Phys. 35, 123–136.CrossRefGoogle Scholar
Hill, F. (1989). Solar oscillation ring diagrams and large-scale flows. Astrophys. J. Letts. 343, L69–L71.CrossRefGoogle Scholar
Hillier, A., Berger, T., Isobe, H., and Shibata, K. (2012). Numerical simulations of the magnetic Rayleigh-Taylor instability in the Kippenhahn-Schlöter prominence model. I. Formation of upflows. Astrophys. J. 746, 120.CrossRefGoogle Scholar
Hillier, A., Isobe, H., Shibata, K., and Berger, T. (2011). Numerical simulations of the magnetic Rayleigh-Taylor instability in the Kippenhahn-Schluöter prominence model. Astrophys. J. Letts. 736, L1.CrossRefGoogle Scholar
Hillier, A., Isobe, H., Shibata, K., and Berger, T. (2012). Numerical simulations of the magnetic Rayleigh-Taylor instability in the Kippenhahn-Schlöter Prominence model. II. Reconnection-triggered downflows. Astrophys. J. 756, 110.CrossRefGoogle Scholar
Hillier, A. and van Ballegooijen, A. (2013). On the support of solar prominence material by the dips of a coronal flux tube. Astrophys. J. 766, 126.CrossRefGoogle Scholar
Hirayama, T. (1974). Theoretical model of flares and prominences. I. Evaporating flare model. Solar Phys. 34, 323–338.CrossRefGoogle Scholar
Hirzberger, J., Feller, A., Riethmuöller, T. L., Schuössler, M., Borrero, J. M., Afram, N., Unruh, Y. C., Berdyugina, S. V., Gandorfer, A., Solanki, S. K., Barthol, P., Bonet, J. A., Martinez Pillet, V., Berkefeld, T., Knölker, M., Schmidt, W., and Title, A. M. (2010). Quiet-Sun intensity contrasts in the near-ultraviolet as measured from SUNRISE. Astrophys. J. Letts. 723, L154–L158.CrossRefGoogle Scholar
Hirzberger, J., Gizon, L., Solanki, S. K., and Duvall, T. L. (2008). Structure and evolution of supergranulation from local helioseismology. Solar Phys. 251, 417–437.CrossRefGoogle Scholar
Hollweg, J. V. (1970). Collisionless solar wind. 1. Constant electron temperature. J. Geophys. Res. 75, 2403–2418.CrossRefGoogle Scholar
Hollweg, J. V. (1974). Transverse Alfven waves in the solar wind: arbitrary k, vo, Bo, and \3B\. J. Geophys. Res. 79, 1539–1541.CrossRefGoogle Scholar
Hollweg, J. V. (1981). Alfven waves in the solar atmosphere. II – Open and closed magnetic flux tubes. Solar Phys. 70, 25–66.Google Scholar
Hollweg, J. V. (1982). On the origin of solar spicules. Astrophys. J. 257, 345–353.CrossRefGoogle Scholar
Hollweg, J. V. (1986). Transition region, corona, and solar wind in coronal holes. J. Geophys. Res. 91, 4111–4125.CrossRefGoogle Scholar
Hollweg, J. V. (1986). Viscosity and the Chew-Goldberger-Low equations in the solar corona. Astrophys. J. 306, 730–739.CrossRefGoogle Scholar
Hollweg, J. V., Jackson, S., and Galloway, D. (1982). Alfvien waves in the solar atmosphere. III – Nonlinear waves on open flux tubes. Solar Phys. 75, 35–61.Google Scholar
Holman, G. D., Sui, L., Schwartz, R. A., and Emslie, A. G. (2003). Electron bremsstrahlung, hard X-ray spectra, electron distributions, and energetics in the 2002 July 23 solar flare. Astrophys. J. Letts. 595, L97–L101.CrossRefGoogle Scholar
Holzer, T. E. and Leer, E. (1980). Conductive solar wind models in rapidly diverging flow geometries. J. Geophys. Res. 85, 4665–4679.CrossRefGoogle Scholar
Hood, A. W. (1985). MHD instabilities. In Solar System Magnetic Fields, E. R., Priest, ed. (D Reidel, Dordrecht), 80–120.Google Scholar
Hood, A. W. and Anzer, U. (1990). A model for quiescent solar prominences with normal polarity. Solar Phys. 126, 117–133.CrossRefGoogle Scholar
Hood, A. W., Archontis, V., Galsgaard, K., and Moreno-Insertis, F. (2009). The emergence of toroidal flux tubes from beneath the solar photosphere. Astron. Astrophys. 503, 999–1011.CrossRefGoogle Scholar
Hood, A. W., Brooks, S. J., and Wright, A. N. (2002). Coronal heating by the phase mixing of individual pulses propagating in coronal holes. Proc. Roy. Soc. Lond. 458, 2307–2325.CrossRefGoogle Scholar
Hood, A. W., Brooks, S. J., and Wright, A. N. (2005). Phase mixing of Alfvien pulses and wavetrains propagating in coronal holes. Proc. Roy. Soc. Lond. 461, 237–252.CrossRefGoogle Scholar
Hood, A. W., Browning, P. K., and van der Linden, R. A. M. (2009). Coronal heating by magnetic reconnection in loops with zero net current. Astron. Astrophys. 506, 913–925.CrossRefGoogle Scholar
Hood, A. W. and Priest, E. R. (1979a). The equilibrium of solar coronal magnetic loops. Astron. Astrophys. 77, 233–251.Google Scholar
Hood, A. W. and Priest, E. R. (1979b). Kink instability of solar coronal loops as the cause of solar flares. Solar Phys. 64, 303–321.CrossRefGoogle Scholar
Hood, A. W. and Priest, E. R. (1981). Critical conditions for magnetic instabilities in force-free coronal loops. Geophys. Astrophys. Fluid Dyn. 17, 297–318.CrossRefGoogle Scholar
Hood, A. W., Priest, E. R., and Anzer, U. (1992). The fibril structure of prominences. Solar Phys. 138, 331–351.CrossRefGoogle Scholar
Horbury, T. S., Balogh, A., Forsyth, R. J., and Smith, E. J. (1995). Observations of evolving turbulence in the polar solar wind. Geophys. Res. Lett. 22, 3401–3404.CrossRefGoogle Scholar
Hornig, G. (2001). The geometry of reconnection. In An Introduction to the Geometry and Topology of Fluid Flows, R.L., Ricca, ed. (Kluwer, Dordrecht), 295–313.Google Scholar
Hornig, G. and Priest, E. R. (2003). Evolution of magnetic flux in an isolated reconnection process. Phys. Plasmas 10, 2712–2721.CrossRefGoogle Scholar
Hornig, G. and Schindler, K. (1996). Magnetic topology and the problem of its invariant definition. Phys. Plasmas 3, 781–791.CrossRefGoogle Scholar
Howard, R. F. and Labonte, B. J. (1980). The Sun is observed to be a torsional oscillator with a period of 11 years. Astrophys. J. Letts. 239, L33–L36.CrossRefGoogle Scholar
Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R., Schou, J., and Thompson, M. J. (2005). Solar convection-zone dynamics, 1995–2004. Astrophys. J. 634, 1405–1415.CrossRefGoogle Scholar
Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R. W., Larsen, R. M., Schou, J., Thompson, M. J., and Toomre, J. (2000). Dynamic variations at the base of the solar convection zone. Science 287, 2456–2460.CrossRefGoogle ScholarPubMed
Hoyt, D. V. and Schatten, K. H. (1996). How well was the Sun observed during the Maunder minimum?Solar Phys. 165, 181–192.CrossRefGoogle Scholar
Hu, Y. Q., Esser, R., and Habbal, S. R. (2000). A four-fluid turbulence-driven solar wind model for preferential acceleration and heating of heavy ions. J. Geophys. Res. 105, 5093–5112.CrossRefGoogle Scholar
Huba, J. D. (2003). A tutorial on Hall MHD. In Space Simulations, M., Scholer, C., Dum, and J., Buöchner, eds. (Springer, New York), 170–197.Google Scholar
Huba, J. D. and Rudakov, L. I. (2002). Three-dimensional Hall magnetic reconnection. Phys. Plasmas 9, 4435–4438.CrossRefGoogle Scholar
Hudson, H. S. (1991). Solar flares, microflares, nanoflares, and coronal heating. Solar Phys. 133, 357–369.CrossRefGoogle Scholar
Hudson, H. S. (2010). Observations of solar and stellar eruptions, flares and jets. In Heliophysics: Space Storms and Radiation: Causes and Effects, Schrijver, C. J. & Siscoe, G. L., ed. (Cambridge University Press, Cambridge), 123–157.Google Scholar
Hughes, D. W. (1985). Magnetic buoyancy instabilities incorporating rotation. Geophys. Astrophys. Fluid Dyn. 34, 99–142.CrossRefGoogle Scholar
Hughes, D. W. (2007). Magnetic buoyancy instabilities in the tachocline. In The Solar Tachocline, D.W., Hughes, R., Rosner, and N. O., Weiss, eds. (Cambridge University Press, Cambridge, UK), 275–298.CrossRefGoogle Scholar
Hughes, D. W., Rosner, R., and Weiss, N. O. (2007). The Solar Tachocline. (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Hundhausen, A. J. (1972). Coronal Expansion and the Solar Wind. (Springer-Verlag, New York).CrossRefGoogle Scholar
Hundhausen, A. J. (1977). An interplanetary view of coronal holes. In Coronal Holes and High Speed Wind Streams, J.B., Zirker, ed. (Colo. Ass. Univ. Press, Boulder, Colorado), 225–329.Google Scholar
Hundhausen, A. J. (1999). Coronal mass ejections. In The Many Faces of the Sun: a Summary of the Results from NASA's Solar Maximum Mission., K. T., Strong, J. L. R., Saba, B. M., Haisch, and J. T., Schmelz, ed. (Springer, New York), 143.CrossRefGoogle Scholar
Hundhausen, J. R., Hundhausen, A. J., and Zweibel, E. G. (1981). Magnetostatic atmospheres in a spherical geometry and their application to the solar corona. J. Geophys. Res. 86, 1117–1126.CrossRefGoogle Scholar
Hunter, J. H. (1970). Generalized thermal instability and its application to the interstellar gas. Astrophys. J. 161, 451–455.CrossRefGoogle Scholar
Hurlburt, N. E., Proctor, M. R. E., Weiss, N. O., and Brownjohn, D. P. (1989). Nonlinear compressible magnetoconvection. I – Travelling waves and oscillations. J. Fluid Mech. 207, 587–628.CrossRefGoogle Scholar
Hurlburt, N. E. and Rucklidge, A. M. (2000). Development of structure in pores and sunspots: flows around axisymmetric magnetic flux tubes. Mon. Not. Roy. Astron. Soc. 314, 793–806.CrossRefGoogle Scholar
Hurlburt, N. E. and Toomre, J. (1988). Magnetic fields interacting with nonlinear compressible convection. Astrophys. J. 327, 920–932.CrossRefGoogle Scholar
Ichimoto, K., Suematsu, Y., Tsuneta, S., Katsukawa, Y., Shimizu, T., Shine, R. A., Tarbell, T. D., Title, A. M., Lites, B. W., Kubo, M., and Nagata, S. (2007). Twisting motions of sunspot penumbral filaments. Science 318, 1597–1599.CrossRefGoogle ScholarPubMed
Imshennik, V. S. and Syrovatsky, S. I. (1967). Two-dimensional flow of an ideally conducting gas in the vicinity of the zero line of a magnetic field. Sov. Phys. JETP 25, 656–664.Google Scholar
Inhester, B. and Wiegelmann, T. (2006). Nonlinear force-free magnetic field extrapolations: comparison of the Grad-Rubin and Wheatland-Sturrock-Roumeliotis algorithms. Solar Phys. 235, 201–221.CrossRefGoogle Scholar
Innes, D. E. (2001). Coordinated observations of the quiet Sun transition region using SUMER spectra, TRACE images and MDI magnetograms. Astron. Astrophys. 378, 1067–1077.CrossRefGoogle Scholar
Innes, D. E., Cameron, R. H., and Solanki, S. K. (2011). EUV jets, type III radio bursts and sunspot waves investigated using SDO/AIA observations. Astron. Astrophys. 531, L13.CrossRefGoogle Scholar
Innes, D. E., Inhester, B., Axford, W. I., and Wilhelm, K. (1997). Bi-directional plasma jets produced by magnetic reconnection on the Sun. Nature 386, 811–813.CrossRefGoogle Scholar
Innes, D. E., McKenzie, D. E., and Wang, T. (2003). Observations of 1000 km s-1 Doppler shifts in 107 K solar flare supra-arcade. Solar Phys. 217, 267–279.CrossRefGoogle Scholar
Inverarity, G. W. and Priest, E. R. (1995a). Turbulent coronal heating. II. Twisted flux tube. Astron. Astrophys. 296, 395–404.Google Scholar
Inverarity, G. W. and Priest, E. R. (1995b). Turbulent coronal heating. III. Wave heating in coronal loops. Astron. Astrophys. 302, 567–577.Google Scholar
Isenberg, P. A. (1986). On a difficulty with accelerating particles at slow-mode shocks. J. Geophys. Res. 91, 1699.CrossRefGoogle Scholar
Isenberg, P. A. and Forbes, T. G. (2007). A three-dimensional line-tied magnetic field model for solar eruptions. Astrophys. J. 670, 1453–1466.CrossRefGoogle Scholar
Isenberg, P.A., Forbes, T. G., and Demoulin, P. (1993). Catastrophic evolution of a force-free flux rope: a model for eruptive flares. Astrophys. J. 417, 368–386.CrossRefGoogle Scholar
Ishikawa, R. and Tsuneta, S. (2009). Comparison of transient horizontal magnetic fields in a plage region and in the quiet Sun. Astron. Astrophys. 495, 607–612.CrossRefGoogle Scholar
Ishikawa, R. and Tsuneta, S. (2010). Spatial and temporal distributions of transient horizontal magnetic fields with deep exposure. Astrophys. J. Letts. 718, L171–L175.CrossRefGoogle Scholar
Ishikawa, R. and Tsuneta, S. (2011). The relationship between vertical and horizontal magnetic fields in the quiet Sun. Astrophys. J. 735, 74.CrossRefGoogle Scholar
Isliker, H., Anastasiadis, A., and Vlahos, L. (2000). MHD consistent cellular automata (CA) models. I. Basic features. Astron. Astrophys. 363, 1134-1144.Google Scholar
Isliker, H., Anastasiadis, A., and Vlahos, L. (2001). MHD consistent cellular automata (CA) models. II. Applications to solar flares. Astron. Astrophys. 377, 1068-1080.CrossRefGoogle Scholar
Isliker, H. and Vlahos, L. (2003). Random walk through fractal environments. Phys. Rev. 67, 2, 026413.Google ScholarPubMed
Isobe, H., Miyagoshi, T., Shibata, K., and Yokoyama, T. (2005). Filamentary structure on the Sun from the magnetic Rayleigh-Taylor instability. Nature 434, 478-481.CrossRefGoogle ScholarPubMed
Isobe, H. and Shibata, K. (2009). Reconnection in solar flares: outstanding questions. J. of Astrophys. Astron. 30, 79–85.CrossRefGoogle Scholar
Ito, H., Tsuneta, S., Shiota, D., Tokumaru, M., and Fujiki, K. (2010). Is the polar region different from the quiet region of the Sun?Astrophys. J. 719, 131–142.CrossRefGoogle Scholar
Jackson, J. D. (1998). Classical Electrodynamics, 3rd Edition. (John Wiley and Sons, Hoboken).Google Scholar
Jahn, K. (1989). Current sheet as a diagnostic for the subphotospheric structure of a spot. Astron. Astrophys. 222, 264–292.Google Scholar
Janse, A. M. and Low, B. C. (2009). The topological changes of solar coronal magnetic fields. I. Spontaneous current sheets in three-dimensional fields. Astrophys. J. 690, 1089–1104.CrossRefGoogle Scholar
Javadi, S., Büchner, J., Otto, A., and Santos, J. C. (2011). About the relative importance of compressional heating and current dissipation for the formation of coronal X-ray bright points. Astron. Astrophys. 529, A114.CrossRefGoogle Scholar
Jeffrey, A. and Taniuti, T. (1964). Non-Linear Wave Propagation. (Academic Press, New York).Google Scholar
Jeffrey, A. and Taniuti, T. (1966). Magnetohydrodynamic Stability and Thermonuclear Containment. (Academic Press, New York).Google Scholar
Jennings, R. L. and Weiss, N. O. (1991). Symmetry breaking in stellar dynamos. Mon. Not. Roy. Astron. Soc. 252, 249–260.CrossRefGoogle Scholar
Jess, D. B., Mathioudakis, M., Crockett, P. J., and Keenan, F. P. (2008). Do all flares have white-light emission?Astrophys. J. Letts. 688, L119–L122.CrossRefGoogle Scholar
Jess, D. B., Mathioudakis, M., Erdelyi, R., Crockett, P. J., Keenan, F. P., and Christian, D. J. (2009). Alfven waves in the lower solar atmosphere. Science 323, 1582–1585.CrossRefGoogle ScholarPubMed
Ji, H., Cao, W., and Goode, P. R. (2012). Observation of ultrafine channels of solar corona heating. Astrophys. J. Letts. 750, L25.CrossRefGoogle Scholar
Jiang, J., Chatterjee, P., and Choudhuri, A. R. (2007). Solar activity forecast with a dynamo model. Mon. Not. Roy. Astron. Soc. 381, 1527–1542.CrossRefGoogle Scholar
Jockers, K. (1970). Solar wind models based on exospheric theory. Astron. Astrophys. 6, 219–239.Google Scholar
Jouve, L., Brun, A. S., Arlt, R., Brandenburg, A., Dikpati, M., Bonanno, A., Küapylaü, P.J., Moss, D., Rempel, M., Gilman, P., Korpi, M. J., and Kosovichev, A. G. (2008). A solar mean-field dynamo benchmark. Astron. Astrophys. 483, 949–960.CrossRefGoogle Scholar
Jouve, L., Brun, A. S., and Aulanier, G. (2013). Global dynamics of subsurface solar active regions. Astrophys. J. 762, 4.CrossRefGoogle Scholar
Kadomtsev, B. B. (1975). Disruptive instability in tokamaks. Soviet J. Plasma Phys. 1, 389–391.Google Scholar
Kano, R., Shimizu, T., and Tarbell, T. D. (2010). Hinode observation of photospheric magnetic activities triggering X-ray microflares around a well-developed sunspot. Astrophys. J. 720, 1136–1145.CrossRefGoogle Scholar
Kano, R. and Tsuneta, S. (1995). Scaling law of solar coronal loops obtained with Yohkoh. Astrophys. J. 454, 934–944.CrossRefGoogle Scholar
Kantrowitz, A. R. and Petschek, H. E. (1966). MHD characteristics and shock waves. In Plasma Physics in Theory and Applications, W. B., Kunkel, ed. (McGraw-Hill, New York).Google Scholar
Kappraff, J. M. and Tataronis, J. A. (1977). Resistive effects on Alfven wave heating. J. Plasma Phys. 18, 209–226.CrossRefGoogle Scholar
Karpen, J. T. and Antiochos, S. K. (2008). Condensation formation by impulsive heating in prominences. Astrophys. J. 676, 658–671.CrossRefGoogle Scholar
Karpen, J. T., Antiochos, S. K., and DeVore, C. R. (2012). The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. Astrophys. J. 760, 81.CrossRefGoogle Scholar
Karpen, J. T., Antiochos, S. K., and Klimchuk, J. A. (2006). The origin of high-speed motions and threads in prominences. Astrophys. J. 637, 531–540.CrossRefGoogle Scholar
Karpen, J. T., Antiochos, S. K., Picone, J. M., and Dahlburg, R. B. (1989). Nonlinear thermal instability in magnetized solar plasmas. Astrophys. J. 338, 493–508.CrossRefGoogle Scholar
Karpen, J. T., Tanner, S. E. M., Antiochos, S. K., and DeVore, C. R. (2005). Prominence formation by thermal nonequilibrium in the sheared-arcade model. Astrophys. J. 635, 1319–1328.CrossRefGoogle Scholar
Katsukawa, Y., Berger, T. E., Ichimoto, K., Lites, B. W., Nagata, S., Shimizu, T., Shine, R. A., Suematsu, Y., Tarbell, T. D., Title, A. M., and Tsuneta, S. (2007). Small-scale jetlike features in penumbral chromospheres. Science 318, 1594–1597.CrossRefGoogle ScholarPubMed
Katsukawa, Y. and Tsuneta, A. (2002). Small fluctuations of coronal X-ray intensity: a signature of nanoflares. In Multi-Wavelength Observations of Coronal Structure and Dynamics, P.C.H., Martens and D., Cauffman, eds.(Elsevier Science, Maryland Heights), 61.CrossRefGoogle Scholar
Kazachenko, M. D., Canfield, R. C., Longcope, D. W., and Qiu, J. (2010). Sunspot rotation, flare energetics, and flux rope helicity: the Halloween flare on 2003 October 28. Astrophys. J. 722, 1539–1546.CrossRefGoogle Scholar
Kazachenko, M. D., Canfield, R. C., Longcope, D. W., and Qiu, J. (2012). Predictions of energy and helicity in four major eruptive solar flares. Solar Phys. 277, 165–183.CrossRefGoogle Scholar
Keller, C. U. (1995). Properties of solar magnetic fields from speckle polarimetry. (Ludwig Biermann Award Lecture 1994). Rev. Mod. Astron. 8, 27–60.Google Scholar
Keller, C. U., Schuössler, M., Voögler, A., and Zakharov, V. (2004). On the origin of solar faculae. Astrophys. J. Letts. 607, L59–L62.CrossRefGoogle Scholar
Khater, A. H., Callebaut, D. K., and Kamel, E. S. (1998). Painlevie analysis and nonlinear periodic solutions for isothermal magnetostatic atmospheres. Solar Phys. 178, 285–315.CrossRefGoogle Scholar
Khater, A. H., Callebaut, D. K., Malfliet, W., and Kamel, E. S. (2002). Böcklund transformations and exact solutions for some nonlinear evolution equations in solar magnetostatic models. Journal of Computational and Applied Mathematics 140, 435–467.CrossRefGoogle Scholar
Khater, A. H., Ibrahim, R. S., Shamardan, A. B., and Callebaut, D. K. (1997). Böacklund transformations and Painlevie analysis: exact solutions for a Grad-Shafranov-type MHD equilibrium. IMA Journal of Applied Mathematics 58, 51–69.Google Scholar
Khomenko, E. and Collados Vera, M. (2012a). Heating of the Magnetized Solar Chromosphere by Partial Ionization Effects. Astrophys. J. 747, 87.CrossRefGoogle Scholar
Khomenko, E. and Collados Vera, M. (2012b). Simulations of chromospheric heating by ambipolar diffusion. Astron. Soc. Pac. Conf. Ser. 463, 1–8.Google Scholar
Khomenko, E., Diaz, A., De Vicente, A., Luna, M., and Collados Vera, M. (2013). Rayleigh-Taylor instability in prominences from numerical simulations including partial ionization effects. IAU Symp. 300.Google Scholar
Khomenko, E. V., Collados, M., Solanki, S. K., Lagg, A., and Trujillo Bueno, J. (2003). Quiet-Sun inter-network magnetic fields observed in the infrared. Astron. Astrophys. 408, 1115–1135.CrossRefGoogle Scholar
Kiepenheuer, K. O. (1953). Solar activity. In The Sun, Kuiper, G. P., ed. (Univ. Chicago Press, Chicago), 322–465.Google Scholar
Kippenhahn, R. and Schlöter, A. (1957). Eine Theorie der Solaren Filamente. Zs. Ap. 43, 36–62.Google Scholar
Kitchatinov, L. L. and Rödiger, G. (1993). A-effect and differential rotation in stellar convection zones. Astron. Astrophys. 276, 96–102.Google Scholar
Kitchatinov, L. L. and Rödiger, G. (1996). Transition to rigid rotation in the radiative zone of the Sun: the effect of a fossil magnetic field?Astron. Letts. 22, 279–284.Google Scholar
Kitchatinov, L. L. and Rödiger, G. (2005). Differential rotation and meridional flow in the solar convection zone and beneath. Astron. Nach. 326, 379–385.CrossRefGoogle Scholar
Kliem, B., Karlicky, M., and Benz, A. O. (2000). Solar flare radio pulsations as a signature of dynamic magnetic reconnection. Astron. Astrophys. 360, 715–728.Google Scholar
Kliem, B. and Torok, T. (2006). Torus instability. Phys. Rev. Letts. 96, 25, 255002.CrossRefGoogle ScholarPubMed
Klimchuk, J. A. (2000). Cross-sectional properties of coronal loops. Solar Phys. 193, 53–75.CrossRefGoogle Scholar
Klimchuk, J. A. (2002). Scaling laws for solar and stellar coronae. In Stellar Coronae in the Chandra and XMM-NEWTON Era, F., Favata and J. J., Drake, eds. Astron. Soc. Pacific Conf. Ser., vol. 277. (San Francisco), 321–332.Google Scholar
Klimchuk, J. A. (2006). On solving the coronal heating problem. Solar Phys. 234, 41–77.CrossRefGoogle Scholar
Klimchuk, J. A. (2009). Coronal loop models and those annoying observations! (keynote). Astron. Soc. of Pac. Conf. Series 415, 221–233.Google Scholar
Klimchuk, J. A. (2012). The role of type II spicules in the upper solar atmosphere. J. Geophys. Res. 117, 12102.CrossRefGoogle Scholar
Klimchuk, J. A., Patsourakos, S., and Cargill, P. J. (2008). Highly efficient modeling of dynamic coronal loops. Astrophys. J. 682, 1351–1362.CrossRefGoogle Scholar
Klimchuk, J. A., Sturrock, P. A., and Yang, W.-H. (1988). Coronal magnetic fields produced by photospheric shear. Astrophys. J. 335, 456–467.CrossRefGoogle Scholar
Knobloch, E., Tobias, S. M., and Weiss, N. O. (1998). Modulation and symmetry changes in stellar dynamos. Mon. Not. Roy. Astron. Soc. 297, 1123–1138.CrossRefGoogle Scholar
Kobel, P., Solanki, S. K., and Borrero, J. M. (2012). The continuum intensity as a function of magnetic field. II. Local magnetic flux and convective flows. Astron. Astrophys. 542, A96.CrossRefGoogle Scholar
Kohl, J. L., Noci, G., Cranmer, S. R., and Raymond, J. C. (2006). Ultraviolet spectroscopy of the extended solar corona. Astron. Astroph. Rev. 13, 31–157.CrossRefGoogle Scholar
Komm, R. W., Howard, R. F., and Harvey, J. W. (1993). Meridional flow of small photospheric magnetic features. Solar Phys. 147, 207–223.CrossRefGoogle Scholar
Kopp, R. A. and Holzer, T. E. (1976). Dynamics of coronal hole regions. I – Steady polytropic flows with multiple critical points. Solar Phys. 49, 43–56.Google Scholar
Kopp, R. A. and Pneuman, G. W. (1976). Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 50, 85–98.CrossRefGoogle Scholar
Kosovichev, A. G. (1996). Helioseismic constraints on the gradient of angular velocity at base of the solar convection zone. Astrophys. J. 469, L61–L64.CrossRefGoogle Scholar
Kosovichev, A. G., Schou, J., Scherrer, P. H., Bogart, R. S., Bush, R. I., Hoeksema, J. T., Aloise, J., Bacon, L., Burnette, A., DeForest, C., Giles, P. M., Leibrand, K., Nigam, R., Rubin, M., Scott, K., Williams, S. D., Basu, S., Christensen-Dalsgaard, J., Dappen, W., Rhodes, E. J., Duvall, T. L., Howe, R., Thompson, M. J., Gough, D. O., Sekii, T., Toomre, J., Tarbell, T. D., Title, A. M., Mathur, D., Morrison, M., Saba, J. L. R., Wolfson, C. J., Zayer, I., and Milford, P. N. (1997). Structure and rotation of the solar interior: initial results from the MDI medium-! program. Solar Phys. 170, 43–61.CrossRefGoogle Scholar
Kosovichev, A. G. and Zharkova, V. V. (1998). X-ray flare sparks quake inside Sun. Nature 393, 317–318.CrossRefGoogle Scholar
Kosugi, T., Sakao, T., Masuda, S., Makishima, K., Inda, M., Murakami, T., Ogawara, Y., Yaji, K., and Matsushita, K. (1992). The Hard X-ray Telescope (HXT) onboard Yohkoh – its performance and some initial results. Publ. Astron. Soc. Japan 44, L45–L49.Google Scholar
Kraichnan, R. H. (1965). Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385–1387.CrossRefGoogle Scholar
Krause, F. and Röadler, K. H. (1980). Mean-Field Magnetohydrodynamics and Dynamo Theory. (Pergamon Press, Oxford).Google Scholar
Kretzschmar, M., De Wit, T. D., Schmutz, W., Mekaoui, S., Hochedez, J.-F., and Dewitte, S. (2010). The effect of flares on total solar irradiance. Nature Physics 6, 690–692.CrossRefGoogle Scholar
Krucker, S., Battaglia, M., Cargill, P. J., Fletcher, L., Hudson, H. S., MacKinnon, A. L., Masuda, S., Sui, L., Tomczak, M., Veronig, A. L., Vlahos, L., and White, S. M. (2008). Hard X-ray emission from the solar corona. Astron. Astrophys. Rev. 16, 155–208.CrossRefGoogle Scholar
Krucker, S. and Benz, A. O. (1998). Energy distribution of heating processes in the quiet solar corona. Astrophys. J. Letts. 501, L213–L216.CrossRefGoogle Scholar
Krucker, S., White, S. M., and Lin, R. P. (2007). Solar flare hard X-ray emission from the high corona. Astrophys. J. Letts. 669, L49–L52.CrossRefGoogle Scholar
Kruskal, M. D. and Schwarzschild, M. (1954). Some instabilities of a completely ionized plasma. Proc. Roy. Soc. Lond. A223, 348–360.Google Scholar
Kubo, M., Lites, B. W., Ichimoto, K., Shimizu, T., Suematsu, Y., Katsukawa, Y., Tarbell, T. D., Shine, R. A., Title, A. M., Nagata, S., and Tsuneta, S. (2008). Disintegration of magnetic flux in decaying sunspots as observed with the Hinode SOT. Astrophys. J. 681, 1677–1687.CrossRefGoogle Scholar
Kubo, M., Lites, B. W., Shimizu, T., and Ichimoto, K. (2008). Magnetic flux loss and flux transport in a decaying active region. Astrophys. J. 686, 1447–1453.CrossRefGoogle Scholar
Kubo, M., Shimizu, T., and Tsuneta, S. (2007). Vector magnetic fields of moving magnetic features and flux removal from a sunspot. Astrophys. J. 659, 812–828.CrossRefGoogle Scholar
Kucera, T. A., Gibson, S. E., Schmit, D. J., Landi, E., and Tripathi, D. (2012). Temperature and extreme-ultraviolet intensity in a coronal prominence cavity and streamer. Astrophys. J. 757, 73.CrossRefGoogle Scholar
Kuckein, C., Centeno, R., Martinez Pillet, V., Casini, R., Manso Sainz, R., and Shimizu, T. (2009). Magnetic field strength of active-region filaments. Astron. Astrophys. 501, 1113–1121.CrossRefGoogle Scholar
Kuckein, C., Martinez Pillet, V., and Centeno, R. (2012a). An active-region filament studied simultaneously in the chromosphere and photosphere. I. Magnetic structure. Astron. Astrophys. 539, A131.CrossRefGoogle Scholar
Kuckein, C., Martinez Pillet, V., and Centeno, R. (2012b). An active-region filament studied simultaneously in the chromosphere and photosphere. II. Doppler velocities. Astron. Astrophys. 542, A112.CrossRefGoogle Scholar
Kulidzanishvili, V. I. and Zhugzhda, I. D. (1983). On the problem of spicular oscillations. Solar Phys. 88, 35–41.CrossRefGoogle Scholar
Kulsrud, R. M. and Hahm, T. S. (1982). Forced magnetic reconnection. Physica Scripta Volume T 2, 525–528.Google Scholar
Kumar, N. and Roberts, B. (2003). Ion-neutral collisions effect on MHD surface waves. Solar Phys. 214, 241–266.CrossRefGoogle Scholar
Kuperus, M. and Raadu, M. A. (1974). The support of prominences formed in neutral sheets. Astron. Astrophys. 31, 189–193.Google Scholar
Kusano, K., Maeshiro, T., Yokoyama, T., and Sakurai, T. (2004). The trigger mechanism of solar flares in a coronal arcade with reversed magnetic shear. The Astrophysical Journal 610, 537–549.CrossRefGoogle Scholar
Labrosse, N., Heinzel, P., Vial, J., Kucera, T., Parenti, S., Guniar, S., Schmieder, B., and Kilper, G. (2010). Physics of solar prominences: I. Spectral diagnostics and non-LTE modelling. Space Science Reviews 151, 243–332.CrossRefGoogle Scholar
Lagg, A., Solanki, S. K., Riethmuöller, T. L., Martinez Pillet, V., Schuössler, M., Hirzberger, J., Feller, A., Borrero, J. M., Schmidt, W., del Toro Iniesta, J. C., Bonet, J. A., Barthol, P., Berkefeld, T., Domingo, V., Gandorfer, A., Knöolker, M., and Title, A. M. (2010). Fully resolved quiet-Sun magnetic flux tube observed with the SUNRISE/IMAX instrument. Astrophys. J. Letts. 723, L164–L168.CrossRefGoogle Scholar
Landi, E. and Cranmer, S. R. (2009). Ion temperatures in the low solar corona: polar coronal holes at solar minimum. Astrophys. J. 691, 794–805.CrossRefGoogle Scholar
Lang, K. R. (2009). The Sun From Space. (Springer-Verlag, Berlin).Google Scholar
Langhans, K., Scharmer, G. B., Kiselman, D., Löfdahl, M. G., and Berger, T. E. (2005). Inclination of magnetic fields and flows in sunspot penumbrae. Astron. Astrophys. 436, 1087–1101.CrossRefGoogle Scholar
Larmor, J. (1919). How could a rotating body such as the Sun become a magnet?Rep. Brit. Ass. Adv. Sci. 1919, 159–160.Google Scholar
Lau, Y.-T. and Finn, J. M. (1990). Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines. Astrophys. J. 350, 672–691.CrossRefGoogle Scholar
Laval, G., Mercier, C., and Pellat, R. (1965). Necessity of the energy principles for magnetostatic stability. Nuclear Fusion 5, 156–158.CrossRefGoogle Scholar
Leake, J. E. and Arber, T. D. (2006). The emergence of magnetic flux through a partially ionised solar atmosphere. Astron. Astrophys. 450, 805–818.CrossRefGoogle Scholar
Lee, L. C. and Fu, Z. (1986a). Multiple X-line reconnection. 1. A criterion for the transition from a single X-line to a multiple X-line reconnection. J. Geophys. Res. 91, 6807–6815.CrossRefGoogle Scholar
Lee, L. C. and Fu, Z. (1986b). A simulation study of magnetic reconnection: transition from a fast mode to a slow mode expansion. J. Geophys. Res. 91, 4551–4556.CrossRefGoogle Scholar
Lee, M. A. and Roberts, B. (1986). On the behavior of hydromagnetic surface waves. Astrophys. J. 301, 430–439.CrossRefGoogle Scholar
Leer, E., Holzer, T. E., and Fla, T. (1982). Acceleration of the solar wind. Space. Sci. Rev. 33, 161–200.CrossRefGoogle Scholar
Leibacher, J. W. and Stein, R. F. (1971). A new description of the solar five-minute oscillation. Astrophys. J. Letts. 7, 191–192.Google Scholar
Leighton, R. B. (1960). Preview on granulation: observational studies. IAU Symp 12, 321–327.Google Scholar
Leighton, R. B. (1969). A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1–26.CrossRefGoogle Scholar
Leighton, R. B., Noyes, R. W., and Simon, G. W. (1962). Velocity fields in the solar atmosphere: I. Preliminary report. Astrophys. J. 135, 474–499.CrossRefGoogle Scholar
Leka, K. D., Canfield, R. C., McClymont, A. N., and van Driel-Gesztelyi, L. (1996). Evidence for current-carrying emerging flux. Astrophys. J. 462, 547–560.CrossRefGoogle Scholar
Lemaire, J. and Scherer, M. (1969). Le champ electrique de polarisation dans l'exosphere ionique polaire. C.R. Acad. Sci. Paris Ser. B 269, 666–669.Google Scholar
Lemaire, J. and Scherer, M. (1971). Kinetic models of the solar wind. J. Geophys. Res. 76, 7479–7490.CrossRefGoogle Scholar
Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F. M., Heyman, G. F., Hurlburt, N. E., Katz, N. L., Kushner, G. D., Levay, M., Lindgren, R. W., Mathur, D. P., McFeaters, E. L., Mitchell, S., Rehse, R. A., Schrijver, C. J., Springer, L. A., Stern, R. A., Tarbell, T. D., Wuelser, J.-P., Wolfson, C. J., Yanari, C., Bookbinder, J. A., Cheimets, P. N., Caldwell, D., Deluca, E. E., Gates, R., Golub, L., Park, S., Podgorski, W. A., Bush, R. I., Scherrer, P. H., Gummin, M. A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D. L., Beardsley, S., Clapp, M., Lang, J., and Waltham, N. (2012). The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17–40.CrossRefGoogle Scholar
Leroy, J. L. (1989). Observation of prominence magnetic fields. In Dynamics and Structure of Quiescent Solar Prominences, E. R., Priest, ed. (Kluwer Academic, Dordrecht), 77–113.Google Scholar
Leroy, J. L., Bommier, V., and Sahal-Brechot, S. (1983). The magnetic field in prominences of the polar crown. Solar Phys. 83, 135–142.CrossRefGoogle Scholar
Levine, R. H. (1974). A new theory of coronal heating. Astrophys. J. 190, 457–466.CrossRefGoogle Scholar
Li, X., Morgan, H., Leonard, D., and Jeska, L. (2012). A solar tornado observed by AIA/SDO: Rotational flow and evolution of magnetic helicity in a prominence and cavity. Astrophys. J. Letts. 752, L22.CrossRefGoogle Scholar
Lie-Svendsen, Ø. and Esser, R. (2005). Modeling the energy budget of solar wind minor ions: implications for temperatures and abundances. Astrophys. J. 618, 1057–1073.CrossRefGoogle Scholar
Lighthill, M. J. (1953). On sound generated aerodynamically. I. General theory. Proc.Roy.Soc.Lond .A211, 564–587.Google Scholar
Lima, J. and Priest, E. R. (1993). Two-dimensional models for solar and stellar winds – hydrodynamic effects. Astron. Astrophys. 268, 641–649.Google Scholar
Lima, J., Priest, E. R., and Tsinganos, K. (2001). An analytical MHD wind model with latitudinal dependences obtained using separation of the variables. Astron. Astrophys. 371, 240–249.CrossRefGoogle Scholar
Lin, H., Penn, M. J., and Tomczyk, S. (2000). A new precise measurement of the coronal magnetic field strength. Astrophys. J. Letts. 541, L83–L86.CrossRefGoogle Scholar
Lin, J. and Forbes, T. G. (2000). Effects of reconnection on the coronal mass ejection process. J. Geophys. Res. 105, 2375–2392.CrossRefGoogle Scholar
Lin, J., Forbes, T. G., and Isenberg, P. A. (2001). Prominence eruptions and coronal mass ejections triggered by newly emerging flux. J. Geophys. Res. 106, 25053–25074.CrossRefGoogle Scholar
Lin, J.,Forbes, T. G.,Isenberg, P. A., and Demoulin, P. (1998). The effect of curvature on flux-rope models of coronal mass ejections. Astrophys. J. 504, 1006–1019.CrossRefGoogle Scholar
Lin, J., Ko, Y.-K., Sui, L., Raymond, J. C., Stenborg, G. A., Jiang, Y., Zhao, S., and Mancuso, S. (2005). Direct observations of the magnetic reconnection site of an eruption on 2003 November 18. Astrophys. J. 622, 1251–1264.CrossRefGoogle Scholar
Lin, R. P., Dennis, B. R., Hurford, G. J., Smith, D. M., Zehnder, A., Harvey, P. R., Curtis, D. W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H. F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R. D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I. S., Shirey, K., Tolbert, A. K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R. C., Holman, G. D., Crannell, C., Kosugi, T., Emslie, A. G., Vilmer, N., Brown, J. C., Johns-Krull, C., Aschwanden, M., Metcalf, T., and Conway, A. (2002). The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3–32.CrossRefGoogle Scholar
Lin, R. P., Schwartz, R. A., Kane, S. R., Pelling, R. M., and Hurley, K. C. (1984). Solar hard X-ray microflares. Astrophys. J. 283, 421–425.CrossRefGoogle Scholar
Lin, Y., Engvold, O., Rouppe van der Voort, L., Wiik, J. E., and Berger, T. E. (2005). Thin threads of solar filaments. Solar Phys. 226, 239–254.CrossRefGoogle Scholar
Lin, Y., Martin, S. F., and Engvold, O. (2008). Filament substructures and their interrelation. Astron.Soc.Pac.Conf. Ser. 383, 235–242.Google Scholar
Linardatos, D. (1993). Magnetostatic equilibria and analogous Euler flows. J. Fluid Mech. 246, 569–591.CrossRefGoogle Scholar
Lindsey, C. and Braun, D. C. (2000). Helioseismic imaging of sunspots at their antipodes. Solar Phys. 126, 101–115.Google Scholar
Linker, J. A., Lionello, R., Mikic, Z., Titov, V. S., and Antiochos, S. K. (2011). The evolution of open magnetic flux driven by photospheric dynamics. Astrophys. J. 731, 110.CrossRefGoogle Scholar
Linker, J. A., Mikic, Z., Lionello, R., Riley, P., Amari, T., and Odstrcil, D. (2003). Flux cancellation and coronal mass ejections. Phys. Plasmas 10, 1971–1978.CrossRefGoogle Scholar
Linton, M. G. and Longcope, D. W. (2006). A model for patchy reconnection in three dimensions. Astrophys. J. 642, 1177–1192.CrossRefGoogle Scholar
Lionello, R., Linker, J. A., and Mikic, Z. (2009). Multispectral emission of the Sun during the first whole Sun month: magnetohydrodynamic simulations. Astrophys. J. 690, 902–912.CrossRefGoogle Scholar
Lionello, R., Linker, J. A., Mikic, Z., and Riley, P. (2006). The latitudinal excursion of coronal magnetic field lines in response to differential rotation: MHD simulations. Astrophys. J. Letts. 642, L69–L72.CrossRefGoogle Scholar
Lionello, R., Mikic, Z., Linker, J. A., and Amari, T. (2002). Magnetic field topology in prominences. Astrophys. J. 581, 718–725.CrossRefGoogle Scholar
Lites, B. W. (2002). Characterization of magnetic flux in the quiet Sun. Astrophys. J. 573, 431–444.CrossRefGoogle Scholar
Lites, B. W., Elmore, D. F., Seagraves, P., and Skumanich, A. P. (1993). Stokes profile analysis and vector magnetic fields. VI. Fine scale structure of a sunspot. Astrophys. J. 418, 928.CrossRefGoogle Scholar
Lites, B. W., Kubo, M., Socas-Navarro, H., Berger, T., Frank, Z., Shine, R., Tarbell, T., Title, A., Ichimoto, K., Katsukawa, Y., Tsuneta, S., Suematsu, Y., Shimizu, T., and Nagata, S. (2008). The horizontal magnetic flux of the quiet-Sun internetwork as observed with the Hinode Spectro-Polarimeter. Astrophys. J. 672, 1237–1253.CrossRefGoogle Scholar
Lites, B. W., Leka, K. D., Skumanich, A., Martinez Pillet, V., and Shimizu, T. (1996). Small-scale horizontal magnetic fields in the solar photosphere. Astrophys. J. 460, 1019–1026.CrossRefGoogle Scholar
Lites, B. W., Scharmer, G. B., Berger, T. E., and Title, A. M. (2004). Three-dimensional structure of the active-region photosphere as revealed by high angular resolution. Solar Phys. 221, 65–84.CrossRefGoogle Scholar
Littlejohn, R. G. (1979). A guiding center Hamiltonian: A new approach. J. Math. Phys. 20, 2445–2458.CrossRefGoogle Scholar
Litvinenko, Y. E. (2010). Evolution of the axial magnetic field in solar filament channels. Astrophys. J. 720, 948–952.CrossRefGoogle Scholar
Litvinenko, Y. E. and Martin, S. F. (1999). Magnetic reconnection as the cause of a photospheric canceling feature and mass flows in a filament. Solar Phys. 190, 45–58.CrossRefGoogle Scholar
Liu, C., Deng, N., Liu, R., Ugarte-Urra, I., Wang, S., and Wang, H. (2011). A standard-to-blowout jet. Astrophys. J. Letts. 735, L18.CrossRefGoogle Scholar
Liu, R., Lee, J., Wang, T., Stenborg, G., Liu, C., and Wang, H. (2010). A reconnecting current sheet imaged in a solar flare. Astrophys. J. Letts. 723, L28–L33.CrossRefGoogle Scholar
Liu, W., Ofman, L., Nitta, N. V., Aschwanden, M. J., Schrijver, C. J., Title, A. M., and Tarbell, T. D. (2012). Quasi-periodic fast-mode wave trains within a global EUV wave and sequential transverse oscillations detected by SDO/AIA. Astrophys. J. 753, 52.CrossRefGoogle Scholar
Liu, Y. and Lin, H. (2008). Observational test of coronal magnetic field models. I. Comparison with potential field model. Astrophys. J. 680, 1496–1507.CrossRefGoogle Scholar
Livingston, W. and Harvey, J. W. (1971). The Kitt Peak Magnetograph. IV: 40-channel probe and the detection of weak photospheric fields. In Solar Magnetic Fields, R., Howard, ed. IAU Symposium, vol. 43. Dordrecht), 51–61.Google Scholar
Livingston, W., Harvey, J. W., Malanushenko, O. V., and Webster, L. (2006). Sunspots with the strongest magnetic fields. Solar Phys. 239, 41–68.CrossRefGoogle Scholar
Lockwood, G. W., Skiff, B. A., Henry, G. W., Henry, S., Radick, R. R., Baliunas, S. L., Donahue, R. A., and Soon, W. (2007). Patterns of photometric and chromospheric variation among Sun-like stars: a 20-year perspective. Astrophys. J. Suppl. 171, 260–303.CrossRefGoogle Scholar
Lockyer, N. (1868). Spectroscopic observation of the Sun, No. II. Proc.Roy.Soc. 17, 131–132.Google Scholar
Longcope, D. W. (1996). Topology and current ribbons: a model for current, reconnection and flaring in a complex, evolving corona. Solar Phys. 169, 91–121.CrossRefGoogle Scholar
Longcope, D. W. (1998). A model for current sheets and reconnection in X-ray bright points. Astrophys. J. 507, 433–442.CrossRefGoogle Scholar
Longcope, D. W. (2001). Separator current sheets: generic features in minimum-energy magnetic fields subject to flux constraints. Phys. Plasmas 8, 5277–5289.CrossRefGoogle Scholar
Longcope, D. W. (2005). Topological methods for the analysis of solar magnetic fields. Liv. Rev. in Solar Phys. 2, 1–72.Google Scholar
Longcope, D. W. and Beveridge, C. (2007). A quantitative, topological model of reconnection and flux rope formation in a two-ribbon flare. Astrophys. J. 669, 621–635.CrossRefGoogle Scholar
Longcope, D. W., Beveridge, C., Qiu, J., Ravindra, B., Barnes, G., and Dasso, S. (2007). Modeling and measuring the flux reconnected and ejected by the two-ribbon flare/CME event on 7 November 2004. Solar Phys. 244, 45–73.CrossRefGoogle Scholar
Longcope, D. W. and Cowley, S. (1996). Current sheet formation along three-dimensional magnetic separators. Phys. Plasmas 3, 2885–2897.CrossRefGoogle Scholar
Longcope, D. W., Des Jardins, A. C., Carranza-Fulmer, T., and Qiu, J. (2010). A quantitative model of energy release and heating by time-dependent, localized reconnection in a flare with thermal loop-top X-ray source. Solar Phys. 267, 107–139.CrossRefGoogle Scholar
Longcope, D. W., Fisher, G. H., and Pevtsov, A. A. (1998). Flux tube twist resulting from helical turbulence: the sigma-effect. Astrophys. J. 507, 417–432.CrossRefGoogle Scholar
Longcope, D. W. and Guidoni, S. E. (2011). A model for the origin of high density in looptop X-ray sources. Astrophys. J. 740, 73.CrossRefGoogle Scholar
Longcope, D. W., Guidoni, S. E., and Linton, M. G. (2009). Gas-dynamic shock heating of post-flare loops due to retraction following localized, impulsive reconnection. Astrophys. J. Letts. 690, L18–L22.CrossRefGoogle Scholar
Longcope, D. W. and Magara, T. (2004). A comparison of the minimum current corona to a magnetohydrodynamic simulation of quasi-static coronal evolution. Astrophys. J. 608, 1106–1123.CrossRefGoogle Scholar
Longcope, D. W., McKenzie, D., Cirtain, J., and Scott, J. (2005). Observations of separator reconnection to an emerging active region. Astrophys. J. 630, 596–614.CrossRefGoogle Scholar
Longcope, D. W. and Priest, E. R. (2007). Fast magnetosonic waves launched by transient, current sheet reconnection. Phys. Plasmas 14, 122905.CrossRefGoogle Scholar
Longcope, D. W. and Silva, A. V. R. (1998). A current ribbon model for energy storage and release with application to the flare 1992 Jan. 7. Solar Phys. 179, 349–377.CrossRefGoogle Scholar
Longcope, D. W. and Strauss, H. R. (1993). The coalescence instability and the development of current sheets in two-dimensional magnetohydrodynamics. Physics of Fluids B 5, 2858–2869.CrossRefGoogle Scholar
López Ariste, A., Aulanier, G., Schmieder, B., and Sainz Dalda, A. (2006). First observation of bald patches in a filament channel and at a barb endpoint. Astron. Astrophys. 456, 725–735.CrossRefGoogle Scholar
López Ariste, A. and Sainz Dalda, A. (2012). Scales of the magnetic fields in the quiet Sun. Astron. Astrophys. 540, A66.CrossRefGoogle Scholar
Loópez Fuentes, M. C., Klimchuk, J. A., and Mandrini, C. H. (2007). The temporal evolution of coronal loops observed by GOES SXI. Astrophys. J. 657, 1127–1136.CrossRefGoogle Scholar
Lorenz, E. N. (1963). Deterministic nonperiodic flow. J. Atmos. Sci. 20, 131–141.2.0.CO;2>CrossRefGoogle Scholar
Loureiro, N. F., Schekochihin, A. A., and Cowley, S. C. (2007). Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14, 10, 100703.CrossRefGoogle Scholar
Low, B. C. (1973). Resistive diffusion of force-free magnetic fields in a passive medium. Astrophys. J. 181, 209–226.CrossRefGoogle Scholar
Low, B. C. (1974). Resistive diffusion of force-free magnetic fields in a passive medium. IV. The dynamical theory. Astrophys. J. 193, 243–252.CrossRefGoogle Scholar
Low, B. C. (1975). Nonisothermal magnetostatic equilibria in a uniform gravity field. II. Sheet models of quiescent prominences. Astrophys. J. 198, 211–217.CrossRefGoogle Scholar
Low, B. C. (1977). Evolving force-free magnetic fields. I. The development of the preflare stage. Astrophys. J. 212, 234–242.CrossRefGoogle Scholar
Low, B. C. (1982a). Magnetic field configurations associated with polarity intrusion in a solar active region. I. The force-free fields. Solar Phys. 77, 43–61.CrossRefGoogle Scholar
Low, B. C. (1982b). Magnetostatic atmospheres with variations in three dimensions. Astrophys. J. 263, 952–969.CrossRefGoogle Scholar
Low, B. C. (1984). Three-dimensional magnetostatic atmospheres – Magnetic field with vertically oriented tension force. Astrophys. J. 277, 415–421.CrossRefGoogle Scholar
Low, B. C. (1985). Three-dimensional structures of magnetostatic atmospheres. I. Theory. Astrophys. J. 293, 31–43.CrossRefGoogle Scholar
Low, B. C. (1988). On the hydromagnetic stability of a class of laminated force-free magnetic fields. Astrophys. J. 330, 992–996.CrossRefGoogle Scholar
Low, B. C. (1991). Three-dimensional structures of magnetostatic atmospheres. III. A general formulation. Astrophys. J. 370, 427–434.CrossRefGoogle Scholar
Low, B. C. (1992). Three-dimensional structures of magnetostatic atmospheres. IV. Magnetic structures over a solar active region. Astrophys. J. 399, 300–312.CrossRefGoogle Scholar
Low, B. C. (1993a). Three-dimensional structures of magnetostatic atmospheres. V. Coupled electric current systems. Astrophys. J. 408, 689–692.Google Scholar
Low, B. C. (1993b). Three-dimensional structures of magnetostatic atmospheres. VI. Examples of coupled electric current systems. Astrophys. J. 408, 693–706.Google Scholar
Low, B. C. (2005). Three-dimensional structures of magnetostatic atmospheres. VII. Magnetic flux surfaces and boundary conditions. Astrophys. J. 625, 451–462.CrossRefGoogle Scholar
Low, B. C. (2010). The Parker magnetostatic theorem. Astrophys. J. 718, 717–723.CrossRefGoogle Scholar
Low, B. C., Berger, T., Casini, R., and Liu, W. (2012). The hydromagnetic interior of a solar quiescent prominence. I. Coupling between force balance and steady energy transport. Astrophys. J. 755, 34.CrossRefGoogle Scholar
Low, B. C., Liu, W., Berger, T., and Casini, R. (2012). The hydromagnetic interior of a solar quiescent prominence. II. Magnetic discontinuities and cross-field mass transport. Astrophys. J. 757, 21.CrossRefGoogle Scholar
Low, B. C. and Lou, Y. Q. (1990). Modeling solar force-free magnetic fields. Astrophys. J. 352, 343–352.CrossRefGoogle Scholar
Low, B. C. and Petrie, G. J. D. (2005). The internal structures and dynamics of solar quiescent prominences. Astrophys. J. 626, 551–562.CrossRefGoogle Scholar
Low, B. C. and Wolfson, R. (1988). Spontaneous formation of electric current sheets and the origin of solar flares. Astrophys. J. 324, 574–581.CrossRefGoogle Scholar
Lu, E. T. and Hamilton, R. J. (1991). Avalanches and the distribution of solar flares. Astrophys. J. Letts. 380, L89–L92.CrossRefGoogle Scholar
Lugaz, N., Downs, C., Shibata, K., Roussev, I. I., Asai, A., and Gombosi, T. I. (2011). Numerical investigation of a coronal mass ejection from an anemone active region: reconnection and deflection of the 2005 August 22 eruption. Astrophys. J. 738, 127–141.CrossRefGoogle Scholar
Luna, M., Karpen, J. T., and DeVore, C. R. (2012). Formation and evolution of a multi-threaded solar prominence. Astrophys. J. 746, 30.CrossRefGoogle Scholar
Lundquist, S. (1951). On the stability of magneto-hydrostatic fields. Phys. Rev. 83, 307–311.CrossRefGoogle Scholar
Lüst, R. and Schlüter, A. (1954). Kraftfreie Magnetfelder. Z. Astrophys. 34, 263–282.Google Scholar
Lynch, B. J., Antiochos, S. K., DeVore, C. R., Luhmann, J. G., and Zurbuchen, T. H. (2008). Topological evolution of a fast magnetic breakout CME in three dimensions. Astrophys. J. 683, 1192–1206.CrossRefGoogle Scholar
Lynden-Bell, D. and Boily, C. (1994). Self-similar solutions up to flashpoint in highly wound magnetostatics. Mon. Not. Roy. Astron. Soc. 267, 146–152.CrossRefGoogle Scholar
Mackay, D. H. (2012). The Sun's global corona. Phil.Trans.Roy.Soc. 370, 3151–3168.CrossRefGoogle Scholar
Mackay, D. H., Gaizauskas, V., Rickard, G. J., and Priest, E. R. (1997). Force-free and potential models of a filament channel in which a filament forms. Astrophys. J. 486, 534–549.CrossRefGoogle Scholar
Mackay, D. H., Gaizauskas, V., and Yeates, A. R. (2008). Where do solar filaments form?: consequences for theoretical models. Solar Phys. 248, 51–65.CrossRefGoogle Scholar
Mackay, D. H., Green, L. M., and van Ballegooijen, A. A. (2011). Modeling the dispersal of an active region: quantifying energy input into the corona. Astrophys. J. 729, 97.CrossRefGoogle Scholar
Mackay, D. H., Karpen, J. T., Ballester, J. L., Schmieder, B., and Aulanier, G. (2010). Physics of solar prominences: II. Magnetic structure and dynamics. Space Science Review 151, 333–399.CrossRefGoogle Scholar
Mackay, D. H. and Priest, E. R. (1997). Basic magnetic field configurations for filament channels and filaments. Astronomical and Astrophysical Transactions 13, 111–120.CrossRefGoogle Scholar
Mackay, D. H., Priest, E. R., Gaizauskas, V., and van Ballegooijen, A. A. (1998). Role of helicity in the formation of intermediate filaments. Solar Phys. 180, 299–312.CrossRefGoogle Scholar
Mackay, D. H. and van Ballegooijen, A. A. (2005). New results in modeling the hemispheric pattern of solar filaments. Astrophys. J. Letts. 621, L77–L80.CrossRefGoogle Scholar
Mackay, D. H. and van Ballegooijen, A. A. (2006). Models of the large-scale corona. I. Formation, evolution, and liftoff of magnetic flux ropes. Astrophys. J. 641, 577–589.CrossRefGoogle Scholar
Mackay, D. H. and van Ballegooijen, A. A. (2006). Models of the large-scale corona. II. Magnetic connectivity and open flux variation. Astrophys. J. 642, 1193–1204.CrossRefGoogle Scholar
Mackay, D. H. and van Ballegooijen, A. A. (2009). A non-linear force-free field model for the evolving magnetic structure of solar filaments. Solar Phys. 260, 321–346.CrossRefGoogle Scholar
Maclean, R. C., Beveridge, C., Longcope, D. W., Brown, D. S., and Priest, E. R. (2005). A topological analysis of the magnetic breakout model for an eruptive solar flare. Proc. Roy. Soc. Lond. A461, 2099–2120.Google Scholar
Maclean, R. C. and Priest, E. R. (2007). Topological aspects of global magnetic field reversal in the solar corona. Solar Phys. 243, 171–191.CrossRefGoogle Scholar
Madjarska, M. S. (2011). Dynamics and plasma properties of an X-ray jet from SUMER, EIS, XRT, and EUVI A and B simultaneous observations. Astron. Astrophys. 526, A19.CrossRefGoogle Scholar
Madjarska, M. S., Doyle, J. G., Hochedez, J.-F., and Theissen, A. (2006). Macrospicules and blinkers as seen in shutterless EIT 304 A. Astron. Astrophys. 452, L11–L14.CrossRefGoogle Scholar
Magara, T. and Longcope, D. W. (2003). Injection of magnetic energy and magnetic helicity into the solar atmosphere by an emerging magnetic flux tube. Astrophys. J. 586, 630–649.CrossRefGoogle Scholar
Malherbe, J. M. and Priest, E. R. (1983). Current sheet models for solar prominences. I. Magnetohydrostatics of support and evolution through quasi-static models. Astron. Astrophys. 123, 80–88.Google Scholar
Malkus, W. V. R. and Proctor, M. R. E. (1975). The macrodynamics of alpha-effect dynamos in rotating fluids. J. Fluid Mech. 67, 417–443.Google Scholar
Mandrini, C. H., Demoulin, P., Bagala, L. G., van Driel-Gesztelyi, L., Henoux, J. C., Schmieder, B., and Rovira, M. G. (1997). Evidence of magnetic reconnection from Ha, soft X-ray and photospheric magnetic field observations. Solar Phys. 174, 229–240.CrossRefGoogle Scholar
Mandrini, C. H., Demoulin, P., Henoux, J., and Machado, M. (1991). Evidence for the interaction of large-scale magnetic structures in solar flares. Astron. Astrophys. 250, 541–547.Google Scholar
Mandrini, C. H., Demoulin, P., and Klimchuk, J. A. (2000). Magnetic field and plasma scaling laws: their implications for coronal heating models. Astrophys. J. 530, 999–1015.CrossRefGoogle Scholar
Manheimer, W. M. and Lashmore-Davies, C. N. (1989). MHD and Microinstabilities in Confined Plasmas. (Adam Hilger, Bristol).Google Scholar
Marsch, E. (2006). Kinetic physics of the solar corona and solar wind. Liv. Rev. in, Solar Phys. 3, 1.Google Scholar
Marsch, E., Tian, H., Sun, J., Curdt, W., and Wiegelmann, T. (2008). Plasma flows guided by strong magnetic fields in the solar corona. Astrophys. J. 685, 1262–1269.CrossRefGoogle Scholar
Martens, P. C. H. (2010). Scaling laws and temperature profiles for solar and stellar coronal loops with non-uniform heating. Astrophys. J. 714, 1290–1304.CrossRefGoogle Scholar
Martens, P. C. H., Kankelborg, C. C., and Berger, T. E. (2000). On the nature of the moss observed by TRACE. Astrophys. J. 537, 471–480.CrossRefGoogle Scholar
Martens, P. C. H. and Kuin, N. P. M. (1989). A circuit model for filament eruptions and two-ribbon flares. Solar Phys. 122, 263–302.CrossRefGoogle Scholar
Martens, P. C. H. and Zwaan, C. (2001). Origin and evolution of filament-prominence systems. Astrophys. J. 558, 872–887.CrossRefGoogle Scholar
Martin, S. F. (1986). Recent observations of the formation of filaments. In Coronal and Prominence Plasmas, A., Poland, ed. (NASA CP 2442, Washington, DC), 73–80.Google Scholar
Martin, S. F. (1998). Conditions for the formation and maintenance of filaments (Invited Review). Solar Phys. 182, 107–137.CrossRefGoogle Scholar
Martin, S. F., Bilimoria, R., and Tracadas, P. (1994). Magnetic field configurations basic to filament channels. In Solar Surface Magnetism, R., Rutten and C., Schrijver, eds. (Springer-Verlag, New York), 303.CrossRefGoogle Scholar
Martin, S. F., Livi, S., and Wang, J. (1985). The cancellation of magnetic flux. II. In a decaying active region. Astrophys. J. 38, 929–959.Google Scholar
Martin, S. F., Marquette, W. H., and Bilimoria, R. (1992). The solar cycle pattern in the direction of the magnetic field along the long axes of polar filaments. Astron.Soc.Pac.Conf. Ser. 27, 53–66.Google Scholar
Martinez Gonzalez, M. J., Asensio Ramos, A., Manso Sainz, R., Khomenko, E., Martinez Pillet, V., Solanki, S. K., Lopez Ariste, A., Schmidt, W., Barthol, P., and Gandorfer, A. (2011). Unnoticed magnetic field oscillations in the very quiet sun revealed by SUNRISE/IMaX. Astrophys. J. Letts. 730, L37.CrossRefGoogle Scholar
Martainez Gonzaalez, M. J. and Bellot Rubio, L. R. (2009). Emergence of small-scale magnetic loops through the quiet solar atmosphere. Astrophys. J. 700, 1391–1403.Google Scholar
Martinez Gonzalez, M. J., Collados, M., Ruiz Cobo, B., and Beck, C. (2008). Internetwork magnetic field distribution from simultaneous 1.56/im and 630 nm observations. Astron. Astrophys. 477, 953–965.CrossRefGoogle Scholar
Martainez Gonzaalez, M. J., Collados, M., Ruiz Cobo, B., and Solanki, S. K. (2007). Low-lying magnetic loops in the solar internetwork. Astron. Astrophys. 469, L39–L42.Google Scholar
Martainez Gonzaalez, M. J., Manso Sainz, R., Asensio Ramos, A., and Bellot Rubio, L. R. (2010). Small magnetic loops connecting the quiet surface and the hot outer atmosphere of the Sun. Astrophys. J. Letts. 714, L94–L97.Google Scholar
Martainez Gonzaalez, M. J., Manso Sainz, R., Asensio Ramos, A., and Hijano, E. (2012). Dead calm areas in the very quiet Sun. Astrophys. J. 755, 175.CrossRefGoogle Scholar
Martinez Pillet, V. (2002). Decay of sunspots. Astron. Nach. 323, 342–348.3.0.CO;2-5>CrossRefGoogle Scholar
Martanez-Sykora, J., De Pontieu, B., and Hansteen, V. (2012). Two-dimensional radiative magnetohydrodynamic simulations of the importance of partial ionization in the chromosphere. Astrophys. J. 753, 161.CrossRefGoogle Scholar
Martanez-Sykora, J., Hansteen, V., De Pontieu, B., and Carlsson, M. (2009). Spicule-like structures observed in three-dimensional realistic magnetohydrodynamic simulations. Astrophys. J. 701, 1569–1581.Google Scholar
Martinez-Sykora, J., Hansteen, V., and Moreno-Insertis, F. (2011). On the origin of the type II spicules: dynamic three-dimensional MHD simulations. Astrophys. J. 736, 9.CrossRefGoogle Scholar
Mason, J., Hughes, D. W., and Tobias, S. M. (2002). The competition in the solar dynamo between surface and deep-seated a-effects. Astrophys. J. 580, L89–L92.CrossRefGoogle Scholar
Masson, S., Aulanier, G., Pariat, E., and Klein, K.-L. (2012). Interchange slip-running reconnection and sweeping SEP beams. Solar Phys. 276, 199–217.CrossRefGoogle Scholar
Masson, S., Pariat, E., Aulanier, G., and Schrijver, C. J. (2009). The nature of flare ribbons in coronal null-point topology. Astrophys. J. 700, 559–578.CrossRefGoogle Scholar
Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., and Ogawara, Y. (1994). A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495–497.CrossRefGoogle Scholar
Mathew, S. K., Martainez Pillet, V., Solanki, S. K., and Krivova, N. A. (2007). Properties of sunspots in cycle 23. I. Dependence of brightness on sunspot size and cycle phase. Astron. Astrophys. 465, 291–304.CrossRefGoogle Scholar
Matsumoto, T. and Shibata, K. (2010). Nonlinear propagation of Alfvean waves driven by observed photospheric motions: application to the coronal heating and spicule formation. Astrophys. J. 710, 1857–1867.CrossRefGoogle Scholar
Matthaeus, W. H., Ghosh, S., Oughton, S., and Roberts, D. (1996). Anisotropic three-dimensional MHD turbulence. J. Geophys. Res. 101, 7619–7630.CrossRefGoogle Scholar
Matthaeus, W. H. and Velli, M. (2011). Who needs turbulence? A review of turbulence effects in the heliosphere and on the fundamental process of reconnection. Space Sci. Rev. 160, 145–168.CrossRefGoogle Scholar
Matthaeus, W. H., Zank, G. P., Oughton, S., Mullan, D. J., and Dmitruk, P. (1999). Coronal heating by magnetohydrodynamic turbulence driven by reflected low-frequency waves. Astrophys. J. Letts. 523, L93–L96.CrossRefGoogle Scholar
Matthews, P. C., Hughes, D. W., and Proctor, M. R. E. (1995). Magnetic buoyancy, vorticity, and three-dimensional flux-tube formation. Astrophys. J. 448, 938–941.CrossRefGoogle Scholar
McAllister, A. H., Mackay, D. H., and Martin, S. F. (2002). The skew of high-latitude X-ray arcades in the declining phase of cycle 22. Solar Phys. 211, 155-163.Google Scholar
McClymont, A. N. and Craig, I. J. D. (1996). Dynamical finite-amplitude magnetic reconnection at an X-type neutral point. Astrophys. J. 466, 487–495.CrossRefGoogle Scholar
Mcintosh, S. W. (2012). Recent observations of plasma and Alfvenic wave energy injection at the base of the fast solar wind. Space Sci. Rev. 172, 69-87.CrossRefGoogle Scholar
Mcintosh, S. W., De Pontieu, B., Carlsson, M., Hansteen, V., Boerner, P., and Goossens, M. (2011). Alfvenic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature 475, 477–480.CrossRefGoogle ScholarPubMed
Mcintosh, S. W., Leamon, R. J., and De Pontieu, B. (2011). The spectroscopic footprint of the fast solar wind. Astrophys. J. 727, 7.CrossRefGoogle Scholar
Mcintosh, S. W., Tian, H., Sechler, M., and De Pontieu, B. (2012). On the Doppler velocity of emission line profiles formed in the “coronal contraflow” that is the chromosphere-corona mass cycle. Astrophys. J. 749, 60.CrossRefGoogle Scholar
McKenzie, D. E. and Canfield, R. C. (2008). Hinode XRT observations of a long-lasting coronal sigmoid. Astron. Astrophys. 481, L65–L68.CrossRefGoogle Scholar
McKenzie, D. E. and Hudson, H. S. (1999). X-ray observations of motions and structure above a solar flare arcade. Astrophys. J. Letts. 519, L93–L96.CrossRefGoogle Scholar
McKenzie, D. E. and Savage, S. L. (2009). Quantitative examination of supra-arcade downflows in eruptive solar flares. Astrophys. J. 697, 1569–1577.CrossRefGoogle Scholar
McLaughlin, J. A., De Moortel, I., and Hood, A. W. (2011). Phase mixing of nonlinear visco-resistive Alfven waves. Astron. Astrophys. 527, A149.CrossRefGoogle Scholar
Mestel, L. (1999). Stellar Magnetism. (Oxford University Press, Oxford).Google Scholar
Mestel, L. (2012). Stellar Magnetism: Second Edition. (Oxford University Press, Oxford).CrossRefGoogle Scholar
Mestel, L. and Spruit, H. C. (1987). On magnetic braking of late-type stars. Mon. Not. Roy. Astron. Soc. 226, 57-66.CrossRefGoogle Scholar
Mestel, L. and Weiss, N. O. (1987). Magnetic fields and nonuniform rotation in stellar radiative zones. Mon. Not. Roy. Astron. Soc. 226, 123–135.CrossRefGoogle Scholar
Metcalf, T. R., De Rosa, M. L., Schrijver, C. J., Barnes, G., van Ballegooijen, A. A., Wiegelmann, T., Wheatland, M. S., Valori, G., and McTtiernan, J. M. (2008). Nonlinear force-free modeling of coronal magnetic fields. II. Modeling a filament arcade and simulated chromospheric and photospheric vector fields. Solar Phys. 247, 269–299.CrossRefGoogle Scholar
Meunier, N., Roudier, T., and Rieutord, M. (2008). Supergranules over the solar cycle. Astron. Astrophys. 488, 1109–1115.CrossRefGoogle Scholar
Meyer, F. and Schmidt, H. (1967). Die erzeugung von schwingungen in der sonnenatmosphare durch einzelne granula. Z. Astrophys. 65, 274–298.Google Scholar
Meyer, F., Schmidt, H. U., and Weiss, N. O. (1977). The stability of sunspots. Mon. Not. Roy. Astron. Soc. 179, 741–761.CrossRefGoogle Scholar
Meyer, F., Schmidt, H. U., Wilson, P. R., and Weiss, N. O. (1974). The growth and decay of sunspots. Mon. Not. Roy. Astron. Soc. 169, 35–57.CrossRefGoogle Scholar
Meyer, K. A., Mackay, D. H., and van Ballegooijen, A. A. (2012). Solar magnetic carpet. II. Coronal interactions of small-scale magnetic fields. Solar Phys. 278, 149–175.CrossRefGoogle Scholar
Meyer, K. A., Mackay, D. H., van Ballegooijen, A. A., and Parnell, C. E. (2011). Solar magnetic carpet. I. Simulation of synthetic magnetograms. Solar Phys. 272, 29–58.CrossRefGoogle Scholar
Meyer-Vernet, N. (2007). Basics of the Solar Wind. (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Miesch, M. S. (2005). Large-scale dynamics of the convection zone and tachocline. Liv. Rev. in Solar Phys. 2, 1, 1–56.Google Scholar
Miesch, M. S., Brun, A. S., DeRosa, M. L., and Toomre, J. (2008). Structure and evolution of giant cells in global models of solar convection. Astrophys. J. 673, 557–575.CrossRefGoogle Scholar
Miesch, M. S., Elliott, J. R., Toomre, J., Clune, T. L., Glatzmaier, G. A., and Gilman, P. A. (2000). Three-dimensional spherical simulations of solar convection. I – Differential rotation and pattern evolution achieved with laminar and turbulent states. Astrophys. J. 532, 593–615.CrossRefGoogle Scholar
Miesch, M. S. and Toomre, J. (2009). Turbulence, magnetism, and shear in stellar interiors. Annual Review of Fluid Mechanics 41, 317–345.CrossRefGoogle Scholar
Mikhailovsky, A. B. (1974). Theory of Plasma Instabilities, Vols. 1 and 2. (Consultants Bureau, New York).CrossRefGoogle Scholar
Mikic, Z., Linker, J. A., Lionello, R., Riley, P., and Titov, V. S. (2007). Predicting the structure of the solar sorona for the total solar eclipse of March 29, 2006. Astron.Soc.Pac.Conf. Ser. 370, 299–307.Google Scholar
Mikic, Z., Linker, J. A., Schnack, D. D., Lionello, R., and Tarditi, A. (1999). Magnetohydrodynamic modeling of the global solar corona. Phys. Plasmas 6, 2217–2224.CrossRefGoogle Scholar
Mikic, Z. and McClymont, A. N. (1994). Deducing coronal magnetic fields from vector magnetograms. Astron.Soc.Pac. Conf. Ser. 68, 225–232.Google Scholar
Mikic, Z., Schnack, D. D., and Van Hoven, G. (1990). Dynamical evolution of twisted magnetic flux tubes. I – Equilibrium and linear stability. Astrophys. J. 361, 690–700.CrossRefGoogle Scholar
Miller, J. A., Cargill, P. J., Emslie, A. G., Holman, G. D., Dennis, B. R., LaRosa, T. N., Winglee, R. M., Benka, S., and Tsuneta, S. (1997). Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res. 102, 14631–14659.CrossRefGoogle Scholar
Milne, A. M. and Priest, E. R. (1981). Internal structure of reconnecting current sheets and the emerging flux model for solar flares. Solar Phys. 73, 157–181.CrossRefGoogle Scholar
Milne, A. M., Priest, E. R., and Roberts, B. (1979). A model for quiescent solar prominences. Astrophys. J. 232, 304–317.CrossRefGoogle Scholar
Mitalas, R. and Sills, K. R. (1992). On the photon diffusion time scale for the Sun. Astrophys. J. 401, 759–760.CrossRefGoogle Scholar
Mizerski, K. A. and Tobias, S. M. (2011). The effect of stratification and compressibility on anelastic convection in a rotating plane layer. Geophys. Astrophys. Fluid Dyn. 105, 566–585.CrossRefGoogle Scholar
Mocanu, G., Marcu, A., Ballai, I., and Orza, B. (2008). The problem of phase mixed shear Alfven waves in the solar corona revisited. Astron. Nach. 329, 780.CrossRefGoogle Scholar
Moffatt, H. K. (1978). Magnetic Field Generation in Electrically Conducting Fluids. (Cambridge University Press, Cambridge, UK).Google Scholar
Moffatt, H. K. (1985). Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. I. Fundamentals. J. Fluid Mech. 159, 359–378.CrossRefGoogle Scholar
Moffatt, H. K. (1990). Structure and stability of solutions of the Euler equations: a Lagrangian approach. Phil.Trans.R. Soc. Lond. A. 333, 321–342.CrossRefGoogle Scholar
Molodensky, M. M. (1974). Equilibrium and stability of force-free magnetic fields. Solar Phys. 39, 393–404.CrossRefGoogle Scholar
Molodensky, M. M. (1975). Equilibrium and stability of force-free magnetic fields. II. Stability. Solar Phys. 43, 311–316.CrossRefGoogle Scholar
Molodensky, M. M. (1976). Equilibrium and stability of force-free magnetic fields. III. Solar Phys. 49, 279–282.CrossRefGoogle Scholar
Montgomery, D. (1983). Theory of hydromagnetic turbulence. NASA Conf. Pub. 228, 107–130.Google Scholar
Moore, R. L., Cirtain, J. W., Sterling, A. C., and Falconer, D. A. (2010). Dichotomy of solar coronal jets: Standard jets and blowout jets. Astrophys. J. 720, 757–770.CrossRefGoogle Scholar
Moore, R. L. and Roumeliotis, G. (1992). Triggering of eruptive flares – destabilization of the preflare magnetic field configuration. In IAU Colloq. 133: Eruptive Solar Flares, Z., Svestka, B. V., Jackson, & M. E., Machado, ed. Lecture Notes in Physics, vol. 399. (Springer Verlag, Berlin), 69–78.Google Scholar
Moore, R. L., Sterling, A. C., Gary, G. A., Cirtain, J. W., and Falconer, D. A. (2011). Observed aspects of reconnection in solar eruptions. Space Sci. Rev. 160, 73–94.CrossRefGoogle Scholar
Moreno Insertis, F. (1983). Rise times of horizontal magnetic flux tubes in the convection zone of the sun. Astron. Astrophys. 122, 241–250.Google Scholar
Moreno Insertis, F. (1992). The motion of magnetic flux tubes in the convection zone and the subsurface origin of active regions. In NATO ASIC Proc. 375: Sunspots. Theory and Observations, J. H., Thomas and N. O., Weiss, ed. Dordrecht), 385–410.Google Scholar
Moreno Insertis, F. (2012). Sources and removal of magnetic flux in the solar atmosphere. Astron. Soc. Pac. Conf. Ser. 455, 91.Google Scholar
Moreno- Insertis, F. and Galsgaard, K. (2013). Plasma jets and eruptions in solar coronal holes: a 3D flux emergence experiment. Astrophys. J. 771, 20.CrossRefGoogle Scholar
Moreno Insertis, F., Galsgaard, K., and Ugarte Urra, I. (2008). Jets in coronal holes: Hinode observations and three-dimensional computer modeling. Astrophys. J. Letts. 673, L211–L214.CrossRefGoogle Scholar
Morin, J., Donati, J.-F., Forveille, T., Delfosse, X., Dobler, W., Petit, P., Jardine, M. M., Cameron, A. C., Albert, L., Manset, N., Dintrans, B., Chabrier, G., and Valenti, J. A. (2008). The stable magnetic field of the fully convective star V374 Peg. Mon. Not. Roy. Astron. Soc. 384, 77–86.CrossRefGoogle Scholar
Morse, P. M. and Feshbach, H. (1953). Methods in Theoretical Physics. (McGraw-Hill, New York).Google Scholar
Müller, D. A. N., De Groof, A., Hansteen, V. H., and Peter, H. (2005). High-speed coronal rain. Astron. Astrophys. 436, 1067–1074.CrossRefGoogle Scholar
Munro, R. H. and Jackson, B. V. (1977). Physical properties of a polar coronal hole from 2 to 5 solar radii. Astrophys. J. 213, 874–886.CrossRefGoogle Scholar
Murawski, K., Zaqarashvili, T. V., and Nakariakov, V. M. (2011). Entropy mode at a magnetic null point as a possible tool for indirect observation of nanoflares in the solar corona. Astron. Astrophys. 533, A18.CrossRefGoogle Scholar
Nagai, F. (1980). A model of hot loops associated with solar flares. I – Gasdynamics in the loops. Solar Phys. 68, 351–379.CrossRefGoogle Scholar
Nagata, S., Tsuneta, S., Suematsu, Y., Ichimoto, K., Katsukawa, Y., Shimizu, T., Yokoyama, T., Tarbell, T. D., Lites, B. W., Shine, R. A., Berger, T. E., Title, A. M., Bellot Rubio, L. R., and Orozco Suärez, D. (2008). Formation of solar magnetic flux tubes with kilogauss field strength induced by convective instability. Astrophys. J. Letts. 677, L145–L147.CrossRefGoogle Scholar
Nakagawa, Y. (1974). Dynamics of the solar magnetic field. I. Method of examination of force-free magnetic fields. Astrophys. J. 190, 437–440.Google Scholar
Nakagawa, Y. and Raadu, M. A. (1972). On the practical representation of magnetic field. Solar Phys. 25, 127–135.CrossRefGoogle Scholar
Nakamizo, A., Tanaka, T., Kubo, Y., Kamei, S., Shimazu, H., and Shinagawa, H. (2009). Development of the 3D MHD model of the solar corona-solar wind combining system. J. Geophys. Res. 114, A07109.CrossRefGoogle Scholar
Nakariakov, V. M. and Melnikov, V. F. (2009). Quasi-periodic pulsations in solar flares. Space Sci. Rev. 149, 119–151.CrossRefGoogle Scholar
Nakariakov, V. M., Melnikov, V. F., and Reznikova, V. E. (2003). Global sausage modes of coronal loops. Astron. Astrophys. 412, L7–L10.CrossRefGoogle Scholar
Nakariakov, V. M., Ofman, L., and Arber, T. D. (2000). Nonlinear dissipative spherical Alfven waves in solar coronal holes. Astron. Astrophys. 353, 741–748.Google Scholar
Nakariakov, V. M., Ofman, L., DeLuca, E. E., Roberts, B., and Davila, J. M. (1999). TRACE observation of damped coronal loop oscillations: implications for coronal heating. Science 285, 862–864.CrossRefGoogle ScholarPubMed
Nakariakov, V. M. and Verwichte, E. (2005). Coronal waves and oscillations. Liv. Rev. in Solar Phys. 2, 1–65.Google Scholar
Nakariakov, V. M. and Zimovets, I. V. (2011). Slow magnetoacoustic waves in two-ribbon flares. Astrophys. J. Letts. 730, L27.CrossRefGoogle Scholar
Nandy, D. (2006). Magnetic helicity and flux tube dynamics in the solar convection zone: comparison between observation and theory. J. Geophys. Res. 111, A12S01.CrossRefGoogle Scholar
Nandy, D. and Choudhuri, A. R. (2002). Explaining the latitudinal distribution of sunspots with a deep meridional flow. Science 296, 1671–1673.CrossRefGoogle ScholarPubMed
Nandy, D., Muñoz-Jaramillo, A., and Martens, P. C. H. (2011). The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations. Nature 471, 80–82.CrossRefGoogle ScholarPubMed
Narain, U. and Ulmschneider, P. (1996). Chromospheric and Coronal Heating Mechanisms. II. Space Sci. Rev. 75, 453–509.CrossRefGoogle Scholar
Narukage, N. and Shibata, K. (2006). Statistical analysis of reconnection inflows in solar flares observed with SOHO EIT. Astrophys. J. 637, 1122–1134.CrossRefGoogle Scholar
Nelson, N. J., Brown, B. P., Sacha Brun, A., Miesch, M. S., and Toomre, J. (2013). Buoyant magnetic loops generated by global convective dynamo action. Solar Phys., in press.Google Scholar
Nerney, S. and Suess, S. T. (2005). Stagnation flow in thin streamer boundaries. Astrophys. J. 624, 378–391.CrossRefGoogle Scholar
Neukirch, T. (2005). Magnetic field extrapolation. In Chromospheric and Coronal Magnetic Fields, D. E., Innes, A., Lagg, and S. A., Solanki, eds. (ESA SP-596, Dordrecht, Noordwijk), 12.1–12.13.Google Scholar
Neukirch, T. and Rastüatter, L. (1999). A new method for calculating a special class of self-consistent 3D magnetohydrostatic equilibria. Astron. Astrophys. 348, 1000–1004.Google Scholar
Newcomb, W. A. (1958). Motion of magnetic lines of force. Ann. Phys. 3, 347–385.CrossRefGoogle Scholar
Newcomb, W. A. (1960). Hydromagnetic stability of a diffuse linear pinch. Ann. Phys. 10, 232–267.CrossRefGoogle Scholar
Ng, C. S. and Bhattacharjee, A. (2008). A constrained tectonics model for coronal heating. Astrophys. J. 675, 899–905.CrossRefGoogle Scholar
Nickeler, D. H. and Wiegelmann, T. (2010). Thin current sheets caused by plasma flow gradients in space and astrophysical plasma. Annales Geophys. 28, 1523–1532.CrossRefGoogle Scholar
Nickeler, D. H. and Wiegelmann, T. (2012). Relation between current sheets and vortex sheets in stationary incompressible MHD. Annales Geophys. 30, 545–555.CrossRefGoogle Scholar
Nikolsky, G. M. and Platova, A. G. (1971). Motions of Ha-spicules along the solar limb. Solar Phys. 18, 403–409.CrossRefGoogle Scholar
Nishio, M., Yaji, K., Kosugi, T., Nakajima, H., and Sakurai, T. (1997). Magnetic field configuration in impulsive solar flares inferred from coaligned microwave/X-ray images. Astrophys. J. 489, 976–991.CrossRefGoogle Scholar
Nishizuka, N., Shimizu, M., Nakamura, T., Otsuji, K., Okamoto, T. J., Katsukawa, Y., and Shibata, K. (2008). Giant chromospheric anemone jet observed with Hinode and comparison with magnetohydrodynamic simulations: evidence of propagating Alfven waves and magnetic reconnection. Astrophys. J. Letts. 683, L83–L86.CrossRefGoogle Scholar
Nordlund, Å. (1985). Solar convection. Solar Phys. 100, 209–235.CrossRefGoogle Scholar
Nordlund, Å. and Scharmer, G. B. (2010). Convection and the origin of Evershed flows. In Magnetic Coupling between the Interior and Atmosphere of the Sun, S. S., Hasan and R. J., Rutten, ed. (Springer-Verlag, Heidelberg), 243–254.Google Scholar
Nordlund, Å. and Stein, R. F. (1990). Solar magnetoconvection. IAU Symp. 138, 191–211.Google Scholar
Nordlund, Å., Stein, R. F., and Asplund, M. (2009). Solar surface convection. Liv. Rev. in Solar Phys. 6,2, 1–116.Google ScholarPubMed
November, L. J., Toomre, J., Gebbi, K. B., and Simon, G. W. (1981). The detection of mesogranulation on the Sun. Astrophys. J. 245, L123–L126.CrossRef
Noyes, R. W. (1982). The Sun Our Star. (Harvard University Press, Cambridge, MA, USA).CrossRefGoogle Scholar
Noyes, R. W., Baliunas, S. L., and Guinan, E. F. (1991). What can other stars tell us about the Sun? (University of Arizona Press, Tucson, AZ, USA), 1161–1185.Google Scholar
Ofman, L. (2010). Wave modeling of the solar wind. Liv. Rev. in Solar Phys. 7, 4.Google ScholarPubMed
Ofman, L. and Davila, J. M. (1995). Nonlinear resonant absorption of Alfven waves in three dimensions, scaling laws and coronal heating. J. Geophys. Res. 100, 23427–23441.CrossRefGoogle Scholar
Ofman, L., Klimchuk, J. A., and Davila, J. M. (1998). A self-consistent model for resonant heating of coronal loops: the effects of coupling with the chromosphere. Astrophys. J. 493, 474–479.CrossRefGoogle Scholar
Ofman, L., Morrison, P. J., and Steinolfson, R. S. (1993). Nonlinear evolution of resistive tearing mode instability with shear flow and viscosity. Physics of Fluids B 5, 376–387.CrossRefGoogle Scholar
Ofman, L., Romoli, M., Poletto, G., Noci, G., and Kohl, J. L. (1997). Ultraviolet Coronagraph Spectrometer observations of density fluctuations in the solar wind. Astrophys. J. Letts. 491, L111–L114.CrossRefGoogle Scholar
Ofman, L. and Vinñas, A. F. (2007). Two-dimensional hybrid model of wave and beam heating of multi-ion solar wind plasma. J. Geophys. Res. 112, A11, A06104.CrossRefGoogle Scholar
Ogilvie, G. I. (2007). Instabilities, angular momentum transport and magnetohydrodynamic turbulence. In The Solar Tachocline, D. W., Hughes, R., Rosner, and N. O., Weiss, eds. (Cambridge University Press, Cambridge, UK), 299–315.Google Scholar
Ogura, Y. and Phillips, N. A. (1962). Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173–179.2.0.CO;2>CrossRefGoogle Scholar
Okamoto, T. J. and De Pontieu, B. (2011). Propagating waves along spicules. Astrophys. J. Letts. 736, L24.CrossRefGoogle Scholar
Okamoto, T. J., Tsuneta, S., Berger, T. E., Ichimoto, K., Katsukawa, Y., Lites, B. W., Nagata, S., Shibata, K., Shimizu, T., Shine, R. A., Suematsu, Y., Tarbell, T. D., and Title, A. M. (2007). Coronal transverse magnetohydrodynamic waves in a solar prominence. Science 318, 1577–1580.CrossRefGoogle Scholar
Oliver, R. (2009). Prominence seismology using small amplitude oscillations. Space Sci. Rev. 149, 175–197.CrossRefGoogle Scholar
Olsen, E. L. and Leer, E. (1999). A study of solar wind acceleration based on gyrotropic transport equations. J. Geophys. Res. 104, 9963–9974.CrossRefGoogle Scholar
Orozco Suaarez, D., Asensio Ramos, A., and Trujillo Bueno, J. (2012). Evidence for rotational motions in the feet of a quiescent solar prominence. Astrophys. J. Letts. 761, L25.CrossRefGoogle Scholar
Osherovich, V. A. (1982). A new magneto-hydrostatic theory of sunspots. Solar Phys. 77, 63–68.CrossRefGoogle Scholar
Ossendriver, M., Stix, M., and Brandenburg, A. (2001). Magnetoconvection and dynamo coefficients: dependence of the alpha-effect on rotation and magnetic field. Astron. Astrophys. 376, 713–726.Google Scholar
Osterbrock, D. E. (1961). The heating of the solar chromosphere, plages, and corona by magnetohydrodynamic waves. Astrophys. J. 134, 347–388.CrossRefGoogle Scholar
Otsuji, K., Kitai, R., Ichimoto, K., and Shibata, K. (2011). Statistical study on the nature of solar-flux emergence. Publ. Astron. Soc. Japan 63, 1047–1057.CrossRefGoogle Scholar
Owens, M. J. (2008). Combining remote and in situ observations of coronal mass ejections to better constrain magnetic cloud reconstruction. J. Geophys. Res. 113, 12102.CrossRefGoogle Scholar
Owens, M. J., Crooker, N. U., and Horbury, T. S. (2009). The expected imprint of flux rope geometry on suprathermal electrons in magnetic clouds. Annales Geophysicae 27, 4057–4067.CrossRefGoogle Scholar
Owens, M. J., Schwadron, N. A., Crooker, N. U., Hughes, W. J., and Spence, H. E. (2007). Role of coronal mass ejections in the heliospheric Hale cycle. Geophys. Res. Lett. 34, 6104.CrossRefGoogle Scholar
Owocki, S. (2004). Stellar wind mechanisms and instabilities. In EAS Publications Series, M., Heydari-Malayeri, P., Stee, and J.-P., Zahn, eds. Vol. 13. (Paris), 163–250.Google Scholar
Pallavacini, R., Serio, S., and Vaiana, G. S. (1977). A survey of soft X-ray limb flare images: the relation between their structure in the corona and other physical parameters. Astrophys. J. 216, 108–222.Google Scholar
Parenti, S., Buchlin, E., Cargill, P. J., Galtier, S., and Vial, J.-C. (2006). Modeling the radiative signatures of turbulent heating in coronal loops. Astrophys. J. 651, 1219–1228.CrossRefGoogle Scholar
Parenti, S. and Vial, J. (2007). Prominence and quiet-Sun plasma parameters derived from FUV spectral emission. Astron. Astrophys. 469, 1109–1115.CrossRefGoogle Scholar
Parenti, S. and Young, P. R. (2008). On the ultraviolet signatures of small scale heating in coronal loops. Astron. Astrophys. 492, 857–862.CrossRefGoogle Scholar
Pariat, E., Aulanier, G., and Daemoulin, P. (2006). A new concept for magnetic reconnection: slip-running reconnection. In SF2A-2006: Semaine de l'Astrophysique Francaise, D., Barret, F., Casoli, G., Lagache, A., Lecavelier, and L., Pagani, eds. (Paris), 559–562.Google Scholar
Park, S. and Chae, J. (2012). Ca II transient brightenings associated with canceling magnetic features. Solar Phys. 280, 103–110.CrossRefGoogle Scholar
Park, W., Monticello, D. A., and White, R. B. (1984). Reconnection rates of magnetic fields including the effects of viscosity. Phys. Fluids 27, 137–149.CrossRefGoogle Scholar
Parker, E. N. (1953). Instability of thermal fields. Astrophys. J. 117, 431–436.CrossRefGoogle Scholar
Parker, E. N. (1955a). The formation of sunspots from the solar toroidal field. Astrophys. J. 121, 491–507.CrossRefGoogle Scholar
Parker, E. N. (1955b). Hydromagnetic dynamo models. Astrophys. J. 122, 293–314.CrossRefGoogle Scholar
Parker, E. N. (1957). Sweet's mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509–520.CrossRefGoogle Scholar
Parker, E. N. (1958). Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676.CrossRefGoogle Scholar
Parker, E. N. (1963a). Interplanetary Dynamical Processes. (Interscience, New York).Google Scholar
Parker, E. N. (1963b). The solar flare phenomenon and the theory of reconnection and annihilation of magnetic fields. Astrophys. J. 8, 177–212.CrossRefGoogle Scholar
Parker, E. N. (1964). Dynamical properties of stellar coronas and stellar winds. II. Integration of the heat-flow equation. Astrophys. J. 139, 93–122.Google Scholar
Parker, E. N. (1966). The dynamical state of the interstellar gas and field. Astrophys. J. 145, 811–833.CrossRefGoogle Scholar
Parker, E. N. (1972). Topological dissipation and the small-scale fields in turbulent gases. Astrophys. J. 174, 499–510.CrossRefGoogle Scholar
Parker, E. N. (1973). Comments on the reconnection rate of magnetic fields. J. Plasma Phys. 9, 49–63.CrossRefGoogle Scholar
Parker, E. N. (1974). The dynamical properties of twisted ropes of magnetic field and the vigor of new active regions on the Sun. Astrophys. J. 191, 245–254.CrossRefGoogle Scholar
Parker, E. N. (1975). Generation of magnetic fields in astrophysical bodies: X – Magnetic buoyancy and the solar dynamo. Astrophys. J. 198, 205–209.CrossRefGoogle Scholar
Parker, E. N. (1977). The origin of solar activity. Ann. Rev. Astron. Astrophys. 15, 45–68.CrossRefGoogle Scholar
Parker, E. N. (1979a). Cosmical Magnetic Fields. (Oxford University Press, Oxford).Google Scholar
Parker, E. N. (1979b). Sunspots and the physics of magnetic flux tubes. I – The general nature of the sunspot. II – Aerodynamic drag. Astrophys. J. 230, 905–923.CrossRefGoogle Scholar
Parker, E. N. (1984). Magnetic buoyancy and the escape of magnetic fields from stars. Astrophys. J. 281, 839–845.CrossRefGoogle Scholar
Parker, E. N. (1988). Nanoflares and the solar X-ray corona. Astrophys. J. 330, 474–479.CrossRefGoogle Scholar
Parker, E. N. (1993). A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys. J. 408, 707–719.CrossRefGoogle Scholar
Parker, E. N. (1994). Spontaneous Current Sheets in Magnetic Fields. (Oxford University Press, New York, NY).Google Scholar
Parnell, C. E. (2001). A model of the solar magnetic carpet. Solar Phys. 200, 23–45.CrossRefGoogle Scholar
Parnell, C. E. (2004). The role of dynamic brightenings in coronal heating. In SOHO 15 Coronal Heating, R.W., Walsh, J., Ireland, D., Danesy, and B., Fleck, eds. ESA Special Publication, vol. 575. (Noordwijk), 227–234.Google Scholar
Parnell, C. E., Bewsher, D., and Harrison, R. A. (2002). Transition-region blinkers. II. Active-region properties. Solar Phys. 206, 249–271.CrossRefGoogle Scholar
Parnell, C. E. and De Moortel, I. (2012). A contemporary view of coronal heating. Phil.Trans.Roy.Soc.Lond.A 370, 3217–3240.CrossRefGoogle ScholarPubMed
Parnell, C. E., DeForest, C. E., Hagenaar, H. J., Johnston, B. A., Lamb, D. A., and Welsch, B. T. (2009). A power-law distribution of solar magnetic fields over more than five decades in flux. Astrophys. J. 698, 75–82.CrossRefGoogle Scholar
Parnell, C. E. and Galsgaard, K. (2004). Elementary heating events – interaction between two flux sources. II. Rates of flux reconnection. Astron. Astrophys. 428, 595–612.CrossRefGoogle Scholar
Parnell, C. E., Haynes, A. L., and Galsgaard, K. (2008). Recursive reconnection and magnetic skeletons. Astrophys. J. 675, 1656–1667.CrossRefGoogle Scholar
Parnell, C. E., Haynes, A. L., and Galsgaard, K. (2010). Structure of magnetic separators and separator reconnection. J. Geophys. Res. 115, A14, 2102.CrossRefGoogle Scholar
Parnell, C. E. and Jupp, P. E. (2000). Statistical analysis of the energy distribution of nanoflares in the quiet Sun. Astrophys. J. 529, 554–569.CrossRefGoogle Scholar
Parnell, C. E., Maclean, R. C., and Haynes, A. L. (2010). The detection of numerous magnetic separators in a three-dimensional magnetohydrodynamic model of solar emerging flux. Astrophys. J. Letts. 725, L214–L218.CrossRefGoogle Scholar
Parnell, C. E. and Priest, E. R. (1995). A converging flux model for the formation of an X-ray bright point above a supergranule cell. Geophys. Astrophys. Fluid Dyn. 80, 255–276.CrossRefGoogle Scholar
Parnell, C. E., Priest, E. R., and Golub, L. (1994). The three-dimensional structures of X-ray bright points. Solar Phys. 151, 57–74.CrossRefGoogle Scholar
Parnell, C. E., Smith, J. M., Neukirch, T., and Priest, E. R. (1996). The structure of 3D magnetic neutral points. Phys. Plasmas 3, 759–770.CrossRefGoogle Scholar
Pascoe, D. J., Wright, A. N., and De Moortel, I. (2011). Propagating coupled Alfven and kink oscillations in an arbitrary inhomogeneous corona. Astrophys. J. 731, 1–9.CrossRefGoogle Scholar
Patsourakos, S., Pariat, E., Vourlidas, A., Antiochos, S. K., and Wuelser, J. P. (2008). STEREO SECCHI stereoscopic observations constraining the initiation of polar coronal jets. Astrophys. J. Letts. 680, L73–L76.CrossRefGoogle Scholar
Peres, G. (2000). Models of dynamic coronal loops. Solar Phys. 193, 33–52.CrossRefGoogle Scholar
Perez, A., Mussack, K., Dappen, W., and Mao, D. (2009). The solar-interior equation of state with the path-integral formalism. I. Domain of validity. Astron. Astrophys. 505, 735–742.CrossRefGoogle Scholar
Peter, H. and Judge, P. G. (1999). On the Doppler shifts of solar ultraviolet emission lines. Astrophys. J. 522, 1148–1166.CrossRefGoogle Scholar
Petrie, G. J. D. and Neukirch, T. (1999). Self-consistent three-dimensional steady state solutions of the MHD equations with field-aligned incompressible flow. Geophys. Astrophys. Fluid Dyn. 91, 269–302.CrossRefGoogle Scholar
Petrie, G. J. D. and Neukirch, T. (2000). The Green's function method for a special class of linear 3D magnetohydrostatic equilibria. Astron. Astrophys. 356, 735–746.Google Scholar
Petrie, G. J. D. and Sudol, J. J. (2010). Abrupt longitudinal magnetic field changes in flaring active regions. Astrophys. J. 724, 1218–1237.CrossRefGoogle Scholar
Petschek, H. E. (1964). Magnetic field annihilation. In AAS-NASA Symposium on the Physics of Solar Flares. (NASA Spec. Publ. SP-50, Washington), 425–439.Google Scholar
Pevtsov, A. A., Canfield, R. C., and Latushko, S. M. (2001). Hemispheric helicity trend for solar cycle 23. Astrophys. J. 549, L261–L263.CrossRefGoogle Scholar
Pevtsov, A. A., Canfield, R. C., and Metcalf, T. R. (1995). Latitudinal variation of helicity of photospheric magnetic fields. Astrophys. J. 440, L109–L112.CrossRefGoogle Scholar
Pevtsov, A. A., Canfield, R. C., Sakurai, T., and Hagino, M. (2008). On the solar-cycle variation of the hemispheric helicity rule. Astrophys. J. 677, 719–722.CrossRefGoogle Scholar
Pevtsov, A. A., Fisher, G. H., Acton, L. W., Longcope, D. W., Johns-Krull, C. M., Kankelborg, C. C., and Metcalf, T. R. (2003). The relationship between X-ray radiance and magnetic flux. Astrophys. J. 598, 1387–1391.CrossRefGoogle Scholar
Pevtsov, A. A., Maleev, V., and Longcope, D. W. (2003). Helicity evolution in emerging active regions. Astrophys. J. 593, 1217–1225.CrossRefGoogle Scholar
Piddington, J. H. (1977). Solar magnetic fields and convection. IX – A primordial magnetic field. Astrophys. and Space Science 47, 319–340.CrossRefGoogle Scholar
Pierrard, V., Maksimovic, M., and Lemaire, J. (2001). Self-consistent model of solar wind electrons. J. Geophys. Res. 106, 29305–29312.CrossRefGoogle Scholar
Pike, C. D. and Mason, H. E. (1998). Rotating features observed with the SOHO Coronal Diagnostic Spectrometer. Solar Phys. 182, 333–348.CrossRefGoogle Scholar
Pneuman, G. W. (1972). On neutral sheets in the solar wind. Solar Phys. 23, 223–237.CrossRefGoogle Scholar
Pneuman, G. W. (1981). Two-ribbon flares: post-flare loops. In Solar Flare Magnetohydrodynamics. (Gordon and Breach Science Publishers, London), 379–428.Google Scholar
Pneuman, G. W. and Kopp, R. A. (1971). Gas-magnetic field interactions in the solar corona. Solar Phys. 18, 258–270.CrossRefGoogle Scholar
Poedts, S. and Goedbloed, J. P. (1997). Nonlinear wave heating of solar coronal loops. Astron. Astrophys. 321, 935–944.Google Scholar
Poletto, G. and Kopp, R. (1986). Macroscopic electric fields during two-ribbon flares. In The Lower Atmosphere of Solar Flares; Proceedings of the Solar Maximum Mission Symposium, D., Neidig, ed. (National Solar Observatory, Sunspot, New Mexico), 453–465.Google Scholar
Pontin, D. I., Bhattacharjee, A., and Galsgaard, K. (2007a). Current-sheet formation and nonideal behavior at three-dimensional magnetic null points. Phys. Plasmas 14, 052106.CrossRefGoogle Scholar
Pontin, D. I., Bhattacharjee, A., and Galsgaard, K. (2007b). Current sheets at three-dimensional magnetic nulls: effect of compressibility. Phys. Plasmas 14, 052109.CrossRefGoogle Scholar
Pontin, D. I. and Craig, I. J. D. (2005). Current singularities at finitely compressible three-dimensional magnetic null points. Phys. Plasmas 12, 072112.CrossRefGoogle Scholar
Pontin, D. I. and Galsgaard, K. (2007). Current amplification and magnetic reconnection at a three-dimensional null point: physical characteristics. J. Geophys. Res. 112, A03103.CrossRefGoogle Scholar
Pontin, D. I., Galsgaard, K., Hornig, G., and Priest, E. R. (2005). A fully magnetohydrodynamic simulation of 3D non-null reconnection. Phys. Plasmas 12, 052307.CrossRefGoogle Scholar
Pontin, D. I., Hornig, G., and Priest, E. R. (2004). Kinematic reconnection at a magnetic null point: spine-aligned current. Geophys. Astrophys. Fluid Dyn. 98, 407–428.CrossRefGoogle Scholar
Pontin, D. I., Hornig, G., and Priest, E. R. (2005). Kinematic reconnection at a magnetic null point: fan-aligned current. Geophys. Astrophys. Fluid Dyn. 99, 77–93.CrossRefGoogle Scholar
Pontin, D. I. and Huang, Y.-M. (2012). On the formation of current sheets in response to the compression or expansion of a potential magnetic field. Astrophys. J. 756, 7.CrossRefGoogle Scholar
Pontin, D. I., Wilmot-Smith, A. L., Hornig, G., and Galsgaard, K. (2011). Dynamics of braided coronal loops. II. Cascade to multiple small-scale reconnection events. Astron. Astrophys. 525, A57.CrossRefGoogle Scholar
Poston, T. and Stewart, I. (1996). Catastrophe Theory and Its Applications. (Dover Publications, Mineola, New York).Google Scholar
Prichett, P. L. and Wu, C. C. (1979). Coalescence of magnetic islands. Phys. Fluids 22, 2140–2146.Google Scholar
Priest, E. R. (1981). Solar Flare Magnetohydrodynamics. (Gordon and Breach Science Publishers, London).Google Scholar
Priest, E. R. (1986). Magnetic reconnection on the Sun. Mit. Astron. Ges. 65, 41–51.Google Scholar
Priest, E. R. (1987). Appearance and disappearance of magnetic flux at the solar surface. In The Role of Fine-Scale Magnetic Fields on the Structure of the Solar Atmosphere, A. W. E., Schroter, M., Vazquez, ed. (Cambridge University Press., Cambridge, UK), 297–316.Google Scholar
Priest, E. R. (1989). Structure and Dynamics of Quiescent Solar Prominences. (Kluwer, Dordrecht).Google Scholar
Priest, E. R. (1992). Basic magnetic configuration and energy supply processes for an Interacting Flux Model of eruptive solar flares. In IAU Colloq. 133 on Eruptive solar flares, B. Z., Svestka, B., Jackson, and M., Machado, eds. (Springer-Verlag, Berlin), 15–32.Google Scholar
Priest, E. R., Bungey, T. N., and Titov, V. S. (1997). The 3D topology and interaction of complex magnetic flux systems. Geophys. Astrophys. Fluid Dyn. 84, 127–163.CrossRefGoogle Scholar
Priest, E.R.andDaemoulin, P. (1995). Three-dimensional magnetic reconnection without null points. 1. Basic theory of magnetic flipping. J. Geophys. Res. 100, 23,443–23, 463.Google Scholar
Priest, E. R., Foley, C. R., Heyvaerts, J., Arber, T. D., Culhane, J. L., and Acton, L. W. (1998). The nature of the heating mechanism for the diffuse solar corona. Nature 393, 545–547.CrossRefGoogle Scholar
Priest, E. R., Foley, C. R., Heyvaerts, J., Arber, T. D., Mackay, D., Culhane, J. L., and Acton, L. W. (2000). A method to determine the heating mechanisms of the solar corona. Astrophys. J. 539, 1002–1022.CrossRefGoogle Scholar
Priest, E. R. and Forbes, T. G. (1986). New models for fast, steady-state reconnection. J. Geophys. Res. 91, 5579–5588.CrossRefGoogle Scholar
Priest, E. R. and Forbes, T. G. (1989). Steady magnetic reconnection in three dimensions. Solar Phys. 119, 211–214.CrossRefGoogle Scholar
Priest, E. R. and Forbes, T. G. (1990). Magnetic field evolution during prominence eruptions and two-ribbon flares. Solar Phys. 126, 319–350.CrossRefGoogle Scholar
Priest, E. R. and Forbes, T. G. (1992a). Does fast magnetic reconnection exist?J. Geophys. Res. 97, 16757–16772.CrossRefGoogle Scholar
Priest, E. R. and Forbes, T. G. (1992b). Magnetic flipping – reconnection in three dimensions without null points. J. Geophys. Res. 97, 1521–1531.CrossRefGoogle Scholar
Priest, E. R. and Forbes, T. G. (2000). Magnetic Reconnection: MHD Theory and Applications. (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Priest, E. R. and Forbes, T. G. (2002). The magnetic nature of solar flares. Astron. and Astrophys. Rev. 10, 313–377.CrossRefGoogle Scholar
Priest, E. R., Heyvaerts, J., and Title, A. (2002). A Flux Tube Tectonics model for solar coronal heating driven by the magnetic carpet. Astrophys. J. 576, 533–551.CrossRefGoogle Scholar
Priest, E. R., Hood, A. W., and Anzer, U. (1989). A twisted flux-tube model for solar prominences. I. General properties. Astrophys. J. 344, 1010–1025.CrossRefGoogle Scholar
Priest, E. R., Hood, A. W., and Anzer, U. (1991). The fibril structure of prominences. Solar Phys. 132, 199–202.CrossRefGoogle Scholar
Priest, E. R., Hood, A. W., and Bewsher, D. (2002). The nature of blinkers and the solar transition region. Solar Phys. 205, 249–264.CrossRefGoogle Scholar
Priest, E. R., Hornig, G., and Pontin, D. I. (2003). On the nature of three-dimensional magnetic reconnection. J. Geophys. Res. 108, A7, SSH 6.1–6.8.CrossRefGoogle Scholar
Priest, E. R., Longcope, D., and Heyvaerts, J. (2005). Coronal heating at separators and separatrices. Astrophys. J. 624, 1057–1071.CrossRefGoogle Scholar
Priest, E. R., Longcope, D. W., and Titov, V. S. (2003). Binary reconnection and the heating of the solar corona. Astrophys. J. 598, 667–677.CrossRef
Priest, E. R., Lonie, D. P., and Titov, V. S. (1996). Bifurcations of magnetic topology by the creation or annihilation of null points. J. Plasma Phys. 56, 507–530.CrossRefGoogle Scholar
Priest, E. R. and Milne, A. M. (1979). Force-free magnetic arcades relevant to two-ribbon solar flares. Solar Phys. 65, 315–346.Google Scholar
Priest, E. R. and Parnell, C. E. (2014). MHD reconnection theory. Liv. Rev. in Solar Phys., in press.Google Scholar
Priest, E. R., Parnell, C. E., and Martin, S. F. (1994). A converging flux model of an X-ray bright point and an associated canceling magnetic feature. Astrophys. J. 427, 459–474.CrossRefGoogle Scholar
Priest, E. R. and Pneuman, G. W. (1974). The influence of non-uniform solar wind expansion on the angular momentum loss from the Sun. Solar Phys. 34, 231–241.CrossRefGoogle Scholar
Priest, E. R. and Pontin, D. I. (2009). Three-dimensional null point regimes. Phys. Plasmas 16, 122101.CrossRefGoogle Scholar
Priest, E. R. and Raadu, M. A. (1975). Preflare current sheets in the solar atmosphere. Solar Phys. 43, 177–188.CrossRefGoogle Scholar
Priest, E. R. and Smith, D. F. (1972). Current sheets in coronal streamers. Astrophys. Letters 12, 25–29.Google Scholar
Priest, E. R. and Smith, E. A. (1979). The structure of coronal arcades and the formation of solar prominences. Solar Phys. 64, 267–286.CrossRefGoogle Scholar
Priest, E. R. and Titov, V. S. (1996). Magnetic reconnection at three-dimensional null points. Phil.Trans.Roy.Soc. Lond. 355, 2951–2992.Google Scholar
Priest, E. R., Titov, V. S., and Rickard, G. K. (1994). The formation of magnetic singularities by nonlinear time-dependent collapse of an X-type magnetic field. Phil.Trans.Roy.Soc.Lond. A351, 1–37.Google Scholar
Priest, E. R., van Ballegooijen, A. A., and Mackay, D. H. (1996). A model for dextral and sinistral prominences. Astrophys. J. 460, 530–543.CrossRefGoogle Scholar
Pritchett, P. L., Lee, Y. C., and Drake, J. F. (1980). Linear analysis of the double tearing mode. Phys. Fluids 23, 1368–1374.CrossRefGoogle Scholar
Proctor, M. R. E. (1994). Convection and magnetoconvection in a rapidly rotating sphere. In Lectures on Solar and Planetary Dynamos, M. R. E., Proctor and A. D., Gilbert, eds. (Cambridge University Press, Cambridge, UK), 97–115.Google Scholar
Proctor, M. R. E. (2005). Magnetoconvection. In Fluid Dynamics and Dynamos in Astrophysics and Geophysics, A. M., Soward, C. A., Jones, D. W., Hughes, and N. O., Weiss, ed. (CRC Press, Boca Raton, FL), 235–276.Google Scholar
Proctor, M. R. E. and Gilbert, A. D. (1994). Lectures on Solar and Planetary Dynamos. (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Pucci, S., Lie-Svendsen, Ø., and Esser, R. (2010). Elemental abundances in the fast solar wind emanating from chromospheric funnels. Astrophys. J. 709, 993–1002.CrossRefGoogle Scholar
Qiu, J., Hu, Q., Howard, T. A., and Yurchyshyn, V. B. (2007). On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J. 659, 758–772.CrossRefGoogle Scholar
Qiu, J., Lee, J., Gary, D. E., and Wang, H. (2002). Motion of flare footpoint emission and inferred electric field in reconnecting current sheets. Astrophys. J. 565, 1335–1347.CrossRefGoogle Scholar
Qiu, J., Liu, W.-J., Hill, N., and Kazachenko, M. (2010). Reconnection and energetics in two-ribbon flares: a revisit of the Bastille-day flare. Astrophys. J. 725, 319–330.CrossRefGoogle Scholar
Qiu, J., Liu, W.-J., and Longcope, D. W. (2012). Heating of flare loops with observationally constrained heating functions. Astrophys. J. 752, 124.CrossRef
Qiu, J., Wang, H., Cheng, C. Z., and Gary, D. E. (2004). Magnetic reconnection and mass acceleration in flare-coronal mass ejection events. Astrophys. J. 604, 900–905.CrossRefGoogle Scholar
Raadu, M. A. (1972). Suppression of the kink instability for magnetic flux ropes in the chromosphere. Solar Phys. 22, 425–433.CrossRefGoogle Scholar
Rachmeler, L. A., DeForest, C. E., and Kankelborg, C. C. (2009). Reconnectionless CME eruption: putting the Aly-Sturrock conjecture to rest. Astrophys. J. 693, 1431–1436.CrossRefGoogle Scholar
Rachmeler, L. A., Gibson, S. E., Dove, J., DeVore, C., and Fan, Y. (2013). Polarimetric properties of flux ropes and sheared arcades in coronal prominence cavities. Solar Phys., in press.Google Scholar
Rachmeler, L. A., Pariat, E., DeForest, C. E., Antiochos, S., and Torok, T. (2010). Symmetric coronal jets: a reconnection-controlled study. Astrophys. J. 715, 1556–1565.CrossRefGoogle Scholar
Radziszewski, K., Rudawy, P., and Phillips, K. J. H. (2011). High time resolution observations of solar Ha flares. II. Search for signatures of electron beam heating. Astron. Astrophys. 535, A123.CrossRefGoogle Scholar
Rae, I. C. and Roberts, B. (1981). Surface waves and the heating of the corona. Geophys. Astrophys. Fluid Dyn. 18, 197–226.CrossRefGoogle Scholar
Raouafi, N.-E. and Solanki, S. K. (2006). Sensitivity of solar off-limb line profiles to electron density stratification and the velocity distribution anisotropy. Astron. Astrophys. 445, 735–745.CrossRefGoogle Scholar
Rappazzo, A. F. and Velli, M. (2011). Magnetohydrodynamic turbulent cascade of coronal loop magnetic fields. Phys. Rev. E 83, 6 (June), 065401.Google ScholarPubMed
Rappazzo, A. F., Velli, M., and Einaudi, G. (2010). Shear photospheric forcing and the origin of turbulence in coronal loops. Astrophys. J. 722, 65–78.CrossRefGoogle Scholar
Rappazzo, A. F., Velli, M., Einaudi, G., and Dahlburg, R. B. (2008). Nonlinear dynamics of the Parker scenario for coronal heating. Astrophys. J. 677, 1348–1366.CrossRefGoogle Scholar
Rayleigh, L. (1916). On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Phil. Mag. 32, 529–546.CrossRefGoogle Scholar
Raymond, J. C., Ciaravella, A., Dobrzycka, D., Strachan, L., Ko, Y.-K., Uzzo, M., and Raouafi, N.-E. (2003). Far-ultraviolet spectra of fast coronal mass ejections associated with X-class flares. Astrophys. J. 597, 1106–1117.CrossRefGoogle Scholar
Reale, F. (2010). Coronal loops: observations and modeling of confined plasma. Liv. Rev. in Solar Phys. 7, 5.Google Scholar
Reale, F., Guarrasi, M., Testa, P., DeLuca, E. E., Peres, G., and Golub, L. (2011). Solar Dynamics Observatory discovers thin high temperature strands in coronal active regions. Astrophys. J. Letts. 736, L16.CrossRefGoogle Scholar
Reale, F., Parenti, S., Reeves, K. K., Weber, M., Bobra, M. G., Barbera, M., Kano, R., Narukage, N., Shimojo, M., Sakao, T., Peres, G., and Golub, L. (2007). Fine thermal structure of a coronal active region. Science 318, 1582–1585.CrossRefGoogle ScholarPubMed
Reale, F., Peres, G., Serio, S., Betta, R. M., DeLuca, E. E., and Golub, L. (2000). A brightening coronal loop observed by TRACE. II. Loop modeling and constraints on heating. Astrophys. J. 535, 423–437.Google Scholar
Reale, F., Testa, P., Klimchuk, J. A., and Parenti, S. (2009). Evidence of widespread hot plasma in a nonflaring coronal active region from Hinode/X-Ray Telescope. Astrophys. J. 698, 756–765.CrossRefGoogle Scholar
Rechester, A. B. and Stix, T. H. (1976). Magnetic braiding due to weak asymmetry. Phys. Rev. Lett. 40, 38–41.Google Scholar
Régnier, S., Amari, T., and Kersale, E. (2002). 3D coronal magnetic field from vector magnetograms: non-constant-alpha force-free configuration of the active region NOAA 8151. Astron. Astrophys. 392, 1119–1127.CrossRefGoogle Scholar
Regnier, S. and Priest, E. R. (2007). Two active regions with very different structure. Astron. Astrophys. 468, 701–709.CrossRefGoogle Scholar
Reid, J. and Laing, E. W. (1979). The resistive evolution of force-free magnetic fields. I – Slab geometry. J. Plasma Phys. 21, 501–510.CrossRefGoogle Scholar
Rempel, M. (2005). Solar differential rotation and meridional flow: the role of a subadiabatic tachocline for the Taylor-Proudman balance. Astrophys. J. 622, 1320–1332.CrossRefGoogle Scholar
Rempel, M. (2011). Penumbral fine structure and driving mechanisms of large-scale flows in simulated sunspots. Astrophys. J. 729, 5.CrossRefGoogle Scholar
Rempel, M. (2012). Numerical sunspot models: robustness of photospheric velocity and magnetic field structure. Astrophys. J. 750, 62.CrossRefGoogle Scholar
Rempel, M., Schüssler, M., Cameron, R. H., and Knölker, M. (2009). Penumbral structure and outflows in simulated sunspots. Science 325, 171–174.CrossRefGoogle ScholarPubMed
Rempel, M., Schuüssler, M., and Knoülker, M. (2009). Radiative magnetohydrodynamic simulation of sunspot structure. Astrophys. J. 691, 640–649.CrossRefGoogle Scholar
Restante, A. L., Aulanier, G., and Parnell, C. E. (2009). How skeletons turn into quasi-separatrix layers in source models. Astron. Astrophys. 508, 433–443.CrossRefGoogle Scholar
Rickard, G. J. and Titov, V. S. (1996). Current accumulation at a three-dimensional magnetic null. Astrophys. J. 472, 840–852.CrossRefGoogle Scholar
Ridgway, C., Priest, E. R., and Amari, T. (1991). Prominence sheets supported by constant-current force-free fields. I – Imposition of normal magnetic field components at the current sheet and the photosphere. Astrophys. J. 378, 773–784.CrossRefGoogle Scholar
Ridgway, C., Priest, E. R., and Amari, T. (1991). A twisted flux tube model for solar prominences. III. Magnetic support. Astrophys. J. 367, 321–332.CrossRefGoogle Scholar
Riethmüller, T. L., Solanki, S. K., and Lagg, A. (2008). Stratification of sunspot umbral dots from inversion of Stokes profiles recorded by Hinode. Astrophys. J. Letts. 678, L157–L160.CrossRefGoogle Scholar
Rieutord, M., Meunier, N., Roudier, T., Rondi, S., Beigbeder, F., and Pares, L. (2008). Solar supergranulation revealed by granule tracking. Astron. Astrophys. 479, L17–L20.CrossRefGoogle Scholar
Rieutord, M. and Rincon, F. (2010). The Sun's supergranulation. Liv. Rev. in Solar Phys. 7, 2.Google Scholar
Rieutord, M., Roudier, T., Rincon, F., Malherbe, J.-M., Meunier, N., Berger, T., and Frank, Z. (2010). On the power spectrum of solar surface flows. Astron. Astrophys. 512, A4.CrossRefGoogle Scholar
Rijinbeek, R. P. and Semenov, V. S. (1993). Features of a Petschek-type reconnection model. Trends in Geophys. Res. 2, 247–268.Google Scholar
Riley, P., Linker, J. A., and Mikic, Z. (2013). On the application of ensemble modelling techniques to improve ambient solar wind models. J. Geophys. Res. 118, 600–607.CrossRefGoogle Scholar
Riley, P., Linker, J. A., Mikic, Z., Lionello, R., Ledvina, S. A., and Luhmann, J. G. (2006). A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 653, 1510–1516.CrossRefGoogle Scholar
Riley, P., Lionello, R., Linker, J. A., Mikic, Z., Luhmann, J., and Wijaya, J. (2011). Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval. Solar Phys. 274, 361–377.CrossRefGoogle Scholar
Riley, P., Lionello, R., Mikic, Z., and Linker, J. (2008). Using global simulations to relate the three-part structure of coronal mass ejections to in situ signatures. Astrophys. J. 672, 1221–1227.CrossRefGoogle Scholar
Robbrecht, E., Berghmans, D., and van der Linden, R. A. M. (2009). Automated LASCO CME catalog for solar cycle 23: are CMEs scale invariant?Astrophys. J. 691, 1222–1234.CrossRefGoogle Scholar
Roberts, B. (2000). Waves and oscillations in the corona (invited review). Solar Phys. 193, 39–56.CrossRefGoogle Scholar
Roberts, B., Edwin, P. M., and Benz, A. O. (1984). On coronal oscillations. Astrophys. J. 279, 857–865.CrossRefGoogle Scholar
Roberts, B. and Webb, A. R. (1979). Vertical motions in an intense magnetic flux tube. III – On the slender flux tube approximation. Solar Phys. 64, 77–92.CrossRefGoogle Scholar
Roberts, D. A. (2010). Demonstrations that the solar wind is not accelerated by waves or turbulence. Astrophys. J. 711, 1044–1050.CrossRefGoogle Scholar
Roberts, G. O. (1972a). Dynamo action of fluid motions with two-dimensional periodicity. Phil.Trans.Roy.Soc.Lond. A 271, 411–454.CrossRefGoogle Scholar
Roberts, P. H. (1967). An Introduction to Magnetohydrodynamics. (Longmans, London).Google Scholar
Roberts, P. H. (1972b). Kinematic Dynamo Models. Phil. Trans. Roy. Soc.A 272, 663–698.CrossRefGoogle Scholar
Roberts, P. H. and Soward, A. M. (1972). Stellar winds and breezes. Proc. Roy. Soc. Lond. A 328, 185–215.CrossRefGoogle Scholar
Robinson, R. D., Worden, S. P., and Harvey, J. W. (1980). Observations of magnetic fields on two late-type dwarf stars. Astrophys. J. 236, L155–L158.CrossRefGoogle Scholar
Rosenthal, C. S., Bogdan, T. J., Carlsson, M., Dorch, S. B. F., Hansteen, V., Mcintosh, S. W., McMurry, A., Nordlund, A., and Stein, R. F. (2002). Waves in the magnetized solar atmosphere. I. Basic processes and internetwork oscillations. Astrophys. J. 564, 508–524.CrossRefGoogle Scholar
Rosner, R. and Knobloch, E. (1982). On perturbations of magnetic field configurations. Astrophys. J. 262, 349–357.CrossRefGoogle Scholar
Rosner, R., Tucker, W. H., and Vaiana, G. S. (1978). Dynamics of the quiescent solar corona. Astrophys. J. 220, 643–645.CrossRefGoogle Scholar
Roudier, T. and Muller, R. (1986). Structure of the solar granulation. Solar Phys. 107, 11–26.CrossRefGoogle Scholar
Roumeliotis, G. (1993). A new class of exact, nonlinear solutions to the Grad-Shafranov equation. Astrophys. J. 404, 781–787.CrossRefGoogle Scholar
Roumeliotis, G. (1996). The “stress-and-relax” method for reconstructing the coronal magnetic field from vector magnetograph data. Astrophys. J. 473, 1095–1103.CrossRefGoogle Scholar
Rouppe van der Voort, L., Hansteen, V. H., Carlsson, M., Fossum, A., Marthinussen, E., van Noort, M. J., and Berger, T. E. (2005). Solar magnetic elements at 0.1 arcsec resolution. II. Dynamical evolution. Astron. Astrophys. 435, 327–337.CrossRefGoogle Scholar
Rouppe van der Voort, L., Leenaarts, J., De Pontieu, B., Carlsson, M., and Vissers, G. (2009). On-disk counterparts of type II spicules in the Ca II 854.2 nm and Ha lines. Astrophys. J. 705, 272–284.CrossRefGoogle Scholar
Rouppe van der Voort, L., Löfdahl, M. G., Kiselman, D., and Scharmer, G. B. (2004). Penumbral structure at 0.1 arcsec resolution. I. General appearance and power spectra. Astron. Astrophys. 414, 717–726.CrossRefGoogle Scholar
Roussev, I. I., Gombosi, T. I., Sokolov, I. V., Velli, M., Manchester, IV, W., DeZeeuw, D. L., Liewer, P., Töth, G., and Luhmann, J. (2003). A three-dimensional model of the solar wind incorporating solar magnetogram observations. Astrophys. J. Letts. 595, L57–L61.CrossRefGoogle Scholar
Roussev, I. I., Lugaz, N., and Sokolov, I. V. (2007). New physical insight on the changes in magnetic topology during coronal mass ejections: case studies for the 2002 April 21 and August 24 Events. Astrophys. J. Letts. 668, L87–L90.CrossRefGoogle Scholar
Rucklidge, A. M. (1994). Chaos in magnetoconvection. Nonlinearity 7, 1565–1591.CrossRefGoogle Scholar
Rucklidge, A. M., Weiss, N. O., Brownjohn, D. P., Matthews, P. C., and Proctor, M. R. E. (2000). Compressible magnetoconvection in three dimensions: pattern formation in a strongly stratified layer. J. Fluid Mech. 419, 283–323.CrossRefGoogle Scholar
Ruderman, M. S. and Erdelyi, R. (2009). Transverse oscillations of coronal loops. Space Sci. Rev. 149, 199–228.CrossRefGoogle Scholar
Ruderman, M. S., Goossens, M., Ballester, J. L., and Oliver, R. (1997). Resonant Alfvöen waves in coronal arcades driven by footpoint motions. Astron. Astrophys. 328, 361–370.Google Scholar
Ruderman, M. S., Nakariakov, V. M., and Roberts, B. (1998). Alfvöen wave phase mixing in two-dimensional open magnetic configurations. Astron. Astrophys. 338, 1118–1124.Google Scholar
Ruderman, M. S. and Roberts, B. (2002). The damping of coronal loop oscillations. Astrophys. J. 577, 475–486.CrossRefGoogle Scholar
Rüdiger, G. (1989). Differential Rotation and Stellar Convection. (Akademie-Verlag, Berlin).Google Scholar
Rüdiger, G. and Kitchatinov, L. L. (1997). The slender solar tachocline: a magnetic model. Astron. Nach. 318, 273–279.CrossRefGoogle Scholar
Rüdiger, G. and Küker, M. (2002). Theory of meridional flow and the advection-dominated solar dynamo. In Solar Variability: From Core to Outer Frontiers, A., Wilson, ed. ESA Special Publication, vol. 506. (Noordwijk), 811–814.Google Scholar
Rust, D. M. (1967). Magnetic fields in quiescent solar prominences. I. Observations. Astrophys. J. 150, 313–321.CrossRefGoogle Scholar
Rust, D. M. and Kumar, A. (1994). Helical magnetic fields in filaments. Solar Phys. 155, 69–97.CrossRefGoogle Scholar
Rust, D. M. and Kumar, A. (1996). Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. 464, L199–202.CrossRefGoogle Scholar
Rutherford, P. H. (1973). Nonlinear growth of the tearing mode. Phys. Fluids 16, 1903–1908.CrossRefGoogle Scholar
Rutten, R. J. (2006). On the nature of the solar chromosphere. Astron.Soc.Pac.Conf. Ser. 354, 276–283.Google Scholar
Sakai, J. I. (1983). Forced reconnexion by fast magnetosonic waves in a current sheet with stagnation-point flows. J. Plasma Phys. 30, 109–124.CrossRefGoogle Scholar
Sakai, J. I. and Smith, P. D. (2009). Two-fluid simulations of coalescing penumbra filaments driven by neutral-hydrogen flows. Astrophys. J. Letts. 691, L45–L48.CrossRefGoogle Scholar
Sakao, T., Kano, R., Narukage, N., Kotoku, J., Bando, T., DeLuca, E. E., Lundquist, L. L., Tsuneta, S., Harra, L. K., Katsukawa, Y., Kubo, M., Hara, H., Matsuzaki, K., Shimojo, M., Bookbinder, J. A., Golub, L., Korreck, K. E., Su, Y., Shibasaki, K., Shimizu, T., and Nakatani, I. (2007). Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science 318, 1585–1588.CrossRefGoogle ScholarPubMed
Sakurai, T. (1979). A new approach to the force-free field and its application to the magnetic field of solar active regions. Publ, Astron. Soc. Japan 31, 209–230.Google Scholar
Sakurai, T. (1981). Calculation of force-free magnetic field with non-constant alpha. Solar Phys. 69, 343–359.CrossRefGoogle Scholar
Sakurai, T. (1982). Green's function method for potential magnetic fields. Solar Phys. 76, 301–322.CrossRefGoogle Scholar
Sakurai, T. (1989). Computational modeling of magnetic fields in solar active regions. Space Sci. Rev. 51, 11–48.CrossRefGoogle Scholar
Sakurai, T., Goossens, M., and Hollweg, J. V. (1991). Resonant behaviour of MHD waves on magnetic flux tubes. I – Connection formulae at the resonant surfaces. Solar Phys. 133, 227–245.CrossRefGoogle Scholar
Sakurai, T. and Levine, R. H. (1981). Generation of coronal electric currents due to convective motions on the photosphere. Astrophys. J. 248, 817–829.CrossRefGoogle Scholar
Sanchez Almeida, J., Marquez, I., Bonet, J. A., Domönguez Cerdena, I., and Muller, R. (2004). Bright points in the internetwork quiet Sun. Astrophys. J. Letts. 609, L91–L94.CrossRefGoogle Scholar
Sato, T. (1979). Strong plasma acceleration by slow shocks resulting from magnetic reconnection. J. Geophys. Res. 84, 7177–7190.CrossRefGoogle Scholar
Savage, S. L. and McKenzie, D. E. (2011). Quantitative examination of a large sample of supra-arcade downflows in eruptive solar flares. Astrophys. J. 730, 98.CrossRefGoogle Scholar
Savage, S. L., McKenzie, D. E., and Reeves, K. K. (2012). Re-interpretation of supra-arcade downflows in solar flares. Astrophys. J. Letts. 747, L40.CrossRef
Savage, S. L., McKenzie, D. E., Reeves, K. K., Forbes, T. G., and Longcope, D. W. (2010). Reconnection outflows and current sheet observed with Hinode/XRT in the 2008 April 9 “Cartwheel CME” flare. Astrophys. J. 722, 329–342.CrossRefGoogle Scholar
Savcheva, A., Cirtain, J., Deluca, E. E., Lundquist, L. L., Golub, L., Weber, M., Shimojo, M., Shibasaki, K., Sakao, T., Narukage, N., Tsuneta, S., and Kano, R. (2007). A study of polar jet parameters based on Hinode XRT observations. Publ. Astron. Soc. Japan 59, 771.CrossRefGoogle Scholar
Scharmer, G. B., Gudiksen, B. V., Kiselman, D., Loüfdahl, M. G., and Rouppe van der Voort, L. H. M. (2002). Dark cores in sunspot penumbral filaments. Nature 420, 151–153.CrossRefGoogle ScholarPubMed
Schatten, K. H., Wilcox, J. M., and Ness, N. F. (1969). A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442–455.CrossRefGoogle Scholar
Schatzman, E. (1965). Model of force-free fields. IAU Symp. 22, 337.Google Scholar
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Quataert, E., and Tatsuno, T. (2009). Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 182, 310–377.CrossRefGoogle Scholar
Schindler, K., Hesse, M., and Birn, J. (1988). General Magnetic Reconnection, parallel electric fields, and helicity. J. Geophys. Res. 93, 5547–5557.CrossRefGoogle Scholar
Schindler, K., Hesse, M., and Birn, J. (1991). Magnetic field-aligned electric potentials in nonideal plasma flows. Astrophys. J. 380, 293–301.CrossRefGoogle Scholar
Schlichenmaier, R., Rezaei, R., Bello Gonzaölez, N., and Waldmann, T. A. (2010). The formation of a sunspot penumbra. Astron. Astrophys. 512, L1.CrossRefGoogle Scholar
Schluüter, A. and Temesvaöry, S. (1958). The internal constitution of sunspots. IAU Symp. 6, 263–274.Google Scholar
Schmelz, J. T., Jenkins, B. S., Worley, B. T., Anderson, D. J., Pathak, S., and Kimble, J. A. (2011). Isothermal and multithermal analysis of coronal loops observed with AIA. Astrophys. J. 731, 49.CrossRefGoogle Scholar
Schmelz, J. T., Rightmire, L. A., Saar, S. H., Kimble, J. A., Worley, B. T., and Pathak, S. (2011). Warm and fuzzy: temperature and density analysis of an Fe XV EUV Imaging Spectrometer loop. Astrophys. J. 738, 146.CrossRefGoogle Scholar
Schmelz, J. T., Saar, S. H., DeLuca, E. E., Golub, L., Kashyap, V. L., Weber, M. A., and Klimchuk, J. A. (2009). Hinode X-Ray Telescope detection of hot emission from quiescent active regions: a nanoflare signature?Astrophys. J. Letts. 693, L131–L135.CrossRefGoogle Scholar
Schmidt, H. U. (1964). On the observable effects of magnetic energy storage and release connected with solar flares. In NASA Symp. on Phys. of Solar Flares, W., Hess, ed. (NASA SP-50, Washington, DC), 107–114.Google Scholar
Schmidt, H. U. (1991). Sunspots. Geophys. Astrophys. Fluid Dyn. 62, 249–270.CrossRefGoogle Scholar
Schmieder, B., Aulanier, G., Döemoulin, P., van Driel-Gesztelyi, L., Roudier, T., Nitta, N., and Cauzzi, G. (1997). Magnetic reconnection driven by emergence of sheared magnetic field. Astron. Astrophys. 325, 1213–1225.Google Scholar
Schmieder, B., Aulanier, G., Mein, P., and Lopez Ariste, A. (2006). Evolving photospheric flux concentrations and filament dynamic changes. Solar Phys. 238, 245–259.CrossRefGoogle Scholar
Schmieder, B., Chandra, R., Berlicki, A., and Mein, P. (2010). Velocity vectors of a quiescent prominence observed by Hinode/SOT and the MSDP (Meudon). Astron. Astrophys. 514, A68.CrossRefGoogle Scholar
Schmieder, B., Demoulin, P., Aulanier, G., and Golub, L. (1996). Differential magnetic field shear in an active region. Astrophys. J. 467, 881.CrossRefGoogle Scholar
Schmieder, B., Fontenla, J., and Tandberg-Hanssen, E. (1991). A microflare-related activation of a filament observed in Ha and C IV lines. Astron. Astrophys. 252, 343–352.Google Scholar
Schmieder, B., Heinzel, P., van Driel-Gesztelyi, L., and Lemen, J. R. (1996). Post-flare loops of 26 June 1992, II. Solar Phys. 165, 303–328.CrossRefGoogle Scholar
Schmieder, B., Heinzel, P., Wiik, J. E., Lemen, J., Anwar, B., Kotrc, P., and Hiei, E. (1995). Relation between cool and hot post-flare loops of 26 June 1992 derived from optical and X-ray (SXT-Yohkoh) observations. Solar Phys. 156, 337–361.CrossRefGoogle Scholar
Schmieder, B., Malherbe, J. M., Mein, P., and Tanberg-Haassen, E. (1984). Dynamics of solar filaments. III. Analysis of steady flows in H-alpha and CIV lines. Astron. Astrophys. 136, 81–88.Google Scholar
Schmieder, B., Mein, N., Deng, Y., Dumitrache, C., Malherbe, J., Staiger, J., and Deluca, E. E. (2004). Magnetic changes observed in the formation of two filaments in a complex active region: TRACE and MSDP observations. Solar Phys. 223, 119–141.CrossRefGoogle Scholar
Schmieder, B., Shibata, K., van Driel-Gesztelyi, L., and Freeland, S. (1995). H-alpha surges and associated soft X-ray loops. Solar Phys. 156, 245–264.CrossRefGoogle Scholar
Schmit, D. J. and Gibson, S. E. (2011). Forward modeling cavity density: a multi-instrument diagnostic. Astrophys. J. 733, 1.CrossRefGoogle Scholar
Schmitt, J. H. M. M. and Rosner, R. (1983). Doubly diffusive magnetic buoyancy instability in the solar interior. Astrophys. J. 265, 901–924.CrossRefGoogle Scholar
Scholer, M. (1989). Undriven magnetic reconnection in an isolated current sheet. J. Geophys. Res. 94, 8805–8812.CrossRefGoogle Scholar
Schou, J. (1999). Migration of zonal flows detected using Michelson Doppler Imager f-mode frequency splittings. Astrophys. J. 523, L181–L184.CrossRefGoogle Scholar
Schou, J., Antia, H. M., Basu, S., Bogart, R. S., Bush, R. I., Chitre, S. M., Christensen-Dalsgaard, J., di Mauro, M. P., Dziembowski, W. A., Eff-Darwich, A., Gough, D. O., Haber, D. A., Hoeksema, J. T., Howe, R., Korzennik, S. G., Kosovichev, A. G., Larsen, R. M., Pijpers, F. P., Scherrer, P. H., Sekii, T., Tarbell, T. D., Title, A. M., Thompson, M. J., and Toomre, J. (1998). Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505, 390–417.CrossRefGoogle Scholar
Schrijver, C. J. (2001). Catastrophic cooling and high-speed downflow in quiescent solar coronal loops observed with TRACE. Solar Phys. 198, 325–345.CrossRefGoogle Scholar
Schrijver, C. J. (2009). Driving major solar flares and eruptions: a review. Advances in Space Research 43, 739–755.CrossRefGoogle Scholar
Schrijver, C. J., Aschwanden, M. J., and Title, A. M. (2002). Transverse oscillations in coronal loops observed with TRACE. I. An overview of events, movies and a discussion of common properties and required conditions. Solar Phys. 206, 69–98.CrossRefGoogle Scholar
Schrijver, C. J., Aulanier, G., Title, A. M., Pariat, E., and Delannee, C. (2011). The 2011 February 15 X2 flare, ribbons, coronal front, and mass ejection: interpreting the three-dimensional views from the Solar Dynamics Observatory and STEREO guided by magnetohydrodynamic flux-rope modeling. Astrophys. J. 738, 167.CrossRefGoogle Scholar
Schrijver, C. J., De Rosa, M. L., Metcalf, T., Barnes, G., Lites, B., Tarbell, T., McTiernan, J., Valori, G., Wiegelmann, T., Wheatland, M. S., Amari, T., Aulanier, G., Döemoulin, P., Fuhrmann, M., Kusano, K., Röegnier, S., and Thalmann, J. K. (2008). Nonlinear force-free field modeling of a solar active region around the time of a major flare and coronal mass ejection. Astrophys. J. 675, 1637–1644.CrossRefGoogle Scholar
Schrijver, C. J., De Rosa, M. L., Title, A. M., and Metcalf, T. R. (2005). The nonpotentiality of active-region coronae and the dynamics of the photospheric magnetic field. Astrophys. J. 628, 501–513.CrossRefGoogle Scholar
Schrijver, C. J., Derosa, M. L., Metcalf, T. R., Liu, Y., McTiernan, J., Röegnier, S., Valori, G., Wheatland, M. S., and Wiegelmann, T. (2006). Nonlinear force-free modeling of coronal magnetic fields part I: a quantitative comparison of methods. Solar Phys. 235, 161–190.CrossRefGoogle Scholar
Schrijver, C. J., Sandman, A. W., Aschwanden, M. J., and De Rosa, M. L. (2004). The coronal heating mechanism as identified by full-Sun visualizations. Astrophys. J. 615, 512–525.CrossRefGoogle Scholar
Schrijver, C. J. and Title, A. M. (2003). The magnetic connection between the solar photosphere and the corona. Astrophys. J. Letts. 597, L165–L168.CrossRefGoogle Scholar
Schrijver, C. J., Title, A. M., Harvey, K. L., Sheeley, N. R., Wang, Y.-M., van den Oord, G. H. J., Shine, R. A., Tarbell, T. D., and Hurlburt, N. E. (1998). Large-scale coronal heating by the small-scale magnetic field of the Sun. Nature 394, 152–154.CrossRefGoogle Scholar
Schrijver, C. J., Title, A. M., van Ballegooijen, A. A., Hagenaar, H. J., and Shine, R. A. (1997). Sustaining the quiet photospheric network: the balance of flux emergence, fragmentation, merging and cancellation. Astrophys. J. 487, 424–436.CrossRefGoogle Scholar
Schrijver, C. J. and Zwaan, C. (2000). Solar and Stellar Magnetic Activity. (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Schunker, H. and Cally, P. S. (2006). Magnetic field inclination and atmospheric oscillations above solar active regions. Mon. Not. Roy. Astron. Soc. 372, 551–564.CrossRefGoogle Scholar
Schüssler, M. (1987). Magnetic fields and the rotation of the solar convection zone. In The Internal Solar Angular Velocity, B. R., Durney and S., Sofia, eds. (Reidel, Dordrecht), 303–320.Google Scholar
Schuüssler, M. (2001). Numerical simulation of solar magneto-convection. Astron.Soc.Pac.Conf.Ser .236, 343–354.Google Scholar
Schuüssler, M. (2005). Flux tubes, surface magnetism, and the solar dynamo: constraints and open problems. Astron. Nach. 326, 194–204.CrossRefGoogle Scholar
Schüssler, M., Caligari, P., Ferriz-Mas, A., and Moreno-Insertis, F. (1994). Instability and eruption of magnetic flux tubes in the solar convection zone. Astron. Astrophys. 281, L69–L72.Google Scholar
Schuüssler, M. and Rempel, M. (2005). The dynamical disconnection of sunspots from their magnetic roots. Astron. Astrophys. 441, 337–346.CrossRefGoogle Scholar
Schuüssler, M. and Voügler, A. (2006). Magnetoconvection in a sunspot umbra. Astrophys. J. Letts. 641, L73–L76.CrossRefGoogle Scholar
Schwadron, N. A. and McComas, D. J. (2003). Solar wind scaling law. Astrophys. J. 599, 1395–1403.CrossRefGoogle Scholar
Schwadron, N. A. and McComas, D. J. (2008). The solar wind power from magnetic flux. Astrophys. J. Letts. 686, L33–L36.CrossRefGoogle Scholar
Schwartz, P., Heinzel, P., Schmieder, B., and Anzer, U. (2006). Study of an extended EUV filament using SoHO/SUMER observations of the hydrogen Lyman lines. Astron. Astrophys. 459, 651–661.CrossRefGoogle Scholar
Schwarzschild, M. (1948). On noise arising from the solar granulation. Astrophys. J. 107, 1–5.CrossRefGoogle Scholar
Schwenn, R. (2006). Solar wind sources and their variations over the solar cycle. Space Sci. Rev. 124, 51–76.Google Scholar
Schwenn, R. and Marsch, E. (1990). Physics of the Inner Heliosphere I. Large-Scale Phenomena. (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Schwenn, R. and Marsch, E. (1991). Physics of the Inner Heliosphere II. Particles, Waves and Turbulence. (Springer-Verlag, Berlin).Google Scholar
Scudder, J. D. and Olbert, S. (1983). The collapse of the local, Spitzer-Haerm formulation and a global-local generalization for heat flow in an inhomogeneous, fully ionized plasma. In NASA Conference Publication. NASA Conference Publication, vol. 2280. (Washington, DC), 163–182.Google Scholar
Secchi, A. (1877a). Le Soleil, Vol 1. (Gauthier-Villars, Paris).Google Scholar
Secchi, A. (1877b). Le Soleil, Vol 2. (Gauthier-Villars, Paris).Google Scholar
Sedlacek, Z. (1971). Electrostatic oscillations in cold inhomogeneous plasma. I. Differential equation approach. J. Plasma Phys. 5, 239–263.CrossRefGoogle Scholar
Sekse, D. H., Rouppe van der Voort, L., and De Pontieu, B. (2012). Statistical properties of the disk counterparts of type II spicules from simultaneous observations of rapid blueshifted excursions in Ca II 8542 and Ha. Astrophys. J. 752, 108.CrossRefGoogle Scholar
Semenov, V. S., Kubyshkin, I. V., and Heyn, M. F. (1983). Asymptotic solution for field-line reconnection. Compressible case of Petschek's model. J. Plasma Phys. 30, 303–320.CrossRefGoogle Scholar
Serio, S., Peres, G., Vaiana, G. S., Golub, L., and Rosner, R. (1981). Closed coronal structures. II – Generalized hydrostatic model. Astrophys. J. 243, 288–300.CrossRefGoogle Scholar
Shafranov, V. D. (1966). Plasma equilibrium in a magnetic field. Rev. Plasma Phys. 2, 103–151.Google Scholar
Shay, M. A. and Drake, J. F. (1998). The role of electron dissipation on the rate of collisionless magnetic reconnection. Geophys. Res. Lett. 25, 3759–3762.CrossRefGoogle Scholar
Shay, M. A., Drake, J. F., and Swisdak, M. (2007). Two-scale structure of the electron dissipation region during collisionless magnetic reconnection. Phys. Rev. Lett. 99, 15 (Oct.), 155002.CrossRefGoogle ScholarPubMed
Sheeley, N. R. (1969). The evolution of the photospheric network. Solar Phys. 9, 347–357.CrossRefGoogle Scholar
Sheeley, N. R. (2005). Surface evolution of the Sun's magnetic field: a historical review of the flux-transport mechanism. Liv. Rev. in Solar Phys. 2, 5.Google Scholar
Sheeley, N. R., DeVore, C. R., and Boris, J. P. (1985). Simulations of the mean solar magnetic field during sunspot cycle-21. Solar Phys. 98, 219–239.CrossRefGoogle Scholar
Sheeley, N. R., Nash, A. G., and Wang, Y. (1987). The origin of rigidly rotating magnetic field patterns on the Sun. Astrophys. J. 319, 481–502.CrossRefGoogle Scholar
Sheeley, N. R., Wang, Y.-M., Hawley, S. H., Brueckner, G. E., Dere, K. P., Howard, R. A., Koomen, M. J., Korendyke, C. M., Michels, D.J., Paswaters, S.E., Socker, D.G., St.Cyr, O.C., Wang, D., Lamy, P.L., Llebaria, A., Schwenn, R., Simnett, G. M., Plunkett, S., and Biesecker, D. A. (1997). Measurements of flow speeds in the corona between 2 and 30 R & copy;. Astrophys. J. 484, 472–478.CrossRefGoogle Scholar
Shen, C., Lin, J., and Murphy, N. A. (2011). Numerical experiments on fine structure within reconnecting current sheets in solar flares. Astrophys. J. 737, 14.CrossRefGoogle Scholar
Shibata, K., Ishido, Y., Acton, L. W., Strong, K., Hirayama, T., Uchida, Y., McAllister, A., Matsumoto, R., Tsuneta, S., Shimizu, T., Hara, H., Sakurai, T., Ichimoto, K., Nishino, Y., and Ogawara, Y. (1992). Observations of X-ray jets with the Yohkoh Soft X-ray Telescope. Publ. Astron. Soc. Japan 44, L173–L179.Google Scholar
Shibata, K. and Magara, T. (2011). Solar flares: magnetohydrodynamic processes. Liv. Rev. in Solar Phys. 8, 6.Google Scholar
Shibata, K., Masuda, S., Shimojo, M., Hara, H., Yokoyama, T., Tsuneta, S., Kosugi, T., and Ogawara, Y. (1995). Hot-plasma ejections associated with compact-loop solar flares. Astrophys. J. Letts. 451, L83–L85.CrossRefGoogle Scholar
Shibata, K., Nakamura, T., Matsumoto, T., Otsuji, K., Okamoto, T. J., Nishizuka, N., Kawate, T., Watanabe, H., Nagata, S., UeNo, S., Kitai, R., Nozawa, S., Tsuneta, S., Suematsu, Y., Ichimoto, K., Shimizu, T., Katsukawa, Y., Tarbell, T. D., Berger, T. E., Lites, B. W., Shine, R. A., and Title, A. M. (2007). Chromospheric anemone jets as evidence of ubiquitous reconnection. Science 318, 1591–1594.CrossRefGoogle ScholarPubMed
Shibata, K., Nishikawa, T., Kitai, R., and Suematsu, Y. (1982). Numerical hydrodynamics of the jet phenomena in the solar atmosphere. II. Surges. Solar Phys. 77, 121–151.CrossRefGoogle Scholar
Shibata, K., Tajima, T., Steinolfson, R. S., and Matsumoto, R. (1989). Two-dimensional magnetohydrodynamic model of emerging magnetic flux in the solar atmosphere. Astrophys. J. 345, 584–596.CrossRefGoogle Scholar
Shimizu, T. (1995). Energetics and occurrence rate of active-region transient brightenings and implications for the heating of the active-region corona. Publ. Astron. Soc. Japan 47, 251–263.Google Scholar
Shimizu, T., Lites, B. W., Katsukawa, Y., Ichimoto, K., Suematsu, Y., Tsuneta, S., Nagata, S., Kubo, M., Shine, R. A., and Tarbell, T. D. (2008). Frequent occurrence of high-speed local mass downflows on the solar surface. Astrophys. J. 680, 1467–1476.CrossRefGoogle Scholar
Shimizu, T., Tsuneta, S., Acton, L. W., Lemen, J., and Uchida, Y. (1992). Transient brightenings in active regions observed by the Soft X-Ray Telescope on Yokhoh. Publ. Astron. Soc. Japan 44, L147–L153.Google Scholar
Shimojo, M., Hashimoto, S., Shibata, K., Hirayama, T., Hudson, H. S., and Acton, L. W. (1996). Statistical study of solar X-ray jets observed with the Yohkoh Soft X-ray Telescope. Publ. Astron. Soc. Japan 48, 123–136.CrossRefGoogle Scholar
Shimojo, M., Narukage, N., Kano, R., Sakao, T., Tsuneta, S., Shibasaki, K., Cirtain, J. W., Lundquist, L. L., Reeves, K. K., and Savcheva, A. (2007). Fine structures of solar X-ray jets observed with the X-Ray Telescope aboard Hinode. Publ. Astron. Soc. Japan 59, 745–750.CrossRefGoogle Scholar
Shimojo, M. and Shibata, K. (2000). Physical parameters of solar X-ray jets. Astrophys. J. 542, 1100–1108.CrossRefGoogle Scholar
Shine, R. A., Simon, G. W., and Hurlburt, N. E. (2000). Supergranule and mesogranule evolution. Solar Phys. 193, 313–331.CrossRefGoogle Scholar
Shiota, D., Isobe, H., Chen, P. F., Yamamoto, T. T., Sakajiri, T., and Shibata, K. (2005). Self-consistent magnetohydrodynamic modeling of a coronal mass ejection, coronal dimming, and a giant cusp-shaped arcade formation. Astrophys. J. 634, 663–678.CrossRefGoogle Scholar
Shoub, E. C. (1983). Invalidity of local thermodynamic equilibrium for electrons in the solar transition region. I – Fokker-Planck results. Astrophys. J. 266, 339–369.CrossRefGoogle Scholar
Simon, G. W. and Leighton, R. (1964). Velocity fields in the solar atmosphere. III. Large-scale motions, the chromospheric network, and magnetic fields. Astrophys. J. 140, 1120–1147.CrossRefGoogle Scholar
Simon, G. W., Title, A. M., and Weiss, N. O. (2001). Sustaining the Sun's magnetic network with emerging bipoles. Astrophys. J. 561, 427–434.CrossRefGoogle Scholar
Simon, G. W. and Weiss, N. O. (1970). On the magnetic field in pores. Solar Phys. 13, 85–103.CrossRefGoogle Scholar
Simon, G. W., Weiss, N. O., and Nye, A. H. (1983). Simple models for magnetic flux tubes. Solar Phys. 87, 65–75.CrossRefGoogle Scholar
Smith, P. D., Tsiklauri, D., and Ruderman, M. S. (2007). Enhanced phase mixing of Alfven waves propagating in stratified and divergent coronal structures. Astron. Astrophys. 475, 1111–1123.CrossRefGoogle Scholar
Socas-Navarro, H., Martinez Pillet, V., Sobotka, M., and Vözquez, M. (2004). The thermal and magnetic structure of umbral dots from the inversion of high-resolution full Stokes observations. Astrophys. J. 614, 448–456.CrossRefGoogle Scholar
Solanki, S. K. (2003). Sunspots: an overview. Astron. Astrophys. Rev. 11, 153–286.CrossRefGoogle Scholar
Solanki, S. K., Barthol, P., Danilovic, S., Feller, A., Gandorfer, A., Hirzberger, J., Lagg, A., Riethmuüller, T. L., Schuüssler, M., Wiegelmann, T., Bonet, J. A., Pillet, V. M., Khomenko, E., del Toro Iniesta, J. C., Domingo, V., Palacios, J., Knüolker, M., Gonzöalez, N. B., Borrero, J. M., Berkefeld, T., Franz, M., Roth, M., Schmidt, W., Steiner, O., and Title, A. M. (2011). The Sun at high resolution: first results from the Sunrise mission. IAU Symp. 273, 226–232.Google Scholar
Solanki, S. K., Barthol, P., Danilovic, S., Feller, A., Gandorfer, A., Hirzberger, J., Riethmuüller, T. L., Schuüssler, M., Bonet, J. A., Martöinez Pillet, V., del Toro Iniesta, J. C., Domingo, V., Palacios, J., Knüolker, M., Bello Gonzaölez, N., Berkefeld, T., Franz, M., Schmidt, W., and Title, A. M. (2010). SUNRISE: instrument, mission, data, and first results. Astrophys. J. Letts. 723, L127–L133.CrossRefGoogle Scholar
Solanki, S. K. and Fligge, M. (2002). Solar irradiance variations and climate. Journal of Atmospheric and Solar-Terrestrial Physics 64, 677–685.CrossRefGoogle Scholar
Solanki, S. K., Inhester, B., and Schüssler, M. (2006). The solar magnetic field. Rep. Prog. in Phys. 69, 563–668.CrossRefGoogle Scholar
Solanki, S. K. and Montavon, C. A. P. (1993). Uncombed fields as the source of the broad-band circular polarization of sunspots. Astron. Astrophys. 275, 283–292.Google Scholar
Soler, R., Oliver, R., and Ballester, J. L. (2010). Time damping of non-adiabatic magnetohydrodynamic waves in a partially ionized prominence plasma: effect of Helium. Astron. Astrophys. 512, A28.CrossRefGoogle Scholar
Solov'ev, L. S. (1967). Symmetric magnetohydrodynamic flow and helical waves in a circular plasma cylinder. In Reviews of Plasma Physics, M. A., Leontovich, ed. (Consultants Bureau, New York), 277–325.Google Scholar
Solov'ev, L. S. (1968). The theory of hydromagnetic stability of toroidal plasma configurations. Sov. Phys. JETP 26, 400–407.Google Scholar
Somov, B. and Syrovatsky, S. I. (1976). Hydrodynamic plasma flow in a strong magnetic field. In Lebedev Phys. Inst. 7th Moscow, 13–72.Google Scholar
Somov, B. and Vernata, A. I. (1994). Tearing instability of reconnecting current sheets in space plasmas. Space Sci. Rev. 65, 253–288.Google Scholar
Sonnerup, B. and Priest, E. R. (1975). Resistive MHD stagnation-point flows at a current sheet. J. Plasma Phys. 14, 283–294.CrossRefGoogle Scholar
Soward, A. M. (1972). A kinematic theory of large magnetic Reynolds number dynamos. Phil.Trans.Roy.Soc.A 272, 431–462.CrossRefGoogle Scholar
Soward, A. M. and Priest, E. R. (1977). Fast magnetic field-line reconnection. Phil. Trans. Roy. Soc. A284, 369–417.Google Scholar
Spanier, J. and Oldham, B. (1987). An Atlas of Functions. (Hemisphere Publishing Corp., New York).Google Scholar
Spiegel, E. A. and Weiss, N. O. (1980). Magnetic activity and variations in solar luminosity. Nature 287, 616–617.CrossRefGoogle Scholar
Spiegel, E. A. and Zahn, J.-P. (1992). The solar tachocline. Astron. Astrophys. 265, 106–114.Google Scholar
Spies, G. O. (1974). Nonlinear magnetohydrodynamic stability and plasma containment with closed field lines. Phys. Fluids 17, 1188–1197.Google Scholar
Spitzer, L. (1962). Physics of Fully Ionized Gases. (Interscience, New York).Google Scholar
Spruit, H. C. (1974). A model of the solar convection zone. Solar Phys. 34, 277–290.CrossRefGoogle Scholar
Spruit, H. C. (1981). Motion of magnetic flux tubes in the solar convection zone and chromosphere. Astron. Astrophys. 98, 155–160.Google Scholar
Spruit, H. C. (2002). Dynamo action by differential rotation in a stably stratified interior. Astron. Astrophys. 381, 923–932.CrossRefGoogle Scholar
Spruit, H. C. and Bogdan, T. J. (1992). The conversion of p-modes to slow modes and the absorption of acoustic waves by sunspots. Astrophys. J. Letts. 391, L109–L112.CrossRefGoogle Scholar
Spruit, H. C. and Scharmer, G. B. (2006). Fine structure, magnetic field and heating of sunspot penumbrae. Astron. Astrophys. 447, 343–354.CrossRefGoogle Scholar
Spruit, H. C. and van Ballegooijen, A. A. (1982). Stability of toroidal flux tubes in stars. Astron. Astrophys. 106, 58–66.Google Scholar
St. Cyr, O. C., Plunkett, S. P., Michels, D. J., Paswaters, S. E., Koomen, M. J., Simnett, G. M., Thompson, B. J., Gurman, J. B., Schwenn, R., Webb, D. F., Hildner, E., and Lamy, P. L. (2000). Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J. Geophys. Res. 105, 18169–18186.CrossRefGoogle Scholar
Steele, C. D. C. and Priest, E. R. (1992). A model for the fibril structure of normal-polarity solar prominences. Solar Phys. 140, 289–306.CrossRefGoogle Scholar
Steenbeck, M. and Krause, F. (1969). On the dynamo theory of stellar and planetary magnetic fields. I. AC dynamos of solar type. Astron. Nach. 291, 49-84.Google Scholar
Steenbeck, M., Krause, F., and Rädler, K. H. (1966). Berechnung der mittleren Lorentz-Feldstärke vX Bfür ein elektrisch leitendendes Medium in turbulenter, durch Coriolis-Krüfte beeinflußter Bewegung. Z. Naturforsch 21a, 369–376.Google Scholar
Stein, R. F., Benson, D., Georgobiani, D., and Nordlund, A. (2006). Supergranule-scale convection simulations. In Proc. SOHO 18/ GONG 2006/ HELIAS I, M., Thompson, ed. (ESA SP-624, Noordwijk), 79–82.Google Scholar
Stein, R. F., Lagerfjürd, A., Nordlund, A., and Georgobiani, D. (2011). Solar flux emergence simulations. Solar Phys. 268, 271–282.CrossRefGoogle Scholar
Stein, R. F. and Nordlund, A. (1989). Topology of convection beneath the solar surface. Astrophys. J. Letts. 342, L95–L98.CrossRefGoogle Scholar
Stein, R. F. and Nordlund, Å. (2006). Solar small-scale magnetoconvection. Astrophys. J. 642, 1246–1255.CrossRefGoogle Scholar
Steiner, O., Franz, M., Bello Gonzaölez, N., Nutto, C., Rezaei, R., Martöinez Pillet, V., Bonet Navarro, J. A., del Toro Iniesta, J. C., Domingo, V., Solanki, S. K., Knülker, M., Schmidt, W., Barthol, P., and Gandorfer, A. (2010). Detection of vortex tubes in solar granulation from observations with SUNRISE. Astrophys. J. Letts. 723, L180–L184.CrossRefGoogle Scholar
Steiner, O., Grossmann-Doerth, U., Knoülker, M., and Schuüssler, M. (1998). Dynamical interaction of solar magnetic elements and granular convection: results of a numerical simulation. Astrophys. J. 495, 468–484.CrossRefGoogle Scholar
Steinhilber, F., Abreu, J. A., and Beer, J. (2008). Solar modulation during the Holocene. Astrophys and Space Sci. Trans. 4, 1–6.CrossRefGoogle Scholar
Stenflo, J. O. (1973). Magnetic-field structure of the photospheric network. Solar Phys. 32, 41–63.CrossRefGoogle Scholar
Stenflo, J. O. (1982). The Hanle effect and the diagnostics of turbulent magnetic fields in the solar atmosphere. Solar Phys. 80, 209–226.CrossRefGoogle Scholar
Stenflo, J. O. and Kosovichev, A. G. (2012). Bipolar magnetic regions on the Sun: global analysis of the SOHO/MDI data set. Astrophys. J. 745, 129.CrossRefGoogle Scholar
Sterling, A. C. (2000). Solar spicules: a review of recent models and targets for future observations (invited review). Solar Phys. 196, 79–111.CrossRefGoogle Scholar
Sterling, A. C. and Hollweg, J. V. (1989). A rebound shock mechanism for solar fibrils. Astrophys. J. 343, 985–993.CrossRefGoogle Scholar
Stix, M. (1972). Non-linear dynamo waves. Astron. Astrophys. 20, 9–12.Google Scholar
Stix, M. (1991). The solar dynamo. Geophys. Astrophys. Fluid Dyn. 62, 211–228.CrossRefGoogle Scholar
Stix, M. (2002). The Sun, 2nd Edition. (Springer-Verlag, Berlin).Google Scholar
Strachan, N. R. and Priest, E. R. (1994). A general family of non-uniform reconnection models with separatrix jets. Geophys. Astrophys. Fluid Dyn. 74, 245–274.CrossRefGoogle Scholar
Strauss, H. R. (1981). Resistive ballooning modes. Phys. Fluids 24, 2004–2009.CrossRefGoogle Scholar
Stucki, K., Solanki, S. K., Schühle, U., Rüedi, I., Wilhelm, K., Stenflo, J. O., Brkovic, A., and Huber, M. C. E. (2000). Comparison of far-ultraviolet emission lines formed in coronal holes and the quiet Sun. Astron. Astrophys. 363, 1145–1154.Google Scholar
Sturrock, P. A. (1968). A model of solar flares. IAU Symp. 35, 471–479.Google Scholar
Sturrock, P. A. (1991). Maximum energy of semi-infinite magnetic field configurations. Astrophys. J. 380, 655–659.CrossRefGoogle Scholar
Sturrock, P. A. and Uchida, Y. (1981). Coronal heating by stochastic magnetic pumping. Astrophys. J. 246, 331–336.CrossRefGoogle Scholar
Sturrock, P. A. and Woodbury, E. T. (1967). Force-free magnetic fields and solar filaments. In Plasma Astrophysics, P., Sturrock, ed. (Academic Press, London), 155–167.Google Scholar
Su, Y., Wang, T., Veronig, A., Temmer, M., and Gan, W. (2012). Solar magnetized ‘tornadoes’: relation to filaments. Astrophys. J. Letts. 756, L41.CrossRefGoogle Scholar
Subramanian, S., Madjarska, M. S., and Doyle, J. G. (2010). Coronal hole boundaries evolution at small scales. II. XRT view. Can small-scale outflows at CHBs be a source of the slow solar wind?Astron. Astrophys. 516, A50.CrossRefGoogle Scholar
Subramanian, S., Madjarska, M. S., Doyle, J. G., and Bewsher, D. (2012). What is the true nature of blinkers?Astron. Astrophys. 538, A50.CrossRefGoogle Scholar
Sudol, J. J. and Harvey, J. W. (2005). Longitudinal magnetic field changes accompanying solar flares. Astrophys. J. 635, 647–658.CrossRefGoogle Scholar
Suematsu, Y. (1990). Influence of photospheric 5-minute oscillations on the formation of chromospheric fine structures. In Progress of Seismology of the Sun and Stars, Y., Osaki and H., Shibahashi, eds. (Springer Verlag, Berlin), 211–214.Google Scholar
Suess, S. T. and Nerney, S. F. (2002). Stagnation flow in streamer boundaries. Astrophys. J. 565, 1275–1288.CrossRefGoogle Scholar
Sui, L., Holman, G. D., and Dennis, B. R. (2004). Evidence for magnetic reconnection in three homologous solar flares observed by RHESSI. Astrophys. J. 612, 546–556.CrossRefGoogle Scholar
Suydam, B. R. (1959). Stability of a linear pinch. Proc. 2nd UN Int. Conf. on Peaceful Uses of Atomic Energy 31, 157–159.Google Scholar
Svestka, Z., Dodson-Prince, H. W., Mohler, O., Martin, S. F., Moore, R. L., Nolte, J., and Petrasso, R. (1982). Study of the post-flare loops on 29 July 1973. IV – Revision of T and ne values and comparison with the flare of 21 May 1980. Solar Phys. 78, 271–285.Google Scholar
Svestka, Z., Farnik, F., Hudson, H. S., and Hick, P. (1998). Large-scale active coronal phenomena in Yohkoh SXT images. IV. Solar wind streams from flaring active regions. Solar Phys. 182, 179–193.CrossRefGoogle Scholar
Svestka, Z. F., Fontenla, J. M., Machado, M. E., Martin, S. F., and Neidig, D. F. (1987). Multi-thermal observations of newly formed loops in a dynamic flare. Solar Phys. 108, 237–250.CrossRefGoogle Scholar
Sweet, P. A. (1958a). The neutral point theory of solar flares. In Electromagnetic Phenomena in Cosmical Physics, B., Lehnert, ed. (Cambridge University Press, Cambridge, UK), 123–134.Google Scholar
Sweet, P. A. (1958b). The production of high-energy particles in solar flares. Nuovo Cimento Suppl. 8, 188–196.CrossRefGoogle Scholar
Syrovatsky, S. I. (1966). Dynamic dissipation of a magnetic field and particle acceleration. Soviet Astronomy 10, 270–280.Google Scholar
Tandberg-Hanssen, E. (1995). The Nature of Solar Prominences. (Kluwer Academic Publishers, Dordrecht, Holland).CrossRefGoogle Scholar
Tandberg-Hanssen, E. and Emslie, A. (1988). The Physics of Solar Flares. (Cambridge University Press, Cambridge, UK).Google Scholar
Tarr, L. and Longcope, D. (2012). Calculating energy storage due to topological changes in emerging active region NOAA AR 11112. Astrophys. J. 749, 64.CrossRefGoogle Scholar
Tataronis, J. and Grossmann, W. (1973). Decay of MHD waves by phase mixing. Zeit. fur Phys. 261, 203–216.Google Scholar
Taylor, J. B. (1974). Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 1139–1141.CrossRefGoogle Scholar
Taylor, J. B. (1976). Relaxation of toroidal discharges. In Pulsed High Beta Plasmas, D., Evans, ed. (Pergamon Press, Oxford), 59–67.Google Scholar
Taylor, J. B. and Hastie, R. J. (1968). Stability of general plasma equilibria – I. Formal theory. Plasma Phys. 10, 479–494.CrossRefGoogle Scholar
Terradas, J., Andries, J., and Verwichte, E. (2011). Linear coupling between fast and slow MHD waves due to line-tying effects. Astron. Astrophys. 527, A132.CrossRefGoogle Scholar
Thiessen, G. (1950). The structure of the sunspot umbra. The Observatory 70, 234–235.Google Scholar
Thomas, J. H. and Montesinos, B. (1993). A siphon-flow model of the photospheric Evershed flow in a sunspot. Astrophys. J. 407, 398–401.CrossRefGoogle Scholar
Thomas, J. H. and Weiss, N. O. (2008). Sunspots and Starspots. (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Thomas, J. H., Weiss, N. O., Tobias, S. M., and Brummel, N. H. (2002). Downward pumping of magnetic flux as the cause of filamentary structures in sunspot penumbrae. Nature 420, 390–393.CrossRefGoogle ScholarPubMed
Thompson, B. J., Cliver, E. W., Nitta, N., Delannee, C., and Delaboudiniere, J.-P. (2000). Coronal dimmings and energetic CMEs in April-May 1998. Geophys. Res. Lett. 27, 1431–1434.Google Scholar
Thompson, B. J., Plunkett, S. P., Gurman, J. B., Newmark, J. S., St. Cyr, O. C., and Michels, D. J. (1998). SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2465–2468.CrossRefGoogle Scholar
Thompson, M. J., Christensen-Dalsgaard, J., Miesch, M. S., and Toomre, J. (2003). The internal rotation of the Sun. Ann. Rev. Astron. Astrophys. 41, 599–643.CrossRefGoogle Scholar
Thornton, L. M. and Parnell, C. E. (2010). Small-scale flux emergence observed using Hinode/SOT. Solar Phys. 269, 13–40.Google Scholar
Threlfall, J., McClements, K. G., and De Moortel, I. (2011). Alfvöen wave phase-mixing and damping in the ion cyclotron range of frequencies. Astron. Astrophys. 525, A155.CrossRefGoogle Scholar
Ting, A. C., Montgomery, D., and Matthaeus, W. H. (1986). Turbulent relaxation processes in magnetohydrodynamics. Phys. Fluids 29, 3261–3274.CrossRefGoogle Scholar
Title, A. M., Frank, Z. A., Shine, R. A., Tarbell, T. D., Topka, K. P., Scharmer, G., and Schmidt, W. (1993). On the magnetic and velocity field geometry of simple sunspots. Astrophys. J. 403, 780–796.CrossRefGoogle Scholar
Title, A. M. and Schrijver, C. J. (1998). The Sun's magnetic carpet. Astron. Soc. Pac. Conf. Ser .154, 345–360.Google Scholar
Title, A. M., Tarbell, T. D., Topka, K. P., Ferguson, S. H., Shine, R. A., and SOUP Team. (1989). Statistical properties of solar granulation derived from the SOUP instrument on Spacelab 2. Astrophys. J. 336, 475–494.CrossRefGoogle Scholar
Titov, V. S. (1992). On the method of calculating two-dimensional potential magnetic fields with current sheets. Solar Phys. 139, 401–404.CrossRefGoogle Scholar
Titov, V. S. (2007). Generalized squashing factors for covariant description of magnetic connectivity in the solar corona. Astrophys. J. 660, 863–873.CrossRefGoogle Scholar
Titov, V. S. and Demoulin, P. (1999). Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707–720.Google Scholar
Titov, V. S.,Forbes, T. G.,Priest, E. R.,Mikic, Z., and Linker, J. A. (2009). Slip-squashing factors as a measure of three-dimensional magnetic reconnection. Astrophys. J. 693, 1029-1044.CrossRefGoogle Scholar
Titov, V. S., Galsgaard, K., and Neukirch, T. (2003). Magnetic pinching of hyperbolic flux tubes. I. Basic estimations. Astrophys. J. 582, 1172-1189.CrossRefGoogle Scholar
Titov, V. S., Hornig, G., and Demoulin, P. (2002). Theory of magnetic connectivity in the solar corona. J. Geophys. Res. 107, SSH 3-1.CrossRefGoogle Scholar
Titov, V. S., Mikic, Z., Linker, J. A., Lionello, R., and Antiochos, S. K. (2011). Magnetic topology of coronal hole linkages. Astrophys. J. 731, 111.CrossRefGoogle Scholar
Titov, V. S., Mikic, Z., Törok, T., Linker, J. A., and Panasenco, O. (2012). 2010 August 1-2 sympathetic eruptions. I. Magnetic topology of the source-surface background field. Astrophys. J. 759, 70.CrossRefGoogle Scholar
Titov, V. S. and Priest, E. R. (1993). The collapse of an X-type neutral point to form a reconnecting time-dependent current sheet. Geophys. Astrophys. Fluid Dyn. 72, 249-276.CrossRefGoogle Scholar
Titov, V. S., Priest, E. R., and Demoulin, P. (1993). Conditions for the appearance of bald patches at the solar surface. Astron. Astrophys. 276, 564-570.Google Scholar
Tiwari, S. K., van Noort, M., Lagg, A., and Solanki, S. K. (2013). The structure of sunspot penumbral filaments, a remarkable uniformity of properties. Astron. Astrophys., 557, A25.CrossRefGoogle Scholar
Tobias, S. M. (2002). Modulation of solar and stellar dynamos. Astron. Nach. 323, 417–423.3.0.CO;2-U>CrossRefGoogle Scholar
Tobias, S. M., Brummell, N. H., Clune, T. L., and Toomre, J. (1998). Pumping of magnetic fields by turbulent penetrative convection. Astrophys. J. 502, L177–L180.CrossRefGoogle Scholar
Tobias, S. M., Brummell, N. H., Clune, T. L., and Toomre, J. (2001). Transport and storage of magnetic fields by overshooting turbulent compressible convection. Astrophys. J. 549, 1183-1203.CrossRefGoogle Scholar
Tobias, S. M. and Hughes, D. W. (2004). The influence of velocity shear on magnetic buoyancy instability in the solar tachocline. Astrophys. J. 603, 785–802.CrossRefGoogle Scholar
Tobias, S. M. and Weiss, N. O. (2007). The solar dynamo and the tachocline. In The Solar Tachocline, D. W., Hughes, R., Rosner, and N. O., Weiss, eds. (Cambridge University Press, Cambridge, UK), 319–350.Google Scholar
Tobias, S. M., Weiss, N. O., and Kirk, K. (1995). Chaotically modulated stellar dynamos. Mon. Not. Roy. Astron. Soc. 273, 1150–1166.CrossRefGoogle Scholar
Tomczyk, S. and McIntosh, S. W. (2009). Time-distance seismology of the solar corona with CoMP. Astrophys. J. 697, 1384–1391.CrossRefGoogle Scholar
Tomczyk, S., Mcintosh, S. W., Keil, S. L., Judge, P. G., Schad, T., Seeley, D. H., and Edmondson, J. (2007). Alfven waves in the solar corona. Science 317, 1192-1196.CrossRefGoogle ScholarPubMed
Töoröok, T., Kliem, B., and Titov, V. S. (2004). Ideal kink instability of a magnetic loop equilibrium. Astron. Astrophys. 413, L27–L30.CrossRefGoogle Scholar
Tousey, R. (1973). The solar corona. In Space Research, M. J., Rycroft and S. K., Runcorn, eds. (Akademie-Verlag, Berlin), 713–730.Google Scholar
Tripathi, D., Gibson, S. E., Qiu, J., Fletcher, L., Liu, R., Gilbert, H., and Mason, H. E. (2009). Partially-erupting prominences: a comparison between observations and model-predicted observables. Astron. Astrophys. 498, 295–305.CrossRefGoogle Scholar
Tripathi, D., Isobe, H., and Jain, R. (2009). Large-amplitude oscillations in prominences. Space Sci. Rev. 149, 283–298.CrossRefGoogle Scholar
Tripathi, D., Mason, H. E., Dwivedi, B. N., Del Zanna, G., and Young, P. R. (2009). Active-region loops: Hinode/Extreme-Ultraviolet Imaging Spectrometer observations. Astrophys. J. 694, 1256–1265.CrossRefGoogle Scholar
Tripathi, D., Mason, H. E., and Klimchuk, J. A. (2012). Active region moss: Doppler shifts from Hinode/Extreme-Ultraviolet Imaging Spectrometer observations. Astrophys. J. 753, 37.CrossRefGoogle Scholar
Tritschler, A., Schlichenmaier, R., Bellot Rubio, L. R., the KAOS Team, Berkefeld, T., and Schelenz, T. (2004). Two-dimensional spectroscopy of a sunspot. I. Properties of the penumbral fine structure. Astron. Astrophys. 415, 717–729.CrossRefGoogle Scholar
Trujillo Bueno, J., Shchukina, N., and Asensio Ramos, A. (2004). A substantial amount of hidden magnetic energy in the quiet Sun. Nature 430, 326–329.Google Scholar
Trujillo Bueno, J., Stepan, J., and Casini, R. (2011). The Hanle effect of the hydrogen Lya line for probing the magnetism of the solar transition region. Astrophys. J. Letts. 738, L11.CrossRefGoogle Scholar
Tsinganos, K. (2010). MHD theory of astrophysical jets. Mem. della Soc. Astron. Ital. 15, 102–113.Google Scholar
Tsinganos, K. C., Rosner, R., and Distler, J. (1984). On the topological stability of magnetostatic equilibria. Astrophys. J. 278, 409–419.CrossRefGoogle Scholar
Tsuneta, S. (1996). Structure and dynamics of magnetic reconnection in a solar flare. Astrophys. J. 456, 840–849.CrossRefGoogle Scholar
Tsuneta, S., Acton, L., Bruner, M., Lemen, J., Brown, W., Caravalho, R., Catura, R., Freeland, S., Jurcevich, B., and Owens, J. (1991). The Soft X-ray Telescope for the SOLAR-A mission. Solar Phys. 136, 37-67.CrossRefGoogle Scholar
Tsuneta, S., Hara, H., Shimizu, T., Acton, L. W., Strong, K. T., Hudson, H. S., and Ogawara, Y. (1992). Observation of a solar flare at the limb with the Yohkoh Soft X-ray Telescope. Publ. Astron. Soc. Japan 44, L63–L69.Google Scholar
Tsuneta, S., Ichimoto, K., Katsukawa, Y., Lites, B. W., Matsuzaki, K., Nagata, S., Orozco Suarez, D., Shimizu, T., Shimojo, M., Shine, R. A., Suematsu, Y., Suzuki, T. K., Tarbell, T. D., and Title, A. M. (2008). The magnetic landscape of the Sun's polar region. Astrophys. J. 688, 1374–1381.CrossRefGoogle Scholar
Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L. D., and Owens, J. K. (2008). The Solar Optical Telescope for the Hinode Mission: an overview. Solar Phys. 249, 167–196.CrossRefGoogle Scholar
Tsuneta, S., Masuda, S., Kosugi, T., and Sato, J. (1997). Hot and superhot plasmas above an impulsive flare loop. Astrophys. J. 478, 787–798.CrossRefGoogle Scholar
Tu, C.-Y. and Marsch, E. (1995). MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 73, 1–210.CrossRefGoogle Scholar
Tu, C.-Y. and Marsch, E. (1997). Two-fluid model for heating of the solar corona and acceleration of the solar wind by high-frequency Alfven waves. Solar Phys. 171, 363–391.CrossRefGoogle Scholar
Tucker, W. H. (1973). Heating of solar active regions by magnetic energy dissipation: the steady-state case. Astrophys. J. 186, 285–290.CrossRefGoogle Scholar
Tur, T. J. (1977). Aspects of Current Sheet Theory. (PhD thesis, St Andrews University, St Andrews).Google Scholar
Tur, T. J. and Priest, E. R. (1976). The formation of current sheets during the emergence of new magnetic flux from below the photosphere. Solar Phys. 48, 89–100.CrossRefGoogle Scholar
Uberoi, C. (1972). Alfven waves in inhomogeneous magnetic fields. Phys. Fluids 15, 1673–1675.CrossRefGoogle Scholar
Uchida, Y. (1969). A mechanism for the acceleration of solar chromospheric spicules. Publ. Astron. Soc. Japan 21, 128–140.Google Scholar
Uchida, Y. (1970). Diagnosis of coronal magnetic structure by flare-associated hydromagnetic disturbances. Publ. Astron. Soc. Japan 22, 341–164.Google Scholar
Uchida, Y. and Low, B. C. (1981). Equilibrium configurations of the magnetosphere of a star loaded with accreted magnetized mass. J. Astrophys. Astron. 2, 405–419.CrossRefGoogle Scholar
Ugai, M. (2009). Fast reconnection evolution in an arcade-like magnetic loop structure. Phys. Plasmas 16, 6 (June), 062312.CrossRefGoogle Scholar
Ugai, M. and Tsuda, T. (1977). Magnetic field-line reconnection by localised enhancement of resistivity. I. Evolution in a compressible MHD fluid. J. Plasma Phys. 17, 337–356.CrossRefGoogle Scholar
Ulrich, R. K. (1970). The five-minute oscillations on the solar surface. Astrophys. J. 162, 993–1002.CrossRefGoogle Scholar
Vaiana, G. S., Davis, J. M., Giacconi, R., Krieger, A. S., Silk, J. K., Timothy, A. F., and Zombeck, M. (1973). X-ray observations of characteristic structures and time variations from the solar corona: preliminary results from SKYLAB. Astrophys. J. Letts. 185, L47–L51.CrossRefGoogle Scholar
van Ballegooijen, A. A. (1982). The overshoot layer at the base of the solar convective zone and the problem of magnetic flux storage. Astron. Astrophys. 113, 99–112.Google Scholar
van Ballegooijen, A. A. (1985). Electric currents in the solar corona and the existence of magnetostatic equilibrium. Astrophys. J. 298, 421–430.CrossRefGoogle Scholar
van Ballegooijen, A. A. (2004). Observations and modeling of a filament on the Sun. Astrophys. J. 612, 519–529.CrossRefGoogle Scholar
van Ballegooijen, A. A., Asgari-Targhi, M., Cranmer, S. R., and DeLuca, E. E. (2011). Heating of the solar chromosphere and corona by Alfven wave turbulence. Astrophys. J. 736, 3.CrossRefGoogle Scholar
van Ballegooijen, A. A., Cartledge, N. P., and Priest, E. R. (1998). Magnetic flux transport and the formation of filament channels on the Sun. Astrophys. J. 501, 866–881.CrossRefGoogle Scholar
van Ballegooijen, A. A. and Cranmer, S. R. (2008). Hyperdiffusion as a mechanism for solar coronal heating. Astrophys. J. 682, 644–653.CrossRefGoogle Scholar
van Ballegooijen, A. A. and Cranmer, S. R. (2010). Tangled magnetic fields in solar prominences. Astrophys. J. 711, 164–178.CrossRefGoogle Scholar
van Ballegooijen, A. A. and Martens, P. C. H. (1989). Formation and eruption of solar prominences. Astrophys. J. 343, 971–984.CrossRefGoogle Scholar
van Ballegooijen, A. A. and Martens, P. C. H. (1990). Magnetic fields in quiescent prominences. Astrophys. J. 361, 283–289.CrossRefGoogle Scholar
van Ballegooijen, A. A., Priest, E. R., and Mackay, D. H. (2000). Mean field model for the formation of filament channels on the Sun. Astrophys. J. 539, 983–994.CrossRefGoogle Scholar
van Der Holst, B., Manchester, W., Frazin, R., Vasquez, A., Toth, G., and Gombosi, T. (2010). A data-driven, two-temperature solar wind model with Alfven waves. Astrophys. J. 725, 1373–1383.CrossRefGoogle Scholar
van Doorsselaere, T., Brady, C. S., Verwichte, E., and Nakariakov, V. M. (2008). Seismological demonstration of perpendicular density structuring in the solar corona. Astron. Astrophys. 491, L9–L12.CrossRefGoogle Scholar
van Driel-Gesztelyi, L. (2009). Magnetic reconnection and energy release on the Sun and solar-like stars. IAU Symp. 259, 191–200.Google Scholar
van Driel-Gesztelyi, L., Hofmann, A., Demoulin, P., Schmieder, B., and Csepura, G. (1994). Relationship between electric currents, photospheric motions, chromospheric activity, and magnetic field topology. Solar Phys. 149, 309–330.CrossRefGoogle Scholar
van Driel-Gesztelyi, L., Schmieder, B., Cauzzi, G., Mein, N., Hofmann, A., Nitta, N., Kurokawa, H., Mein, P., and Staiger, J. (1996). X-ray bright point flares due to magnetic reconnection. Solar Phys. 163, 145–170.CrossRefGoogle Scholar
van Driel-Gesztelyi, L., Wiik, J. E., Schmieder, B., Tarbell, T., Kitai, R., Funakoshi, Y., and Anwar, B. (1997). Post-flare loops of 26 June 1992. IV. Formation and expansion of hot and cool loops. Solar Phys. 174, 151–162.CrossRefGoogle Scholar
van Hoven, G., Hendrix, D. L., and Schnack, D. D. (1995). Diagnosis of general magnetic reconnection. J. Geophys. Res. 100, 19819–19828.CrossRefGoogle Scholar
van Tend, W. and Kuperus, M. (1978). The development of coronal electric current systems in active regions and their relation to filaments and flares. Solar Phys. 59, 115–127.CrossRefGoogle Scholar
Vaquero, J. M., Gallego, M. C., Usoskin, I. G., and Kovaltsov, G. A. (2011). Revisited sunspot data: a new scenario for the onset of the Maunder minimum. Astrophys. J. Letts. 731, L24.CrossRefGoogle Scholar
Vargas Domínguez, S., Rouppe van der Voort, L., Bonet, J. A., Martínez Pilet, V., van Noort, M., and Katsukawa, Y. (2008). Moat flow in the vicinity of sunspots for various penumbral configurations. Astrophys. J. 679, 900–909.CrossRefGoogle Scholar
Vasheghani Farahani, S., Nakariakov, V. M., Verwichte, E., and van Doorsselaere, T. (2012). Nonlinear evolution of torsional Alfven waves. Astron. Astrophys. 544, A127.CrossRefGoogle Scholar
Vekstein, G. E. and Bian, N. (2005). Forced magnetic reconnection at a neutral X-point. Astrophys. J. Letts. 632, L151–L154.CrossRefGoogle Scholar
Vekstein, G. E. and Priest, E. R. (1992). Magnetohydrodynamic equilibria and cusp formation at an X-type neutral line by footpoint shearing. Astrophys. J. 384, 333–340.CrossRefGoogle Scholar
Vekstein, G. E. and Priest, E. R. (1993). Magnetostatic equilibria and current sheets in a sheared magnetic field with an X-point. Solar Phys. 146, 119–125.CrossRefGoogle Scholar
Vekstein, G. E., Priest, E. R., and Amari, T. (1990). Formation of current sheets in force-free magnetic fields. Astron. Astrophys. 243, 492–500.Google Scholar
Vekstein, G. E., Priest, E. R., and Steele, C. D. C. (1991). Magnetic reconnection and energy release in the solar corona by Taylor relaxation. Solar Phys. 131, 297–318.CrossRefGoogle Scholar
Vekstein, G. E., Priest, E. R., and Steele, C. D. C. (1993). On the problem of magnetic coronal heating by turbulent relaxation. Astrophys. J. 417, 781–789.CrossRefGoogle Scholar
Velli, M. (2001). Hydrodynamics of the solar wind expansion. Astrophys. and Space Sci. 277, 157–167.CrossRefGoogle Scholar
Velli, M. (2009). Physical processes in the solar wind. In Turbulence in Space Plasmas, P., Cargill and L., Vlahos, eds. Lecture Notes in Physics, vol. 778. (Springer Verlag, Berlin), 247–268.CrossRefGoogle Scholar
Velli, M., Grappin, R., and Mangeney, A. (1991). Waves from the Sun. Geophys. Astrophys. Fluid Dyn. 62, 101–121.CrossRefGoogle Scholar
Verdini, A., Grappin, R., and Velli, M. (2012). Coronal heating in coupled photosphere-chromosphere-coronal systems: turbulence and leakage. Astron. Astrophys. 538, A70.CrossRefGoogle Scholar
Vernazza, J. E., Avrett, E. H., and Loeser, R. (1981). Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet Sun. Astrophys. J. Suppl. 45, 635–725.CrossRefGoogle Scholar
Veronig, A. M. and Brown, J. C. (2004). A coronal thick-target interpretation of two hard X-ray loop events. Astrophys. J. Letts. 603, L117–L120.CrossRefGoogle Scholar
Verth, G., Erdelyi, R., and Goossens, M. (2010). Magnetoseismology: eigenmodes of torsional Alfven waves in stratified solar waveguides. Astrophys. J. 714, 1637–1648.CrossRefGoogle Scholar
Verth, G., Terradas, J., and Goossens, M. (2010). Observational evidence of resonantly damped propagating kink waves in the solar corona. Astrophys. J. Letts. 718, L102–L105.CrossRefGoogle Scholar
Verwichte, E., Aschwanden, M. J., van Doorsselaere, T., Foullon, C., and Nakariakov, V. M. (2009). Seismology of a large solar coronal loop from EUVI/STEREO observations of its transverse oscillation. Astrophys. J. 698, 397–404.CrossRefGoogle Scholar
Verwichte, E., Marsh, M., Foullon, C., van Doorsselaere, T., De Moortel, I., Hood, A. W., and Nakariakov, V. M. (2010). Periodic spectral line asymmetries in solar coronal structures from slow magnetoacoustic waves. Astrophys. J. Letts. 724, L194–L198.CrossRefGoogle Scholar
Verwichte, E., van Doorsselaere, T., Foullon, C., and White, R. S. (2013). Coronal Alfvén speed determination: consistency between seismology using AIA/SDO transverse loop oscillations and magnetic extrapolation. Astrophys. J. 767, 16.CrossRefGoogle Scholar
Vlahos, L. (2009). Solar and stellar active regions. In Chaos in Astronomy, G., Contopoulos, and P. A., Patsis, eds. (Springer-Verlag, Berlin), 423–433.Google Scholar
Vlahos, L., Fragos, T., Isliker, H., and Georgoulis, M. (2002). Statistical properties of the energy release in emerging and evolving active regions. Astrophys. J. Letts. 575, L87–L90.CrossRefGoogle Scholar
Vlahos, L., Georgoulis, M., Kluiving, R., and Paschos, P. (1995). The statistical flare. Astron. Astrophys. 299, 897–911.Google Scholar
Vlahos, L., Isliker, H., and Lepreti, F. (2004). Particle acceleration in an evolving network of unstable current sheets. Astrophys. J. 608, 540–553.CrossRefGoogle Scholar
Vocks, C. and Marsch, E. (2002). Kinetic results for ions in the solar corona with wave-particle interactions and Coulomb collisions. Astrophys. J. 568, 1030–1042.Google Scholar
Vogler, A. and Schüssler, M. (2007). A solar surface dynamo. Astron. Astrophys. 465, L43–L46.CrossRefGoogle Scholar
Vüogler, A., Shelyag, S., Schuüssler, M., Cattaneo, F., Emonet, T., and Linde, T. (2005). Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335–351.Google Scholar
von Rekowski, B. and Hood, A. W. (2008). Photospheric cancelling magnetic features and associated phenomena in a stratified solar atmosphere. Mon. Not. Roy. Astron. Soc. 385, 1792–1812.CrossRefGoogle Scholar
Vonmoos, M., Beer, J., and Muscheler, R. (2006). Large variation in Holocene solar activity: constraints from 10Be in the Greenland Ice Core Project. J. Geophys. Res. 111, 10105.CrossRefGoogle Scholar
Vranjes, J., Poedts, S., Pandey, B. P., and De Pontieu, B. (2008). Energy flux of Alfvön waves in weakly ionized plasma. Astron. Astrophys. 478, 553–558.CrossRefGoogle Scholar
Vrsnak, B., Ruzdjak, V., and Rompolt, B. (1991). Stability of prominences exposing helical-like patterns. Solar Phys. 136, 151–167.CrossRefGoogle Scholar
Waddell, B. V., Rosenbluth, M. N., Monticello, D. A., and White, R. B. (1976). Non-linear growth of the m=1 tearing mode. Nuclear Fusion 16, 528–532.CrossRefGoogle Scholar
Wagner, G., Beer, J., Masarik, J., Muscheler, R., Kubik, P. W., Mende, W., Laj, C., Raisbeck, G. M., and Yiou, F. (2001). Presence of the solar De Vries cycle (~ 205 years) during the last ice age. Geophys. Res. Letts. 28, 303–306.CrossRefGoogle Scholar
Waldmeier, M. (1956). Synoptische Karten der Sonnenkorona. Mit 16 Textabbildungen. Z. Astrophys. 38, 219–236.Google Scholar
Wang, H., Shen, C., and Lin, J. (2009). Numerical experiments of wave-like phenomena caused by the disruption of an unstable magnetic configuration. Astrophys. J. 700, 1716–1731.CrossRefGoogle Scholar
Wang, T., Sui, L., and Qiu, J. (2007). Direct observation of high-speed plasma outflows produced by magnetic reconnection in solar impulsive events. Astrophys. J. Letts. 661, L207–L210.CrossRefGoogle Scholar
Wang, T. J. (2003). Slow-mode standing waves observed by SUMER in hot coronal loops. Astron. Astrophys. 402, L17–L20.CrossRefGoogle Scholar
Wang, T. J. (2011). Standing slow-mode waves in hot coronal loops: observations, modelling and coronal seismology. Space Sci. Rev. 158, 397–419.CrossRefGoogle Scholar
Wang, T. J. and Solanki, S. K. (2004). Vertical oscillations of a coronal loop observed by TRACE. Astron. Astrophys. 421, L33–L36.CrossRefGoogle Scholar
Wang, Y. M. (1999). The jetlike nature of He II A304 prominences. Astrophys. J. Letts. 520, L71–L74.CrossRefGoogle Scholar
Wang, Y. M., Biersteker, J. B., Sheeley, N. R., Koutchmy, S., Mouette, J., and Druckmuüller, M. (2007). The solar eclipse of 2006 and the origin of raylike features in the white-light corona. Astrophys. J. 660, 882–892.CrossRefGoogle Scholar
Wang, Y. M. and Muglach, K. (2007). On the formation of filament channels. Astrophys. J. 666, 1284–1295.CrossRefGoogle Scholar
Wang, Y. M., Nash, A. G., and Sheeley, N. R. (1989). Magnetic flux transport on the Sun. Science 245, 712–718.CrossRefGoogle ScholarPubMed
Wang, Y. M. and Sheeley, N. R. (1994). The rotation of photospheric magnetic fields: a random walk transport model. Astrophys. J. 430, 399–412.CrossRefGoogle Scholar
Wang, Y. M., Sheeley, N. R., and Nash, A. G. (1991). A new solar-cycle model including meridional circulation. Astrophys. J. 383, 431–442.CrossRefGoogle Scholar
Wang, Y.M., Sheeley, N.R., Socker, D.G., Howard, R.A., Brueckner, G.E., Michels, D.J., Moses, D., St.Cyr, O.C., Llebaria, A., and Delaboudiniere, J.-P. (1998). Observations of correlated white-light and extreme-ultraviolet jets from polar coronal holes. Astrophys. J. 508, 899–907.CrossRefGoogle Scholar
Warmuth, A. (2010). Large-scale waves in the solar corona: the continuing debate. Adv. in Space Res. 45, 527–536.CrossRefGoogle Scholar
Warren, H. P. (2005). A solar minimum irradiance spectrum for Wavelengths below 1200 Å. Astrophys. J. Supp. 157, 147–173.CrossRefGoogle Scholar
Warren, H. P., Brooks, D. H., and Winebarger, A. R. (2011). Constraints on the heating of high-temperature active region loops: observations from Hinode and the Solar Dynamics Observatory. Astrophys. J. 734, 90.CrossRefGoogle Scholar
Warren, H. P., O'Brien, C. M., and Sheeley, N. R. (2011). Observations of reconnecting flare loops with the Atmospheric Imaging Assembly. Astrophys. J. 742, 92.CrossRefGoogle Scholar
Warren, H. P., Ugarte-Urra, I., Brooks, D. H., Cirtain, J. W., Williams, D. R., and Hara, H. (2007). Observations of transient active-region heating with Hinode. Publ. Astron. Soc. Japan 59, 675–681.CrossRefGoogle Scholar
Warren, H. P., Ugarte-Urra, I., Doschek, G. A., Brooks, D. H., and Williams, D. R. (2008). Observations of active region loops with the EUV Imaging Spectrometer on Hinode. Astrophys. J. Letts. 686, L131–L134.CrossRefGoogle Scholar
Warren, H. P., Winebarger, A. R., and Brooks, D. H. (2010). Evidence for steady heating: observations of an active region core with Hinode and TRACE. Astrophys. J. 711, 228–238.CrossRefGoogle Scholar
Warren, H. P., Winebarger, A. R., and Mariska, J. T. (2003). Evolving active region loops observed with the Transition Region and Coronal Explorer. II. Time-dependent hydrodynamic simulations. Astrophys. J. 593, 1174–1186.CrossRefGoogle Scholar
Watanabe, H., Kitai, R., and Ichimoto, K. (2009). Characteristic dependence of umbral dots on their magnetic structure. Astrophys. J. 702, 1048–1057.CrossRef
Webb, D. F., Burkepile, J., Forbes, T. G., and Riley, P. (2003). Observational evidence of new current sheets trailing coronal mass ejections. J. Geophys. Res. 108, 1440.CrossRefGoogle Scholar
Webb, D. F. and Howard, T. A. (2012). Coronal mass ejections: observations. Liv. Rev. in Solar Phys. 9, 3.Google Scholar
Webb, D. F., Kahler, S. W., McIntosh, P. S., and Klimchuck, J. A. (1997). Large-scale structures and multiple neutral lines associated with coronal mass ejections. J. Geophys. Res. 102, 24161–24174.CrossRefGoogle Scholar
Weber, E. and Davis, L. (1967). The angular momentum of the solar wind. Astrophys. J. 148, 217–227.CrossRefGoogle Scholar
Wedemeyer, S., Freytag, B., Steffen, M., Ludwig, H.-G., and Holweger, H. (2004). Numerical simulation of the three-dimensional structure and dynamics of the non-magnetic solar chromosphere. Astron. Astrophys. 414, 1121–1137.CrossRefGoogle Scholar
Wedemeyer-Bohm, S. and Rouppe van der Voort, L. (2009). Small-scale swirl events in the quiet-Sun chromosphere. Astron. Astrophys. 507, L9–L12.CrossRefGoogle Scholar
Wedemeyer-Bohm, S., Scullion, E., Rouppe van der Voort, L., Bosnjak, A., and Antolin, P. (2013). Are giant tornadoes the legs of solar prominences?Astrophys. J. 774, 123.CrossRefGoogle Scholar
Wedemeyer-Bohm, S., Scullion, E., Steiner, O., Rouppe van der Voort, L., de la Cruz Rodriguez, J., Fedun, V., and Erdelyi, R. (2012). Magnetic tornadoes as energy channels into the solar corona. Nature 486, 505–508.CrossRefGoogle ScholarPubMed
Weiss, N. O. (1966). The expulsion of magnetic flux by eddies. Proc.Roy.Soc.A 293, 310–328.CrossRefGoogle Scholar
Weiss, N. O. (1981). Convection in an imposed magnetic field. Part 2. The dynamical regime. J. Fluid Mech. 108, 273–289.Google Scholar
Weiss, N. O. (1991). Magnetoconvection. Geophys. Astrophys. Fluid Dyn. 62, 229–248.CrossRefGoogle Scholar
Weiss, N. O. (2003). Modelling solar and stellar magnetoconvection. In Stellar Astrophysical Fluid Dynamics, M.J., Thompson and J., Christensen-Dalsgaard, eds. (Cambridge University Press, Cambridge, UK), 329–343.Google Scholar
Weiss, N. O. (2005). Linear and nonlinear dynamos. Astron. Nach. 326, 157–165.CrossRefGoogle Scholar
Weiss, N. O. (2011). Chaotic behaviour in low-order models of planetary and stellar dynamos. Geophys. Astrophys. Fluid Dyn. 105, 256–272.CrossRefGoogle Scholar
Weiss, N. O., Brownjohn, D. P., Hurlburt, N. E., and Proctor, M. R. E. (1990). Oscillatory convection in sunspot umbrae. Mon. Not. Roy. Astron. Soc. 245, 434–452.Google Scholar
Weiss, N. O., Brownjohn, D. P., Matthews, P. C., and Proctor, M. R. E. (1996). Photospheric convection in strong magnetic fields. Mon. Not. Roy. Astron. Soc. 283, 1153–1164.CrossRefGoogle Scholar
Weiss, N. O., Cattaneo, F., and Jones, C. A. (1984). Periodic and aperiodic dynamo waves. Geophys. Astrophys. Fluid Dyn. 30, 305–341.CrossRefGoogle Scholar
Weiss, N. O., Proctor, M. R. E., and Brownjohn, D. P. (2002). Magnetic flux separation in photospheric convection. Mon. Not. Roy. Astron. Soc. 337, 293–304.CrossRefGoogle Scholar
Weiss, N. O., Thomas, J. H., Tobias, S. M., and Brummel, N. H. (2004). The origin of penumbral structure in sunspots: downward pumping of magnetic flux. Astrophys. J. 600, 1073–1090.CrossRefGoogle Scholar
Weiss, N. O. and Thompson, M. J. (2009). The solar dynamo. Space Sci. Revs. 144, 53–66.CrossRefGoogle Scholar
Wentzel, D. G. and Seiden, P. E. (1992). Solar active regions as a percolation phenomenon. Astrophys. J. 390, 280–289.CrossRefGoogle Scholar
Wesson, J. (1997). Tokamaks. (Clarendon Press, Oxford).Google Scholar
Westendorp Plaza, C., del Toro Iniesta, J. C., Ruiz Cobo, B., Martinez Pillet, V., Lites, B. W., and Skumanich, A. (1997). Evidence for a downward mass flux in the penumbral region of a sunspot. Nature 389, 47–49.Google Scholar
Whang, Y. C. and Chang, C. C. (1965). An inviscid model of the solar wind. J. Geophys. Res. 70, 4175–4180.CrossRefGoogle Scholar
Wheatland, M. S. (1999). A better linear force-free field. Astrophys. J. 518, 948–953.CrossRefGoogle Scholar
Wheatland, M. S. (2004). Parallel construction of nonlinear force-free fields. Solar Phys. 222, 247–264.CrossRefGoogle Scholar
Wheatland, M. S., Sturrock, P. A., and Roumeliotis, G. (2000). An optimization approach to reconstructing force-free fields. Astrophys. J. 540, 1150–1155.CrossRefGoogle Scholar
White, R. B., Monticello, D. A., Rosenbluth, M. N., and Waddell, B. V. (1977). Saturation of the tearing mode. Phys. Fluids 20, 800–805.CrossRefGoogle Scholar
White, R. S. and Verwichte, E. (2012). Transverse coronal loop oscillations seen in unprecedented detail by AIA/SDO. Astron. Astrophys. 537, 1–10.CrossRefGoogle Scholar
Wiegelmann, T. (2004). Optimization code with weighting function for the reconstruction of coronal magnetic fields. Solar Phys. 219, 87–108.CrossRefGoogle Scholar
Wiegelmann, T. (2008). Nonlinear force-free modeling of the solar coronal magnetic field. J. Geophys. Res. 113, 3.CrossRefGoogle Scholar
Wiegelmann, T. and Inhester, B. (2010). How to deal with measurement errors and lacking data in nonlinear force-free coronal magnetic field modelling?Astron. Astrophys. 516, A107.CrossRefGoogle Scholar
Wiegelmann, T., Inhester, B., and Sakurai, T. (2006). Preprocessing of vector magnetograph data for a nonlinear force-free magnetic field reconstruction. Solar Phys. 233, 215–232.CrossRefGoogle Scholar
Wiegelmann, T. and Neukirch, T. (2002). Including stereoscopic information in the reconstruction of coronal magnetic fields. Solar Phys. 208, 233–251.CrossRefGoogle Scholar
Wiegelmann, T. and Neukirch, T. (2003). Computing nonlinear force-free coronal magnetic fields. Nonlin. Proc. in Geophys. 10, 313–322.CrossRefGoogle Scholar
Wiegelmann, T., Solanki, S.K., Borrero, J.M., Martinez Pillet, V., del Toro Iniesta, J. C., Domingo, V., Bonet, J. A., Barthol, P., Gandorfer, A., Knolker, M., Schmidt, W., and Title, A. M. (2010). Magnetic loops in the quiet Sun. Astrophys. J. Letts. 723, L185–L189.CrossRefGoogle Scholar
Wiegelmann, T., Thalmann, J. K., Schrijver, C. J., De Rosa, M. L., and Metcalf, T. R. (2008). Can we improve the preprocessing of photospheric vector magnetograms by the inclusion of chromospheric observations?Solar Phys. 247, 249–267.CrossRefGoogle Scholar
Wilhelm, K. (2000). Solar spicules and macrospicules observed by SUMER. Astron. Astrophys. 360, 351–362.Google Scholar
Wilhelm, K. (2006). Solar coronal-hole plasma densities and temperatures. Astron. Astrophys. 455, 697–708.CrossRefGoogle Scholar
Wilhelm, K., Dammasch, I. E., Marsch, E., and Hassler, D. M. (2000). On the source regions of the fast solar wind in polar coronal holes. Astron. Astrophys. 353, 749–756.Google Scholar
Wilhelm, K., Marsch, E., Dwivedi, B. N., Hassler, D. M., Lemaire, P., Gabriel, A. H., and Huber, M. C. E. (1998). The solar corona above polar coronal holes as seen by SUMER on SOHO. Astrophys. J. 500, 1023–1038.CrossRefGoogle Scholar
Williams, D. R., Mathioudakis, M., Gallagher, P. T., Phillips, K. J. H., McAteer, R., Keenan, F. P., Rudawy, P., and Katsiyannis, A. (2002). An observational study of a magneto-acoustic wave in the solar corona. Mon. Not. Roy. Astron. Soc. 336, 747–752.CrossRefGoogle Scholar
Wilmot-Smith, A. L., Hornig, G., and Pontin, D. I. (2009a). Magnetic braiding and parallel electric fields. Astrophys. J. 696, 1339–1347.CrossRefGoogle Scholar
Wilmot-Smith, A. L., Hornig, G., and Pontin, D. I. (2009b). Magnetic braiding and quasi-separatrix layers. Astrophys. J. 704, 1288–1295.CrossRefGoogle Scholar
Wilmot-Smith, A. L., Martens, P. C. H., Nandy, D., Priest, E. R., and Tobias, S. M. (2005). Low-order stellar dynamo models. Mon. Not. Roy. Astron. Soc. 363, 1167–1172.CrossRefGoogle Scholar
Wilmot-Smith, A. L., Nandy, D., Hornig, G., and Martens, P. C. H. (2006). A time-delay model for solar and stellar dynamos. Astrophys. J. 652, 696–708.CrossRefGoogle Scholar
Wilmot-Smith, A. L., Pontin, D. I., and Hornig, G. (2010). Dynamics of braided coronal loops. I. Onset of magnetic reconnection. Astron. Astrophys. 516, A5.CrossRefGoogle Scholar
Wilmot-Smith, A. L., Pontin, D. I., Yeates, A. R., and Hornig, G. (2011). Heating of braided coronal loops. Astron. Astrophys. 536, A67.CrossRefGoogle Scholar
Wilmot-Smith, A. L. and Priest, E. R. (2007). Flux tube disconnection – an example of 3D reconnection. Phys. Plasmas 14, 102903 (1–9).CrossRefGoogle Scholar
Wilmot-Smith, A. L., Priest, E. R., and Hornig, G. (2005). Magnetic diffusion and the motion of magnetic field lines. Geophys. Astrophys. Fluid Dyn. 99, 177–197.CrossRef
Wilson, O. C. (1978). Chromospheric variations in main-sequence stars. Astrophys. J. 226, 379–396.CrossRefGoogle Scholar
Winebarger, A. R., Warren, H. P., and Falconer, D. A. (2008). Modeling X-ray loops and EUV “moss” in an active region core. Astrophys. J. 676, 672–679.CrossRefGoogle Scholar
Winebarger, A. R., Warren, H. P., and Mariska, J. T. (2003). TRACE and SXT active region loop observations: comparisons with static solutions of the hydrodynamic equations. Astrophys. J. 587, 439–449.CrossRefGoogle Scholar
Withbroe, G. and Noyes, R. W. (1977). Mass and energy flow in the solar chromosphere and corona. Ann. Rev. Astron. Astrophys. 15, 363–387.CrossRefGoogle Scholar
Woltjer, L. (1958). A theorem on force-free fields. Proc. Nat. Acad. Sci. USA 44, 489–491.CrossRefGoogle Scholar
Wragg, M. A. and Priest, E. R. (1981). The temperature-density structure of coronal loops in hydrostatic equilibrium. Solar Phys. 70, 293–313.CrossRefGoogle Scholar
Wragg, M. A. and Priest, E. R. (1982). Thermally isolated coronal loops in hydrostatic equilibrium. Solar Phys. 80, 309–312.CrossRefGoogle Scholar
Yan, M., Lee, L. C., and Priest, E. R. (1992). Fast magnetic reconnection with small shock angles. J. Geophys. Res. 97, 8277–8293.CrossRefGoogle Scholar
Yan, M., Lee, L. C., and Priest, E. R. (1993). Magnetic reconnection with large separatrix angles. J. Geophys. Res. 98, 7593–7602.CrossRefGoogle Scholar
Yan, Y. (1995). The 3D boundary element formulation of linear force-free magnetic fields with finite energy content in semi-infinite space. Solar Phys. 159, 97–113.CrossRefGoogle Scholar
Yan, Y. (2003). On the application of the boundary element method in coronal magnetic field reconstruction. Space Sci. Rev. 107, 119–138.Google Scholar
Yan, Y. and Sakurai, T. (2000). New boundary integral equation representation for finite energy force-free magnetic fields in open space above the Sun. Solar Phys. 195, 89–109.CrossRefGoogle Scholar
Yashiro, S., Akiyama, S., Gopalswamy, N., and Howard, R. A. (2006). Different power-law indices in the frequency distributions of flares with and without coronal mass ejections. Astrophys. J. Letts. 650, L143–L146.CrossRefGoogle Scholar
Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O. C., Plunkett, S. P., Rich, N. B., and Howard, R. A. (2004). A catalog of white-light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105.CrossRefGoogle Scholar
Yeates, A. R., Attrill, G. D. R., Nandy, D., Mackay, D. H., Martens, P. C. H., and van Ballegooijen, A. A. (2010). Comparison of a global magnetic evolution model with observations of coronal mass ejections. Astrophys. J. 709, 1238–1248.CrossRefGoogle Scholar
Yeates, A. R. and Hornig, G. (2011). Dynamical constraints from field line topology in magnetic flux tubes. J. of Phys. A 44, 26 (July), 265501.Google Scholar
Yeates, A. R. and Hornig, G. (2013). Unique topological characterization of braided magnetic fields. Phys. Plasmas 20, 1, 012102.Google Scholar
Yeates, A. R., Hornig, G., and Wilmot-Smith, A. L. (2010). Topological constraints on magnetic relaxation. Phys. Rev. Lett. 105, 8 (Aug.), 085002.Google ScholarPubMed
Yeates, A. R. and Mackay, D. H. (2009). Initiation of coronal mass ejections in a global evolution model. Astrophys. J. 699, 1024–1037.CrossRefGoogle Scholar
Yeates, A. R., Mackay, D. H., and van Ballegooijen, A. A. (2008). Modelling the global solar corona. II. Coronal evolution and filament chirality comparison. Solar Phys. 247, 103–121.CrossRefGoogle Scholar
Yeates, A. R., Mackay, D. H., van Ballegooijen, A. A., and Constable, J. A. (2010). A nonpotential model for the Sun's open magnetic flux. J. Geophys. Res. 115, 9112.CrossRefGoogle Scholar
Yelles Chaouche, L., Moreno-Insertis, F., Martinez Pillet, V., Wiegelmann, T., Bonet, J. A., Knolker, M., Bellot Rubio, L. R., del Toro Iniesta, J. C., Barthol, P., Gandorfer, A., Schmidt, W., and Solanki, S. K. (2011). Mesogranulation and the solar surface magnetic field distribution. Astrophys. J. Letts. 727, L30.CrossRefGoogle Scholar
Yokoyama, T., Akita, K., Morimoto, T., Inoue, K., and Newmark, J. (2001). Clear evidence of reconnection inflow of a solar flare. Astrophys. J. Letts. 546, L69–L72.CrossRefGoogle Scholar
Yokoyama, T. and Shibata, K. (1995). Magnetic reconnection as the origin of X-ray jets and Ha surges on the Sun. Nature 375, 42–44.CrossRefGoogle Scholar
Yokoyama, T. and Shibata, K. (1996). Numerical simulation of solar coronal X-ray jets based on the magnetic reconnection model. Pub. Astron. Soc Japan 48, 353–376.Google Scholar
Yokoyama, T. and Shibata, K. (1997). Magnetic reconnection coupled with heat conduction. Astrophys. J. Letts. 474, L61–L64.CrossRefGoogle Scholar
Yoshida, T. and Tsuneta, S. (1996). Temperature structure of solar active regions. Astrophys. J. 459, 342–346.CrossRefGoogle Scholar
Zacharias, P., Peter, H., and Bingert, S. (2011). Ejection of cool plasma into the hot corona. Astron. Astrophys. 532, A112.CrossRefGoogle Scholar
Zagrodziñski, J. (1976). The solutions of the two-dimensional sine-Gordon equation. Phys. Lett. A 57, 213–214.CrossRefGoogle Scholar
Zaitsev, V. V. and Stepanov, A. V. (1975). On the origin of pulsations of type IV solar radio emission. Plasma cylinder oscillations (I). Issledovaniia Geomagnetizmu Aeronomii i Fizike Solntsa 37, 3–10.Google Scholar
Zaitsev, V. V. and Stepanov, A. V. (2002). On the origin of the hard X-ray pulsations during solar flares. Sov. Astron. Lett. 8, 132–134.Google Scholar
Zaqarashvili, T. V., Khodachenko, M. L., and Rucker, H. O. (2011). Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach. Astron. Astrophys. 529, A82.CrossRefGoogle Scholar
Zel'dovich, Y. B. (1957). The magnetic field in the two-dimensional motion of a conducting turbulent fluid. Sov. Phys. JETP 4, 460–462.Google Scholar
Zhang, J., Solanki, S. K., and Wang, J. (2003). On the nature of moving magnetic feature pairs around sunspots. Astron. Astrophys. 399, 755–761.CrossRefGoogle Scholar
Zhang, Y. Z., Shibata, K., Wang, J. X., Mao, X. J., Matsumoto, T., Liu, Y., and Su, J. T. (2012). Revision of solar spicule classification. Astrophys. J. 750, 16.CrossRefGoogle Scholar
Zhao, M., Wang, J.-X., Jin, C.-L., and Zhou, G.-P. (2009). Magnetic non-potentiality on the quiet Sun and the filigree. Res. in Astron. and Astrophys. 9, 933–944.CrossRefGoogle Scholar
Zhao, X. and Hoeksema, J. T. (1994). A coronal magnetic field model with horizontal volume and sheet currents. Solar Phys. 151, 91–105.CrossRefGoogle Scholar
Zhao, X. and Hoeksema, J. T. (1995). Prediction of the interplanetary magnetic field strength. J. Geophys. Res. 100, 19–33.CrossRefGoogle Scholar
Zhao, X. P. and Webb, D. F. (2003). Source regions and storm effectiveness of frontside full halo coronal mass ejections. J. Geophys. Res. 108, 1234.CrossRefGoogle Scholar
Zhugzhda, Y. D. and Nakariakov, V. M. (1999). Linear and nonlinear magnetohydrodynamic waves in twisted magnetic flux tubes. Phys. Lett. A 252, 222–232.CrossRefGoogle Scholar
Zic, T., Vrsnak, B., and Skender, M. (2007). The magnetic flux and self-inductivity of a thick toroidal current. J. Plasma Phys. 73, 741–756.CrossRefGoogle Scholar
Zirin, H. and Stein, A. (1972). Observations of running penumbral waves. Astrophys. J. 178, L85–L87.CrossRefGoogle Scholar
Zirker, J. B. (1976). Coronal Holes and High-Speed Wind Streams. (Colorado Associated University Press, Boulder, Colorado).Google Scholar
Zirker, J. B. (2002). Journey from the Center of the Sun. (Princeton University Press, Princeton, NJ).Google Scholar
Zirker, J. B., Engvold, O., and Martin, S. F. (1998). Counter-streaming gas flows in solar prominences as evidence for vertical magnetic fields. Nature 396, 440–441.CrossRefGoogle Scholar
Zweibel, E. G. and Hundhausen, A. J. (1982). Magnetostatic atmospheres – a family of isothermal solutions. Solar Phys. 76, 261–299.CrossRefGoogle Scholar
Zweibel, E. G. and Li, H.-S. (1987). The formation of current sheets in the solar atmosphere. Astrophys. J. 312, 423–430.CrossRefGoogle Scholar
Zweibel, E. G. and Yamada, M. (2009). Magnetic reconnection in astrophysical and laboratory plasmas. Ann. Rev. Astron. Astrophys. 47, 291–332.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Eric Priest, University of St Andrews, Scotland
  • Book: Magnetohydrodynamics of the Sun
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139020732.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Eric Priest, University of St Andrews, Scotland
  • Book: Magnetohydrodynamics of the Sun
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139020732.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Eric Priest, University of St Andrews, Scotland
  • Book: Magnetohydrodynamics of the Sun
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139020732.017
Available formats
×