Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T17:06:57.669Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2014

Michael I. Mishchenko
Affiliation:
NASA-Goddard Space Flight Center
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, I. A., eds. (1964). Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (National Bureau of Standards, Washington, DC).
Adam, J. A. (2002). The mathematical physics of rainbows and glories. Phys. Rep. 356, 229-365.CrossRefGoogle Scholar
Akhiezer, A. I. and Berestetskii, V. B. (1965). Quantum Electrodynamics (Wiley Interscience, New York).Google Scholar
Akhiezer, A. I. and Peletminskii, S. V. (1981). Methods of Statistical Physics (Pergamon Press, Oxford). (original Russian edition: Nauka, Moscow, 1977.)Google Scholar
Akkermans, E. and Montambaux, G. (2007). Mesoscopic Physics of Electrons and Photons (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Amic, E., Luck, J. M., and Nieuwenhuizen, Th. M. (1997). Multiple Rayleigh scattering of electromagnetic waves. J. Phys. I (France) 7, 445-483.CrossRefGoogle Scholar
Apresyan, L. A. and Kravtsov, Yu. A. (1996). Radiation Transfer. Statistical and Wave Aspects (Gordon and Breach, Basel).Google Scholar
Aptowicz, K. B., Pan, Y.-L., Martin, S. D., et al. (2013). Decomposition of atmospheric aerosol phase function by particle size and asphericity from measurements of single particle optical scattering patterns. J. Quant. Spectrosc. Radiai. Transfer 131, 13-23.Google Scholar
Arfken, G. B. and Weber, H. J. (2005). Mathematical Methods for Physicists (Elsevier, Amsterdam).Google Scholar
Arnold, S., Holler, S., Li, J. H., et al. (1995). Aerosol particle microphotography and glare-spot absorption spectroscopy. Opt. Lett. 20, 773-775.CrossRefGoogle ScholarPubMed
Arnott, W. P., Dong, Y. Y., Hallett, J., and Poellot, M. R. (1994). Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991. J. Geophys. Res. 99, 1371-1381.CrossRefGoogle Scholar
Arons, A. B. and Peppard, M. B. (1965). Einstein's proposal of the photon concept – a translation of the Annalen der Physik paper of 1905. Am. J. Phys. 33, 367-374.CrossRefGoogle Scholar
Asano, S. and Yamamoto, G. (1975). Light scattering by a spheroidal particle. Appl. Opt. 14, 29-49.CrossRefGoogle ScholarPubMed
Azzam, R. M. A. and Bashara, N. M. (1977). Ellipsometry and Polarized Light (North Holland, Amsterdam).Google Scholar
Babenko, V. A., Astafyeva, L. G., and Kuzmin, V. N. (2003). Electromagnetic Scattering in Disperse Media: Inhomogeneous and Anisotropic Particles (Praxis Publishing, Chichester, UK).Google Scholar
Barabanenkov, Yu. N. (1973). Wave corrections to the transfer equation for “back” scattering. Radiophys. Quantum Electron. 16, 65-71.CrossRefGoogle Scholar
Barabanenkov, Yu. N. (1975). Multiple scattering of waves by ensembles of particles and the theory of radiation transport. Sov. Phys.—Usp. 18, 673-689.CrossRefGoogle Scholar
Baran, A. J. (2013). Light scattering by irregular particles in the Earth's atmosphere. Light Scattering Rev. 8, 3-68.Google Scholar
Barber, P. W. and Hill, S. C. (1990). Light Scattering by Particles: Computational Methods (World Scientific, Singapore).CrossRefGoogle Scholar
Barton, G. (1989). Elements of Green 's Functions and Propagation. Potentials, Diffusion and Waves (Oxford University Press, Oxford).Google Scholar
Beer, A. (1854). Grundriss des Photometrischen Calcüles (Friedrich Vieweg und Sohn, Braunschweig).Google Scholar
Berg, M. J., Sorensen, C. M., and Chakrabarti, A. (2008). Extinction and the optical theorem. Part I. Single particles. J. Opt. Soc. Am. A 25, 1504-1513.Google ScholarPubMed
Berglund, C. N. and Spicer, W. E. (1964). Photoemission studies of copper and silver: theory. Phys. Rev. 136, A1030-A1044.Google Scholar
Berne, B. J. and Pecora, R. (1976). Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Wiley, New York). (Also: Dover, Mineola, NY, 2000.)Google Scholar
Bi, L. and Yang, P. (2013). Physical-geometric optics hybrid methods for computing the scattering and absorption properties of ice crystals and dust aerosols. Light Scattering Rev. 8, 69-114.Google Scholar
Bi, L., Yang, P., Kattawar, G. W., and Mishchenko, M. I. (2013a). Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles. J. Quant. Spectrosc. Radiat. Transfer 116, 169-183.CrossRefGoogle Scholar
Bi, L., Yang, P., Kattawar, G. W., and Mishchenko, M. I. (2013b). A numerical combination of extended boundary condition method and invariant imbedding method applied to light scattering by large spheroids and cylinders. J. Quant. Spectrosc. Radiat. Transfer 123, 17-22.CrossRefGoogle Scholar
Bohm, D. (1951). Quantum Theory (Prentice-Hall, Englewood Cliffs, NJ).Google Scholar
Bohren, C. F. and Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles (Wiley, New York).Google Scholar
Boltzmann, L. (1893). Vorlesungen über Maxwells Theorie der Elektricität und des Lichtes, Vol. II (J. A. Barth, Leipzig).Google Scholar
Borghese, F., Denti, P., and Saija, R. (2007). Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics (Springer, Berlin).Google Scholar
Borghese, F., Saija, R., Gucciardi, P. G., et al., eds. (2012). Electromagnetic and light scattering XIII. J. Quant. Spectrosc. Radiai. Transfer 113, 2277-2279.Google Scholar
Born, M. and Wolf, E. (1999). Principles of Optics (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Borovikov, V. A. and Kinber, B. Y. (1994). Geometrical Theory of Diffraction (IEE Press, Herts, UK).CrossRefGoogle Scholar
Borovoi, A. G. (2006). Multiple scattering of short waves by uncorrelated and correlated scatterers. Light Scattering Rev. 1, 181-252.Google Scholar
Borovoi, A. G. (2013). Light scattering by large particles: physical optics and shadow-forming field. Light Scattering Rev. 8, 115-138.Google Scholar
Borovoy, A. G. (1966). Method of iterations in multiple scattering: the transfer equation. Izv. Vuzov Fizika, No. 6, 50-54 (in Russian).Google Scholar
Bouguer, P. (1729). Essai d'Optique sur la Gradation de la Lumiere (Claude Jombert, Paris).Google Scholar
Bouguer, P. (1760). Traité d'Optique sur la Gradation de la Lumiere (Académie Royale des Sciences, Paris). English translation by W. E. K. Middleton: Pierre Bouguer's Optical Treatise on the Gradation of Light (University of Toronto Press, Toronto, 1961).Google Scholar
Brosseau, C. (1998). Polarized Light: A Statistical Optics Approach (Wiley, New York).Google Scholar
Brown, W., ed. (1993). Dynamic Light Scattering: The Method and Some Applications (Oxford University Press, Oxford).
Bruning, J. H. and Lo, Y. T. (1971a). Multiple scattering of EM waves by spheres. I. Multipole expansion and ray-optical solutions. IEEE Trans. Antennas Propag. 19, 378-390.Google Scholar
Bruning, J. H. and Lo, Y. T. (1971b). Multiple scattering of EM waves by spheres. II. Numerical and experimental results. IEEE Trans. Antennas Propag. 19, 391-400.Google Scholar
Bukshtab, M. (2012). Applied Photometry, Radiometry, and Measurements of Optical Lossess (Springer, Dordrecht, The Netherlands).CrossRefGoogle Scholar
Burr, D. W., Daun, K. J., Thomson, K. A., and Smallwood, G. J. (2012). Optimization of measurement angles for soot aggregate sizing by elastic light scattering, through de-sign-of-experiment theory. J. Quant. Spectrosc. Radiat. Transfer 113, 355-365.CrossRefGoogle Scholar
Campbell, L. and Garnett, W. (1884). The Life of James Clerk Maxwell (Macmillan, London) (also Elibron Classics, New York, 2005).Google Scholar
Cannell, D. M. (2001). George Green: Mathematician and Physicist 1793–1841: The Background to His Life and Work (SIAM, Philadelphia).CrossRefGoogle Scholar
Chamaillard, K., Jennings, S. G., Kleefeld, C., et al. (2003). Light backscattering and scattering by nonspherical sea-salt aerosols. J. Quant. Spectrosc. Radiai. Transfer 7980, 577-597.Google Scholar
Chandrasekhar, S. (1950). Radiative Transfer (Oxford University Press, Oxford). (Also: Dover, New York, 1960.)Google Scholar
Chwolson, O. (1889). Grundzüge einer mathematischen Theorie der inneren Diffusion des Lichtes. Bull. l'Acad. Impériale Sci. St. Pétersbourg 33, 221-256.Google Scholar
Chyba, T. H. and Mandel, L. (1988). Angular sensitivity of a vacuum photodiode, or does a photodetector always count absorbed photons?J. Opt. Soc. Am. B 5, 1305-1311.CrossRefGoogle Scholar
Chýlek, P. (1976). Partial-wave resonances and the ripple structure in the Mie normalized extinction cross section. J. Opt. Soc. Am. 66, 285-287.CrossRefGoogle Scholar
Chýlek, P. and Zhan, J. (1989). Interference structure of the Mie extinction cross section. J. Opt. Soc. Am. A 6, 1846-1851.CrossRefGoogle Scholar
Chýlek, P., Kiehl, J. T., and Ko, M. K. W. (1978). Narrow resonance structure in the Mie scattering characteristics. Appl. Opt. 17, 3019-3021.CrossRefGoogle ScholarPubMed
Chýlek, P., Ramaswamy, V., Ashkin, A., and Dziedzic, J. M. (1983). Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data. Appl. Opt. 22, 2302-2307.CrossRefGoogle ScholarPubMed
Chýlek, P., Ngo, D., and Pinnick, R. G. (1992). Resonance structure of composite and slightly absorbing spheres. J. Opt. Soc. Am. A 9, 775-780.CrossRefGoogle Scholar
Ciric, I. R. and Cooray, F. R. (2000). Separation of variables for electromagnetic scattering by spheroidal particles. In Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, ed. M. I., Mishchenko, J. W., Hovenier, and L. D., Travis, pp. 89-130 (Academic Press, San Diego).Google Scholar
Clarke, D. (2010). Stellar Polarimetry (Wiley-VCH, Weinheim, Germany).Google Scholar
Clarke, D. and Grainger, J. F. (1971). Polarized Light and Optical Measurement (Pergamon Press, Oxford).Google Scholar
Cloude, S. (2010). Polarisation: Applications in Remote Sensing (Oxford University Press, Oxford).Google Scholar
Cohen-Tannoudji, C., Dupont-Roc, J., and Grynberg, G. (1989). Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, New York).Google Scholar
Cohen-Tannoudji, C., Dupont-Roc, J., and Grynberg, G. (1992). Atom—Photon Interactions: Basic Processes and Applications (Wiley, New York).Google Scholar
Collett, E. (1992). Polarized Light: Fundamentals and Applications (Marcel Dekker, New York).Google Scholar
Cooray, M. F. R. and Ciric, I. R. (1992). Scattering of electromagnetic waves by a coated dielectric spheroid. J. Electromagn. Waves Appl. 6, 1491-1507.CrossRefGoogle Scholar
Coulson, K. L. (1988). Polarization and Intensity of Light in the Atmosphere (A. Deepak Publishing, Hampton, VA).Google Scholar
Craig, D. P. and Thirunamachandran, T. (1984). Molecular Quantum Electrodynamics: An Introduction to Radiation—Molecule Interactions (Academic Press, London).Google Scholar
Crease, R. P. (2004). The greatest equations ever. Phys. World 17(10), 14-15.CrossRefGoogle Scholar
Crosignani, B., Di Porto, P., and Bertolotti, M. (1975). Statistical Properties of Scattered Light (Academic Press, New York).Google Scholar
Crosta, G. F., Pan, Y.-L., Aptowicz, K. B., et al. (2013). Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering. J. Quant. Spectrosc. Radiai. Transfer 131, 215-233.Google Scholar
Cruzan, O. R. (1962). Translational addition theorems for spherical vector wave functions. Quart. Appl. Math. 20, 33-40.CrossRefGoogle Scholar
Davis, A. B. and Marshak, A. (2010). Solar radiation transport in the cloudy atmosphere: a 3D perspective on observations and climate impacts. Rep. Prog. Phys. 73, 026801.CrossRefGoogle Scholar
de Groot, S. R. (1969). The Maxwell Equations (North-Holland, Amsterdam).Google Scholar
de Groot, S. R. and Suttorp, L. G. (1972). Foundations of Electrodynamics (North-Holland, Amsterdam).Google Scholar
Deirmendjian, D. (1969). Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York).Google Scholar
Dlugach, J. M., Mishchenko, M. I., Liu, L., and Mackowski, D. W. (2011). Numerically exact computer simulations of light scattering by densely packed, random particulate media. J. Quant. Spectrosc. Radiat. Transfer 112, 2068-2078.CrossRefGoogle Scholar
Dodd, J. N. (1991). Atoms and Light: Interactions (Plenum Press, New York).CrossRefGoogle Scholar
Doicu, A., Eremin, Yu., and Wriedt, T. (2000). Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic Press, San Diego).Google Scholar
Doicu, A., Wriedt, T., and Eremin, Y. A. (2006). Light Scattering by Systems of Particles: Null-Field Method with Discrete Sources — Theory and Programs (Springer, Berlin).CrossRefGoogle Scholar
Dolginov, A. Z., Gnedin, Yu. N., and Silant'ev, N. A. (1970). Photon polarization and frequency change in multiple scattering. J. Quant. Spectrosc. Radiat. Transfer 10, 707-754.CrossRefGoogle Scholar
Dolginov, A. Z., Gnedin, Yu. N., and Silant'ev, N. A. (1995). Propagation and Polarization of Radiation in Cosmic Media (Gordon and Breach, Basel).Google Scholar
Draine, B. T. and Flatau, P. J. (1994). Discrete dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11, 1491-1499.CrossRefGoogle Scholar
Draine, B. T. and Flatau, P. J. (2012). User guide to the discrete dipole approximation code DDSCAT 7.2, http://arxiv.org/abs/1202.3424 (assessed November 2013).Google Scholar
Drew, T. B. (1961). Handbook of Vector and Polyadic Analysis (Reinhold, New York).Google Scholar
Dubovik, O., Sinyuk, A., Lapyonok, T., et al. (2006). Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geo- phys. Res. 111, D11208.CrossRefGoogle Scholar
Edmonds, A. R. (1996). Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, NJ).Google Scholar
Eppeldauer, G. P., Brown, S. W., and Lykke, K. R. (2005). Transfer standard filter radiometers: applications to fundamental scales. In Optical Radiometry, eds. A. C., Parr, R. U., Datla, and J. L., Gardner, pp. 155-211 (Elsevier, Amsterdam).Google Scholar
Fabelinskii, I. L. (1968). Molecular Scattering of Light (Plenum Press, New York).CrossRefGoogle Scholar
Farafonov, V. G., Voshchinnikov, N. V., and Somsikov, V. V. (1996). Light scattering by a core-mantle spheroidal particle. Appl. Opt. 35, 5412-5426.CrossRefGoogle ScholarPubMed
Farquhar, I. E. (1964). Ergodic Theory in Statistical Mechanics (Wiley, London).Google Scholar
Fikioris, J. G. and Waterman, P. C. (1963). Multiple scattering of electromagnetic waves. Technical Memorandum RAD-TM-63-81, Avco Corporation, Wilmington, MA.Google Scholar
Fikioris, J. G. and Waterman, P. C. (2013). Multiple scattering of waves. III. The electromagnetic case. J. Quant. Spectrosc. Radiat. Transfer 123, 8-16.CrossRefGoogle Scholar
Foldy, L. L. (1945). The multiple scattering of waves. Phys. Rev. 67, 107-119.Google Scholar
Freudenthaler, V., Homburg, F., and Jäger, H. (1996). Optical parameters of contrails from lidar measurements: linear depolarization. Geophys. Res. Lett. 23, 3715-3718.CrossRefGoogle Scholar
Fuller, K. A. (1995). Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities. J. Opt. Soc. Am. A 12, 893-904.CrossRefGoogle Scholar
Fuller, K. A. and Mackowski, D. W. (2000). Electromagnetic scattering by compounded spherical particles. In Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, ed. M. I., Mishchenko, J. W., Hovenier, and L. D., Travis, pp. 225-272 (Academic Press, San Diego).Google Scholar
Gans, R. (1924). Die Farbe des Meeres. Ann. Phys. 75, 1-22.Google Scholar
Gehrels, T., ed. (1974). Planets, Stars and Nebulae Studied with Photopolarimetry (University of Arizona Press, Tucson, AZ).Google Scholar
Gelfand, I. M., Minlos, R. A., and Shapiro, Z. Ya. (1963). Representations of the Rotation and Lorentz Groups and their Applications (Pergamon Press, New York). (Original Russian edition: Gosudarstvennoe Izdatel'stvo Fiziko-Matematicheskoy Litera-tury, Moscow, 1958.)Google Scholar
Gershun, A. A. (1936). The Light Field (ONTI, Leningrad and Moscow) (in Russian). English translation by P. Moon and G. Timoshenko: J. Phys. & Math. 18, 51-151 (1939).Google Scholar
Gibbs, J. W. and Wilson, E. B. (1909). Vector Analysis (Charles Scribner's Sons, New York).Google Scholar
Goldberger, M. L. and Watson, K. M. (1964). Collision Theory (Wiley, New York).Google Scholar
Goodman, J. W. (2005). Introduction to Fourier Optics (Roberts & Company, Englewood, CO).Google Scholar
Goodman, J. W. (2007). Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, Englewood, CO).Google Scholar
Goody, R. M. and Yung, Y. L. (1989). Atmospheric Radiation: Theoretical Basis (Oxford University Press, New York).Google Scholar
Gouesbet, G. and Gréhan, G. (2011). Generalized Lorenz—Mie Theories (Springer, Berlin).CrossRefGoogle Scholar
Grandy, W. T. Jr., (2000). Scattering of Waves from Large Spheres (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Gray, J. (2013). Henri Poincaré – A Scientific Biography (Princeton University Press, Princeton).Google Scholar
Green, G. (1828). An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism (T. Wheelhouse, Nottingham).Google Scholar
Gross, P., Störzer, M., Fiebig, S., et al. (2007). A precise method to determine the angular distribution of backscattered light to high angles. Rev. Sci. Instr. 78, 033105.CrossRefGoogle ScholarPubMed
Gustafson, B. Å. S. (2000). Microwave analog to light-scattering measurements. In Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, ed. M. I., Mishchenko, J. W., Hovenier, and L. D., Travis, pp. 367-390 (Academic Press, San Diego).Google Scholar
Gustafson, B. Å. S. (2009). Scaled analogue experiments in electromagnetic scattering. Light Scattering Rev. 4, 3-30.Google Scholar
Hanel, R. A., Conrath, B. J., Jennings, D. E., and Samuelson, R. E. (2003). Exploration of the Solar System by Infrared Remote Sensing (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Hansen, W. W. (1935). A new type of expansion in radiation problems. Phys. Rev. 47, 139-143.CrossRefGoogle Scholar
Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of Venus. J. Atmos. Sci. 31, 1137-1160.2.0.CO;2>CrossRefGoogle Scholar
Hansen, J. E. and Travis, L. D. (1974). Light scattering in planetary atmospheres. Space Sci. Rev. 16, 527-610.CrossRefGoogle Scholar
Hansen, J. E., Sato, M., Kharecha, P., and von Schuckmann, K. (2011). Earth's energy imbalance and implications. Atmos. Chem. Phys. 11, 13 421-13 449.CrossRefGoogle Scholar
Hapke, B. (1990). Coherent backscatter and the radar characteristics of outer planet satellites. Icarus 88, 407-417.CrossRefGoogle Scholar
Hapke, B. (2012). Theory of Reflectance and Emittance Spectroscopy (Cambridge University Press, Cambridge, UK).Google Scholar
Harmon, J. K., Slade, M. A., Vélez, R. A., et al. (1994). Radar mapping of Mercury's polar anomalies. Nature 369, 213-215.CrossRefGoogle Scholar
Healy, W. P. (1982). Non-Relativistic Quantum Electrodynamics (Academic Press, London).Google Scholar
Heaviside, O. (1885). Electromagnetic induction and its propagation. The Electrician 14, 178-180; 306-307.Google Scholar
Heaviside, O. (1950). Electromagnetic Theory (Dover, New York).Google Scholar
Hergert, W. (2012). Gustav Mie: from electromagnetic scattering to an electromagnetic view of matter. In The Mie Theory, ed. W., Hergert and T., Wriedt, pp. 1-51 (Springer, Berlin).CrossRefGoogle Scholar
Hertz, H. (1887). Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Ann. Phys. 267, 983-1000.CrossRefGoogle Scholar
Hill, S. C. and Benner, R. E. (1988). Morphology-dependent resonances. In Optical Effects Associated with Small Particles, eds. P. W., Barber and R. K., Chang, pp. 3-61 (World Scientific, Singapore).Google Scholar
Hill, S. C., Hill, A. C., and Barber, P. W. (1984). Light scattering by size/shape distributions of soil particles and spheroids. Appl. Opt. 23, 1025-1031.CrossRefGoogle ScholarPubMed
Ho, S.-T. and Kumar, P. (1993). Quantum optics in a dielectric: macroscopic electromagnetic-field and medium operators for a linear dispersive lossy medium – microscopic derivation of the operators and their commutation relations. J. Opt. Soc. Am. B 10, 1620-1636.CrossRefGoogle Scholar
Holt, A. R. (1982). The scattering of electromagnetic waves by single hydrometeors. Radio Sci. 17, 929-945.CrossRefGoogle Scholar
Holt, A. R., Uzunoglu, N. K., and Evans, B. G. (1978). An integral equation solution to the scattering of electromagnetic radiation by dielectric spheroids and ellipsoids. IEEE Trans. Antennas Propag. 26, 706-712.CrossRefGoogle Scholar
Hovenier, J. W. (1969). Symmetry relationships for scattering of polarized light in a slab of randomly oriented particles. J. Atmos. Sci. 26, 488-499.2.0.CO;2>CrossRefGoogle Scholar
Hovenier, J. W. (2000). Measuring scattering matrices of small particles at optical wavelengths. In Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, ed. M. I., Mishchenko, J. W., Hovenier, and L. D., Travis, pp. 355-365 (Academic Press, San Diego).Google Scholar
Hovenier, J. W. and van der Mee, C. V. M. (2000). Basic relationships for matrices describing scattering by small particles. In Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, ed. M. I., Mishchenko, J. W., Hovenier, and L. D., Travis, pp. 61-85 (Academic Press, San Diego).Google Scholar
Hovenier, J. W., van de Hulst, H. C., and van der Mee, C. V. M. (1986). Conditions for the elements of the scattering matrix. Astron. Astrophys. 157, 301-310.Google Scholar
Hovenier, J. W., van der Mee, C., and Domke, H. (2004). Transfer of Polarized Light in Planetary Atmospheres—Basic Concepts and Practical Methods (Kluwer, Dordrecht, The Netherlands).CrossRefGoogle Scholar
Howell, J. R., Siegel, R., and Mengüç, M. P. (2011). Thermal Radiation Heat Transfer (CRC Press, Boca Raton, FL).Google Scholar
Huang, K.-N. (1980). Theory of angular distribution and spin polarization of photoelectrons. Phys. Rev. A 22, 223-239.CrossRefGoogle Scholar
Huckaby, J. L., Ray, A. K., and Das, B. (1994). Determination of size, refractive index, and dispersion of single droplets from wavelength-dependent scattering spectra. Appl. Opt. 33, 7112-7125.CrossRefGoogle ScholarPubMed
Huffman, D. R. (1988). The applicability of bulk optical constants to small particles. In Optical Effects Associated with Small Particles, ed. P. W., Barber and R. K., Chang, pp. 279-324 (World Scientific, Singapore).Google Scholar
Hunt, B. J. (1991). The Maxwellians (Cornell University Press, Ithaca, NY).Google Scholar
Hunt, A. J. and Huffman, D. R. (1973). A new polarization-modulated light scattering instrument. Rev. Sci. Instrum. 44, 1753-1762.CrossRefGoogle Scholar
Huttner, B. and Barnett, S. M. (1992). Quantization of the electromagnetic field in dielectrics. Phys. Rev. A 46, 4306-4322.CrossRefGoogle ScholarPubMed
Inan, U. S. and Marshall, R. A. (2011). Numerical Electromagnetics: The FDTD Method (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Ishimaru, A. (1978). Wave Propagation and Scattering in Random Media (Academic Press, New York). (Also: IEEE Press, New York, 1997.)Google Scholar
Ito, S., Kobayashi, S., and Oguchi, T. (2007). Multiple-scattering formulation of pulsed beam waves in hydrometeors and its application to millimeter-wave weather radar. IEEE Geosci. Remote Sens. Lett. 4, 13-17.CrossRefGoogle Scholar
Ivanov, V. V. (1994). Making of radiative transfer theory. Trudy (Proc.) Astron. Observ. St. Petersburg Univ. 44, 6-29 (in Russian).Google Scholar
Jackson, J. D. (1998). Classical Electrodynamics (Wiley, New York).Google Scholar
Jaggard, D. L., Hill, C., Shorthill, R. W., et al. (1981). Light scattering from particles of regular and irregular shape. Atmos. Environ. 15, 2511-2519.CrossRefGoogle Scholar
James, G. L. (2007). Geometrical Theory of Diffraction for Electromagnetic Waves (IET Press, Herts, UK).Google Scholar
Jin, J. (2002). The Finite Element Method in Electromagnetics (Wiley, New York).Google Scholar
Joosten, J. G. H., Geladé, E. T. F., and Pusey, P. N. (1990). Dynamic light scattering by nonergodic media: Brownian particles trapped in polyacrylamide gels. Phys. Rev. A 42, 2161-2175.CrossRefGoogle ScholarPubMed
Kahnert, F. M. (2003). Numerical methods in electromagnetic scattering theory. J. Quant. Spectrosc. Radiat. Transfer 79-80, 775-824.CrossRefGoogle Scholar
Kahnert, M. (2013a). The T-matrix code Tsym for homogeneous dielectric particles with finite symmetries. J. Quant. Spectrosc. Radiat. Transfer 123, 62-78.Google Scholar
Kahnert, M. (2013b). T-matrix computations for particles with high-order finite symmetries. J. Quant. Spectrosc. Radiat. Transfer 123, 79-91.Google Scholar
Kahnert, M., Nousiainen, T., and Lindqvist, H. (2014). Model particles in atmospheric optics. J. Quant. Spectrosc. Radiat. Transfer, in press.Google Scholar
Kaye, P. H., Aptowicz, K., Chang, R. K., et al. (2007). Angularly resolved elastic scattering from airborne particles. In Optics of Biological Particles, ed. A., Hoekstra, V., Maltsev, and G., Videen, pp. 31-61 (Springer, Dordrecht, The Netherlands).Google Scholar
Kepler, J. (1604). Ad Vitellionem Paralipomena, Quibus Astronomice pars Optica Tradi-tur (Frankfurt).Google Scholar
Kerker, M. (1969). The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York).Google Scholar
Khinchin, A. I. (1949). Mathematical Foundations of Statistical Mechanics (Dover, New York).Google Scholar
Khlebtsov, N. G. (1992). Orientational averaging of light-scattering observables in the T-matrix approach. Appl. Opt. 31, 5359-5365.CrossRefGoogle Scholar
Khlebtsov, N. G. (2013). T-matrix method in plasmonics: an overview. J. Quant. Spectrosc. Radiat. Transfer 123, 184-217.CrossRefGoogle Scholar
Khlebtsov, N. G., Bogatyrev, V. A., Dykman, L. A., and Melnikov, A. G. (1996). Spectral extinction of colloidal gold and its biospecific conjugates. J. Colloid Interface Sci. 180, 436-445.CrossRefGoogle Scholar
Kidd, R., Ardini, J., and Anton, A. (1989). Evolution of the modern photon. Am. J. Phys. 57, 27-35.CrossRefGoogle Scholar
Kimble, H. J. and Mandel, L. (1984). Photoelectric detection of polychromatic light. Phys. Rev. A 30, 844-850.CrossRefGoogle Scholar
Kittel, C. (1963). Quantum Theory of Solids (Wiley, New York).Google Scholar
Kliger, D. S., Lewis, J. W., and Randall, C. E. (1990). Polarized Light in Optics and Spectroscopy (Academic Press, San Diego).Google Scholar
Kline, M. (1972). Mathematical Thought from Ancient to Modern Times (Oxford University Press, New York).Google Scholar
Knyazikhin, Y., Marshak, A., Larsen, M. L., et al. (2005). Small-scale drop size variability: impact on estimation of cloud optical properties. J. Atmos. Sci. 62, 2555-2567.CrossRefGoogle Scholar
Kobayashi, S., Oguchi, T., Tanelli, S., and Im, E. (2007). Backscattering enhancement on spheroid-shaped hydrometeors: considerations in water and ice particles of uniform size and Marshall-Palmer distributed rains. Radio Sci. 42, RS2001.CrossRefGoogle Scholar
Kokhanovsky, A. A. (2003). Polarization Optics of Random Media (Praxis Publishing, Chichester, UK).Google Scholar
Kramers, H. A. (1957). Quantum Mechanics (North-Holland, Amsterdam).Google Scholar
Krylov, V. I. (1962). Approximate Calculation of Integrals (MacMillan, New York).Google Scholar
Kuga, Y. and Ishimaru, A. (1984). Retroreflectance from a dense distribution of spherical particles. J. Opt. Soc. Am. A 1, 831-835.CrossRefGoogle Scholar
Kunz, K. S. and Luebbers, R. J. (1993). Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, FL).Google Scholar
Kušcer, I. and Ribaric, M. (1959). Matrix formalism in the theory of diffusion of light. Opt. Acta 6, 42-51.CrossRefGoogle Scholar
Kuz'min, V. L., Romanov, V. P., and Zubkov, L. A. (1994). Propagation and scattering of light in fluctuating media. Phys. Rep. 248, 71-368.CrossRefGoogle Scholar
Lakhtakia, A. and Mulholland, G. W. (1993). On two numerical techniques for light scattering by dielectric agglomerated structures. J. Res. Natl. Inst. Stand. Technol. 98, 699-716.CrossRefGoogle ScholarPubMed
Lamb, W. E. Jr., (1995). Anti-photon. Appl. Phys. B 60, 77-84.CrossRefGoogle Scholar
Lambert, J. H. (1760). Photometria, sive de Mensura et Gradibus Luminis, Colorum et Umbrae (Detlefsen, Augsburg).Google Scholar
Lambert, J. H. (2001). Photometry, or on the Measure and Gradations of Light, Colors and Shade (Illuminating Engineering Society of North America, New York). Translation from the Latin original by D. L. DiLaura.Google ScholarPubMed
Laven, P. (2003). Simulation of rainbows, coronas, and glories by use of Mie theory. Appl. Opt. 42, 436-444.CrossRefGoogle ScholarPubMed
Lax, M. (1951). Multiple scattering of waves. Rev. Mod. Phys. 23, 287-310.CrossRefGoogle Scholar
Lee, C. M. (1974). Spin polarization and angular distribution of photoelectrons in the Jacob-Wick helicity formalism. Application to autoionization resonances. Phys. Rev. A 10, 1598-1604.CrossRefGoogle Scholar
Lenoble, J., ed. (1985). Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures (A. Deepak Publishing, Hampton, VA).
Lenoble, J. (1993). Atmospheric Radiative Transfer (A. Deepak Publishing, Hampton, VA).Google Scholar
Levine, H. and Schwinger, J. (1950). On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen. Commun. Pure Appl. Math. 3, 355-391.CrossRefGoogle Scholar
Li, L.-W., Kang, X.-K., and Leong, M.-S. (2002). Spheroidal Wave Functions in Electromagnetic Theory (Wiley, New York).Google Scholar
Liou, K. N. (1992). Radiation and Cloud Processes in the Atmosphere: Theory, Observation, and Modeling (Oxford University Press, New York).Google Scholar
Liou, K. N. (2002). An Introduction to Atmospheric Radiation (Academic Press, San Diego).Google Scholar
Liou, K. N., Takano, Y., and Yang, P. (2000). Light scattering and radiative transfer in ice crystal clouds: applications to climate research. In Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, ed. M. I., Mishchenko, J. W., Hovenier, and L. D., Travis, pp. 417-449 (Academic Press, San Diego).Google Scholar
Litvinov, P. and Ziegler, K. (2008). Rigorous derivation of superposition T-matrix approach from solution of inhomogeneous wave equation. J. Quant. Spectrosc. Radiat. Transfer 109, 74-88.CrossRefGoogle Scholar
Liu, L. and Mishchenko, M. I. (2007). Scattering and radiative properties of complex soot and soot-containing aggregate particles. J. Quant. Spectrosc. Radiat. Transfer 106, 262-273.CrossRefGoogle Scholar
Liu, L., Mishchenko, M. I., and Arnott, W. P. (2008). A study of radiative properties of fractal soot aggregates using the superposition T-matrix method. J. Quant. Spectrosc. Radiat. Transfer 109, 2656-2663.CrossRefGoogle Scholar
Logan, N. A. (1965). Survey of some early studies of the scattering of plane waves by a sphere. Proc. IEEE 53, 773-785.CrossRefGoogle Scholar
Lommel, E. (1887). Die Photometrie der diffusen Zurückwerfung. Sitzber. Acad. Wissensch. München 17, 95-124. (Reprinted in Ann Phys. und Chem. (N.F.) 36, 473502, 1889.)Google Scholar
Lorentz, H. A. (1916). The Theory of Electrons (B. G. Teubner, Leipzig).Google Scholar
Lorenz, L. (1890). Lysbevœgelsen i og uden for en af plane Lysbølger belyst Kugle. K. Dan. Vidensk. Selsk. Skr. 6, 1-62.Google Scholar
Lukš, A. and Pefinová, V. (2009). Quantum Aspects of Light Propagation (Springer, Berlin).CrossRefGoogle Scholar
Lynch, D. K. and Livingston, W. (2001). Color and Light in Nature (Cambridge University Press, Cambridge, UK).Google Scholar
Lynch, D. K., Sassen, K., Starr, D. O'C., and Stephens, G., eds. (2002). Cirrus (Oxford University Press, Oxford).
Lyot, B. (1929). Recherches sur la polarisation de la lumière des planetes et de quelques substances terrestres. Ann. Observ. Paris, Sect. Meudon 8, No. 1. (English translation: Research on the polarization of light from planets and from some terrestrial substances, NASA Tech. Transl. NASA TT F-187, Washington, DC, 1964.)Google Scholar
Macke, A. (2000). Monte Carlo calculations of light scattering by large particles with multiple internal inclusions. In Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, ed. M. I., Mishchenko, J. W., Hovenier, and L. D., Travis, pp. 309-322 (Academic Press, San Diego).Google Scholar
Macke, A. and Mishchenko, M. I. (1996). Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles. Appl. Opt. 35, 4291-4296.CrossRefGoogle ScholarPubMed
Mackowski, D. W. (1994). Calculation of total cross sections of multiple-sphere clusters. J. Opt. Soc. Am. A 11, 2851-2861.CrossRefGoogle Scholar
Mackowski, D. (2012). The extension of Mie theory to multiple spheres. In The Mie Theory, eds. W., Hergert and T., Wriedt, pp. 223-256 (Springer, Berlin).Google Scholar
Mackowski, D. W. (2014). A general superposition solution for electromagnetic scattering by multiple scattering domains of optically active media. J. Quant. Spectrosc. Radiat. Transfer 133, 264-270.CrossRefGoogle Scholar
Mackowski, D. W. and Mishchenko, M. I. (1996). Calculation of the T matrix and the scattering matrix for ensembles of spheres. J. Opt. Soc. Am. A 13, 2266-2278.CrossRefGoogle Scholar
Mackowski, D. W. and Mishchenko, M. I. (2011). A multiple sphere T-matrix Fortran code for use on parallel computer clusters. J. Quant. Spectrosc. Radiat. Transfer 112, 2182-2192.CrossRefGoogle Scholar
Mackowski, D. W. and Mishchenko, M. I. (2013). Direct simulation of extinction in a slab of spherical particles. J. Quant. Spectrosc. Radiat. Transfer 123, 103-112.CrossRefGoogle Scholar
Mackowski, D., Kolokolova, L., and Sparks, W. (2011). T-matrix approach to calculating circular polarization of aggregates made of optically active materials. J. Quant. Spectrosc. Radiat. Transfer 112, 1726-1732.CrossRefGoogle Scholar
Mahon, B. (2003). The Man Who Changed Everything: The Life of James Clerk Maxwell (Wiley, Hoboken, NJ).Google Scholar
Mahon, B. (2009). Oliver Heaviside: Maverick Mastermind of Electricity (IET Press, Herts, UK).CrossRefGoogle Scholar
Mandel, L. and Wolf, E. (1995). Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Marchuk, G. I., Mikhailov, G. A., Nazaraliev, M. A., et al. (1980). The Monte Carlo Methods in Atmospheric Optics (Springer, Berlin). (Original Russian edition: Nauka, Novosibirsk, 1976.)CrossRefGoogle Scholar
Marshak, A. and Davis, A. B., eds. (2005). 3D Radiative Transfer in Cloudy Atmospheres (Springer, Berlin).CrossRef
Marshak, A., Knyazikhin, Yu., Larsen, M. L., and Wiscombe, W. J. (2005). Small-scale drop size variability: empirical models of drop-size-dependent clustering in clouds //J. Atmos. Sci. 62, 551-558.CrossRefGoogle Scholar
Mätzler, C., ed. (2006). Thermal Microwave Radiation: Applications for Remote Sensing (IET Press, London).CrossRef
Maxwell, J. C. (1873). A Treatise on Electricity and Magnetism (Clarendon Press, Oxford) (also Dover, New York, 1954).Google Scholar
Mazeron, P. and Muller, S. (1996). Light scattering by ellipsoids in a physical optics approximation. Appl. Opt. 35, 3726-3735.CrossRefGoogle Scholar
McCluney, W. R. (1994). Introduction to Radiometry and Photometry (Artech House, Boston, MA).Google Scholar
Meland, B., Alexander, J. M., Wong, C.-S., et al. (2012). Evidence for particle size-shape correlations in the optical properties of silicate clay aerosols. J. Quant. Spectrosc. Radiat. Transfer 113, 549-558.CrossRefGoogle Scholar
Meystre, P. and Sargent, M. III, (1999). Elements of Quantum Optics (Springer, Berlin).CrossRefGoogle Scholar
Mie, G. (1908). Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Physik 25, 377-445.Google Scholar
Miller, E. K., Medgyesi-Mitschang, L. N., and Newman, E. H. (1991). Computational Electromagnetics: Frequency Domain Method of Moments (IEEE Press, New York).Google Scholar
Mishchenko, M. I. (1991a). Light scattering by randomly oriented axially symmetric particles. J. Opt. Soc. Am. A 8, 871-882. Errata: 9, 497 (1992).CrossRefGoogle Scholar
Mishchenko, M. I. (1991b). Reflection of polarized light by plane-parallel slabs containing randomly-oriented, nonspherical particles. J. Quant. Spectrosc. Radiat. Transfer 46, 171-181.CrossRefGoogle Scholar
Mishchenko, M. I. (1992a). Polarization characteristics of the coherent backscatter opposition effect. Earth Moon Planets 58, 127-144.CrossRefGoogle Scholar
Mishchenko, M. I. (1992b). Enhanced backscattering of polarized light from discrete random media: calculations in exactly the backscattering direction. J. Opt. Soc. Am. A 9, 978-982.CrossRefGoogle Scholar
Mishchenko, M. I. (1993). On the nature of the polarization opposition effect exhibited by Saturn's rings. Astrophys. J. 411, 351-361.CrossRefGoogle Scholar
Mishchenko, M. I. (2006). Radiative transfer in clouds with small-scale inhomogeneities: the microphysical approach. Geophys. Res. Lett. 33, L14820.CrossRefGoogle Scholar
Mishchenko, M. I. (2007). Electromagnetic scattering by a fixed finite object embedded in an absorbing medium. Opt. Express 15, 13 188-13 202.CrossRefGoogle Scholar
Mishchenko, M. I. (2008a). Multiple scattering by particles embedded in an absorbing medium. 1. Foldy-Lax equations, order-of-scattering expansion, and coherent field. Opt. Express 16, 2288-2301.CrossRefGoogle Scholar
Mishchenko, M. I. (2008b). Multiple scattering by particles embedded in an absorbing medium. 2. Radiative transfer equation. J. Quant. Spectrosc. Radiat. Transfer 109, 2386-2390.CrossRefGoogle Scholar
Mishchenko, M. I. (2009). Gustav Mie and the fundamental concept of electromagnetic scattering by particles: a perspective. J. Quant. Spectrosc. Radiat. Transfer 110, 1210-1222.CrossRefGoogle Scholar
Mishchenko, M. I. (2010). The Poynting-Stokes tensor and radiative transfer in discrete random media: the microphysical paradigm. Opt. Express 18, 19770-19791.CrossRefGoogle ScholarPubMed
Mishchenko, M. I. (2011). Directional radiometry and radiative transfer: a new paradigm. J. Quant. Spectrosc. Radiat. Transfer 112, 2079-2094.CrossRefGoogle Scholar
Mishchenko, M. I. (2013). Measurement of electromagnetic energy flow through a sparse particulate medium: a perspective. J. Quant. Spectrosc. Radiat. Transfer 123, 122-134.CrossRefGoogle Scholar
Mishchenko, M. I. and Dlugach, J. M. (2008). Accuracy of the scalar approximation in computations of diffuse and coherent backscattering by discrete random media. Phys. Rev. A 78, 063822.CrossRefGoogle Scholar
Mishchenko, M. I. and Hovenier, J. W. (1995). Depolarization of light backscattered by randomly oriented nonspherical particles. Opt. Lett. 20, 1356-1358.CrossRefGoogle ScholarPubMed
Mishchenko, M. I. and Lacis, A. A. (2003). Morphology-dependent resonances of nearly spherical particles in random orientation. Appl. Opt. 42, 5551-5556.CrossRefGoogle ScholarPubMed
Mishchenko, M. I. and Martin, P. A. (2013). Peter Waterman and T-matrix methods. J. Quant. Spectrosc. Radiat. Transfer 123, 2-7.CrossRefGoogle Scholar
Mishchenko, M. I. and Sassen, K. (1998). Depolarization of lidar returns by small ice crystals: an application to contrails. Geophys. Res. Lett. 25, 309-312.CrossRefGoogle Scholar
Mishchenko, M. I. and Travis, D. L. (1997). Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight. J. Geophys. Res. 102, 16989-17013.Google Scholar
Mishchenko, M. I. and Travis, L. D. (2008). Gustav Mie and the evolving discipline of electromagnetic scattering by particles. Bull. Am. Meteorol. Soc. 89, 1853-1861.CrossRefGoogle Scholar
Mishchenko, M. I., Rossow, W. B., Macke, A., and Lacis, A. A. (1996). Sensitivity of cirrus cloud albedo, bidirectional reflectance and optical thickness retrieval accuracy to ice particle shape. J. Geophys. Res. 101, 16 973-16 985.CrossRefGoogle Scholar
Mishchenko, M. I., Travis, L. D., Kahn, R. A., and West, R. A. (1997). Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. J. Geophys. Res. 102, 16831-16847.CrossRefGoogle Scholar
Mishchenko, M. I., Hovenier, J. W., and Travis, L. D., eds. (2000). Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, San Diego).
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. (2002). Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, UK; available in the .pdf format at http://www.giss.nasa.gov/staff/mmishchenko/books.html, assessed November 2013). Chinese edition: National Defense Industry Press, Beijing, 2013.Google Scholar
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. (2006). Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University Press, Cambridge, UK; available in the .pdf format at http://www.giss.nasa.gov/staff/ mmishchenko/books.html, assessed November 2013).Google Scholar
Mishchenko, M. I., Berg, M. J., Sorensen, C. M., and van der Mee, C. V. M. (2009a). On definition and measurement of extinction cross section. J. Quant. Spectrosc. Radiat. Transfer 110, 323-327.CrossRefGoogle Scholar
Mishchenko, M. I., Dlugach, J. M., Liu, L., et al. (2009b). Direct solutions of the Maxwell equations explain opposition phenomena observed for high-albedo solar system objects. Astrophys. J. 705, L118-L122.CrossRefGoogle Scholar
Mishchenko, M. I., Rosenbush, V. K., Kiselev, N. N., et al. (2010). Polarimetric Remote Sensing of Solar System Objects (Akademperiodyka, Kyiv; available in the .pdf format at http://arxiv.org/abs/1010.1171, assessed November 2013).CrossRefGoogle Scholar
Mishchenko, M. I., Ya., S.Yatskiv, V. K. Rosenbush, and G., Videen, eds. (2011a). Polarimetric Detection, Characterization, and Remote Sensing (Springer, Dordrecht, The Netherlands).CrossRef
Mishchenko, M. I., V. P., Tishkovets, L. D., Travis, et al. (2011b). Electromagnetic scattering by a morphologically complex object: fundamental concepts and common misconceptions. J. Quant. Spectrosc. Radiat. Transfer 112, 671-692.CrossRefGoogle Scholar
Mishchenko, M. I., Videen, G., Khlebtsov, N. G., and Wriedt, T. (2013a). Comprehensive T-matrix reference database: a 2012-2013 update. J. Quant. Spectrosc. Radiat. Transfer 123, 145-152.CrossRefGoogle Scholar
Mishchenko, M. I., Li, L., and Mackowski, D. W. (2013b). T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols. J. Quant. Spectrosc. Radiat. Transfer 123, 135-144.CrossRefGoogle Scholar
Mishchenko, M. I., Goldstein, D., Chowdhary, J., and Lompado, A. (2013c). Radiative transfer theory verified by controlled laboratory experiments. Opt. Lett. 38, 3522-3525.CrossRefGoogle ScholarPubMed
Mobley, C. D. (1994). Light and Water: Radiative Transfer in Natural Waters (Academic Press, San Diego).Google Scholar
Modest, M. (2013). Radiative Heat Transfer (Academic Press, San Diego).Google Scholar
Morrison, J. A. and Cross, M.-J. (1974). Scattering of a plane electromagnetic wave by axisymmetric raindrops. Bell Syst. Tech. J. 53, 955-1019.CrossRefGoogle Scholar
Mudaliar, S. (2013). Multiple scattering volume-surface interactions. IEEE Trans. Antennas Propag. 61, 3225-3236.CrossRefGoogle Scholar
Muinonen, K. (1989). Scattering of light by crystals: a modified Kirchhoff approximation. Appl. Opt. 28, 3044-3050.Google ScholarPubMed
Muinonen, K. (2004). Coherent backscattering of light by complex random media of spherical scatterers: numerical solution. Waves Random Media 14, 365-388.CrossRefGoogle Scholar
Muinonen, K., Mishchenko, M. I., Dlugach, J. M., et al. (2012). Coherent backscattering verified numerically for a finite volume of spherical particles. Astrophys. J. 760, 118.CrossRefGoogle Scholar
Müller, C. (1969). Foundations of the Mathematical Theory of Electromagnetic Waves (Springer, Berlin).CrossRefGoogle Scholar
Muñoz, O. and Hovenier, J. W. (2011). Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review. J. Quant. Spectrosc. Radiat. Transfer 112, 1646-1657.CrossRefGoogle Scholar
Muñoz, O., Moreno, F., Guirado, D., et al. (2010). Experimental determination of scattering matrices of dust particles at visible wavelengths: the IAA light scattering apparatus. J. Quant. Spectrosc. Radiat. Transfer 111, 187-196.CrossRefGoogle Scholar
Muñoz, O., Moreno, F., Guirado, D., et al. (2012). The Amsterdam-Granada Light Scattering Database. J. Quant. Spectrosc. Radiat. Transfer 113, 565-574.CrossRefGoogle Scholar
Munz, P. (1975). Angular dependence and vectorial effect of the photoemission from EuO. Solid State Commun. 17, 627-630.CrossRefGoogle Scholar
Nahin, P. J. (2002). Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age (Johns Hopkins University Press, Baltimore).Google Scholar
Newton, R. G. (1982). Scattering Theory of Waves and Particles (Springer, New York). (Also: Dover, Mineola, NY, 2002.)CrossRefGoogle Scholar
Nisato, G., Hébraud, P., Munch, J.-P., and Candau, S. J. (2000). Diffusing-wave-spec-troscopy investigation of latex particle motion in polymer gels. Phys. Rev. E 61, 2879-2887.CrossRefGoogle Scholar
Nousiainen, T. (2009). Optical modeling of mineral dust particles: a review. J. Quant. Spectrosc. Radiat. Transfer 110, 1261-1279.CrossRefGoogle Scholar
Novotny, L. and Hecht, B. (2012). Principles of Nano-Optics (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Nussenzveig, H. M. (1992). Diffraction Effects in Semiclassical Scattering (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Oetking, P. (1966). Photometric studies of diffusely reflecting surfaces with applications to the brightness of the Moon. J. Geophys. Res. 71, 2505-2513.CrossRefGoogle Scholar
Oguchi, T. (1973). Scattering properties of oblate raindrops and cross polarization of radio waves due to rain: calculations at 19.3 and 34.8 GHz. J. Radio Res. Lab. Japan 20, 79-118.Google Scholar
Onaka, T. (1980). Light scattering by spheroidal grains. Ann. Tokyo Astron. Observ. 18, 1-54.Google Scholar
Ostro, S. J. (1993). Planetary radar astronomy. Rev. Mod. Phys. 65, 1235-1279.CrossRefGoogle Scholar
Oxenius, J. (1986). Kinetic Theory of Particles and Photons (Springer, Berlin).CrossRefGoogle Scholar
Panetta, R. L., Liu, C., and Yang, P. (2013). A pseudo-spectral time domain method for light scattering computation. Light Scattering Rev. 8, 139-188.Google Scholar
Peltoniemi, J., Hakala, T., Suomalainen, J., and Puttonen, E. (2009). Polarised bidirectional reflectance factor measurements from soil, stones, and snow. J. Quant. Spectrosc. Radiat. Transfer 110, 1940-1953.CrossRefGoogle Scholar
Penttilä, A. and Lumme, K. (2004). The effect of particle shape on scattering—a study with a collection of axisymmetric particles and sphere clusters. J. Quant. Spectrosc. Radiat. Transfer 89, 303-310.CrossRefGoogle Scholar
Perrin, F. (1942). Polarization of light scattered by isotropic opalescent media. J. Chem. Phys. 10, 415-427.CrossRefGoogle Scholar
Perry, R. J., Hunt, A. J., and Huffman, D. R. (1978). Experimental determination of Mueller scattering matrices for nonspherical particles. Appl. Opt. 17, 2700-2710.CrossRefGoogle ScholarPubMed
Peterson, B. and Ström, S. (1973). T matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3)*. Phys. Rev. D 8, 3661-3678.CrossRefGoogle Scholar
Peterson, B. and Ström, S. (1974). T-matrix formulation of electromagnetic scattering from multilayered scatterers. Phys. Rev. D 10, 2670-2684.CrossRefGoogle Scholar
Peterson, A. F., Ray, S. L., and Mittra, R. (1998). Computational Methods for Electromagnetics (IEEE Press, New York).Google Scholar
Petty, G. W. (2006). A First Course in Atmospheric Radiation (Sundog Publishing, Madison, WI).Google Scholar
Planck, M. (1906). Theorie der Wärmestrahlung (Verlag Von Johann Ambrosius Barth, Leipzig). (English translation: The Theory of Heat Radiation, Blakiston's Son & Co., Philadelphia, 1914).Google Scholar
Poincaré, H. (1890). Sur le problème des trois corps et les équations de la Dynamique. Acta Math. 13, 1-270.Google Scholar
Poincaré, H. (1892). Théorie Mathématique de la Lumière, Vol. 2 (Georges Carré, Paris).Google Scholar
Poincaré, H. (1904). L'état actuel et l'avenir de la Physique mathématique. Bull. Sci. Math. 28, 302-324. English translations: The principles of mathematical physics. In Congress of Arts and Science, St. Louis, 1904, Vol. I., ed. H. J. Rogers, pp. 604-622 (Riverside Press, Cambridge, MA, 1905); The present and the future of mathematical physics. Bull Am. Math. Soc. 37, 25-38 (2000).Google Scholar
Poincaré, H. (1905). Sur la dynamique de l'électron. Compt. Rend. Acad. Sci. 140, 1504-1508.Google Scholar
Poincaré, H. (1906). Sur la dynamique de l'électron. Rend. Circ. Matem. Palermo 21, 129-175.CrossRefGoogle Scholar
Pomraning, G. C. (1991). Linear Kinetic Theory and Particle Transport in Stochastic Mixtures (World Scientific, Singapore).CrossRefGoogle Scholar
Power, E. A. (1964). Introductory Quantum Electrodynamics (Longmans, London).Google Scholar
Poynting, J. H. (1884). On the transfer of energy in the electromagnetic field. Phil. Trans. R. Soc. London 175, 343-361.Google Scholar
Preisendorfer, R. W. (1965). Radiative Transfer on Discrete Spaces (Pergamon Press, Oxford).Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in FORTRAN (Cambridge University Press, Cambridge, UK).Google Scholar
Priestley, M. B. (1992). Spectral Analysis and Time Series (Academic Press, London).Google Scholar
Prishivalko, A. P., Babenko, V. A., and Kuzmin, V. N. (1984). Scattering and Absorption of Light by Inhomogeneous and Anisotropic Spherical Particles (Nauka i Tekhnika, Minsk, USSR) (in Russian).Google Scholar
Psarev, V., Ovcharenko, A., Shkuratov, Yu., et al. (2007). Photometry of particulate surfaces at extremely small phase angles. J. Quant. Spectrosc. Radiat. Transfer 106, 455-463.CrossRefGoogle Scholar
Purcell, E. M. and Pennypacker, C. R. (1973). Scattering and absorption of light by non-spherical dielectric grains. Astrophys. J. 186, 705-714.CrossRefGoogle Scholar
Pusey, P. N. and van Megen, W. (1989). Dynamic light scattering by non-ergodic media. Physica A 157, 705-741.CrossRefGoogle Scholar
Pye, D. (2001). Polarised Light in Science and Nature (Institute of Physics, Bristol, UK).CrossRefGoogle Scholar
Quinten, M. (2011). Optical Properties of Nanoparticle Systems (Wiley-VCH, Weinheim, Germany).CrossRefGoogle Scholar
Ray, A. K. and Nandakumar, R. (1995). Simultaneous determination of size and wavelength-dependent refractive indices of thin-layered droplets from optical resonances. Appl. Opt. 34, 7759-7770.CrossRefGoogle ScholarPubMed
Rayleigh, Lord (1871a). On the light from the sky, its polarization and colour. Phil. Mag. 41, 107-120, 274-279.Google Scholar
Rayleigh, Lord (1871b). On the scattering of light by small particles. Phil. Mag. 41, 447-454.Google Scholar
Rayleigh, Lord (1881). On the electromagnetic theory of light. Phil. Mag. 12, 81-101.CrossRefGoogle Scholar
Rayleigh, Lord (1897). On the incidence of aerial and electric waves upon small obstacles in the form of ellipsoids or elliptic cylinders, and on the passage of electric waves through a circular aperture in a conducting screen. Phil. Mag. 44, 28-52.CrossRefGoogle Scholar
Rayleigh, Lord (1907). On the dynamical theory of gratings. Proc. Roy. Soc. A 79, 399-416.CrossRefGoogle Scholar
Robinson, F. N. H. (1973). Macroscopic Electromagnetism (Pergamon Press, Oxford).Google Scholar
Rose, M. E. (1957). Elementary Theory of Angular Momentum (Wiley, New York). (Also: Dover Publications, New York, 1995.)Google Scholar
Rosenbush, V. K. and Mishchenko, M. I. (2011). Opposition planetary phenomena in planetary astrophysics: observational results. In Polarimetric Detection, Characterization, and Remote Sensing, ed. M. I., Mishchenko, Ya., S.Yatskiv, V. K. Rosenbush, and G., Videen, pp. 409-436 (Springer, Dordrecht, The Netherlands).Google Scholar
Rother, T. and Kahnert, M. (2014). Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations (Springer, Berlin).CrossRefGoogle Scholar
Rothwell, E. J. and Cloud, M. J. (2009). Electromagnetics (CRC Press, Boca Raton, FL).Google Scholar
Roychoudhuri, C., Kracklauer, A. F., and Creath, K., eds. (2008). The Nature of Light: What is a Photon (CRC Press, Boca Raton, FL).CrossRef
Rozenberg, G. V. (1955). Stokes vector-parameter. Uspekhi Fiz. Nauk 56(1), 77-110 (in Russian).Google Scholar
Sassen, K. (2000). Lidar backscatter depolarization technique for cloud and aerosol research. In Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, ed. M. I., Mishchenko, J. W., Hovenier, and L. D., Travis, pp. 393-416 (Academic Press, San Diego).Google Scholar
Saxon, D. S. (1955a). Tensor scattering matrix for the electromagnetic field. Phys. Rev. 100, 1771-1775.CrossRefGoogle Scholar
Saxon, D. S. (1955b). Lectures on the scattering of light (Scientific Report No. 9, Department of Meteorology, University of California at Los Angeles).
Scheffold, F., Skipetrov, S. E., Romer, S., and Schurtenberger, P. (2001). Diffusing-wave spectroscopy of nonergodic media. Phys. Rev. E 63, 061404.CrossRefGoogle ScholarPubMed
Schelkunoff, S. A. (1972). On teaching the undergraduate electromagnetic theory. IEEE Trans. Education 15, 15-25.CrossRefGoogle Scholar
Schnaiter, M., Büttner, S., Möhler, O., et al. (2012). Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals-cloud chamber measurements in the context of contrail and cirrus microphysics. Atmos. Chem. Phys. 12, 10465-10484.CrossRefGoogle Scholar
Schot, S. H. (1992). Eighty years of Sommerfeld's radiation condition. Hist. Math. 19, 385-401.CrossRefGoogle Scholar
Schuster, A. (1905). Radiation through a foggy atmosphere. Astrophys. J. 21, 1-22.CrossRefGoogle Scholar
Scully, M. O. and Zubairy, M. S. (1997). Quantum Optics (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Shchegrov, A. V., Maradudin, A. A., and Méndez, E. R. (2004). Multiple scattering of light from randomly rough surfaces. Prog. Opt. 46, 117-241.Google Scholar
Sheng, P. (2006). Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Springer, Berlin).Google Scholar
Shifrin, K. S. (1988). Physical Optics of Ocean Water (AIP Press, New York). (Original Russian edition: Gidrometeoizdat, Leningrad, 1983.)Google Scholar
Shkuratov, Yu. G., Muinonen, K., Bowell, E., et al. (1994). A critical review of theoretical models of negatively polarized light scattered by atmosphereless solar system bodies. Earth Moon Planets 65, 201-246.CrossRefGoogle Scholar
Shkuratov, Yu., Bondarenko, S., Ovcharenko, A., et al. (2006). Comparative studies of the reflectance and degree of linear polarization of particulate surfaces and independently scattering particles. J. Quant. Spectrosc. Radiat. Transfer 100, 340-358.CrossRefGoogle Scholar
Shkuratov, Yu., Bondarenko, S., Kaydash, V., et al. (2007). Photometry and polarimetry of particulate surfaces and aerosol particles over a wide range of phase angles. J. Quant. Spectrosc. Radiat. Transfer 106, 487-508.CrossRefGoogle Scholar
Shurcliff, W. A. (1962). Polarized Light: Production and Use (Harvard University Press, Cambridge, MA).CrossRefGoogle Scholar
Silver, S., ed. (1949). Microwave Antenna Theory and Design (McGraw-Hill, New York).
Silvester, P. P. and Ferrari, R. L. (1996). Finite Elements for Electrical Engineers (Cambridge University Press, New York).CrossRefGoogle Scholar
Smoluchowski, von M. (1908). Molekular-kinetische Theorie der Opaleszenz von Gasen im kritischen Zustande, sowie einiger verwandter Erscheinungen. Ann. Phys. 25, 205-226.Google Scholar
Snabre, P. and Pouligny, B. (2008). Size segregation in a fluid-like or gel-like suspension settling under gravity or in a centrifuge. Langmuir 24, 13 338-13 347.CrossRefGoogle ScholarPubMed
Sobolev, V. V. (1975). Light Scattering in Planetary Atmospheres (Pergamon Press, Oxford). (Original Russian edition: Nauka, Moscow, 1972.)Google Scholar
Somerville, W. R. C., Auguié, B., and Le Ru, E. C. (2013). A new numerically stable implementation of the T-matrix method for electromagnetic scattering by spheroidal particles. J. Quant. Spectrosc. Radiat. Transfer 123, 153-168.CrossRefGoogle Scholar
Sommerfeld, A. (1912). Die Greensche Funktion der Schwingungsgleichung. Jahresber. Deutsch. Math.-Verein. 21, 309-353.Google Scholar
Sorensen, C. M. (2001). Light scattering by fractal aggregates: a review. Aerosol. Sci. Technol. 35, 648-687.CrossRefGoogle Scholar
Spinrad, R. W., Carder, K. L., and Perry, M. J., eds. (1994). Ocean Optics (Oxford University Press, New York).
Stephens, G. L. (1994). Remote Sensing of the Lower Atmosphere (Oxford University Press, New York).Google Scholar
Stokes, G. G. (1852). On the composition and resolution of streams of polarized light from different sources. Trans. Cambridge Philos. Soc. 9, 399-416.Google Scholar
Stoletov, A. G. (1889). Actinoelectric Investigations (V. Demakov Publishing House, St. Petersburg; available in the .pdf format at http://e-heritage.ru/ras/view/publication/general.html?id=42070560).Google Scholar
Stratton, J. A. (1941). Electromagnetic Theory (McGraw Hill, New York). (Also: Wiley, Hoboken, NJ, 2007.)Google Scholar
Suttorp, L. G. (1989). Statistical foundations of electrodynamic theory. In Physics in the Making, ed. A., Sarlemijn and M. J., Sparnaay, pp. 167-194 (Elsevier, Amsterdam).Google Scholar
Suttorp, L. G. and Wubs, M. (2004). Field quantization in inhomogeneous absorptive dielectrics. Phys. Rev. A 70, 013816.CrossRefGoogle Scholar
Szegö, G. (1959). Orthogonal Polynomials (American Mathematical Society, New York).Google Scholar
Taflove, A. and Hagness, S. C. (2005). Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston).Google Scholar
Tai, C.-T. (1994). Dyadic Green Functions in Electromagnetic Theory (IEEE Press, New York).Google Scholar
Taylor, J. R., Zafiratos, C. D., and Dubson, M. A. (2004). Modern Physics for Scientists and Engineers (Prentice Hall, Upper Saddle River, NJ).Google Scholar
Thomas, G. E. and Stamnes, K. (1999). Radiative Transfer in the Atmosphere and Ocean (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Tinbergen, J. (1996). Astronomical Polarimetry (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Tishchenko, A. V. (2010). Rayleigh was right: electromagnetic fields and corrugated interfaces. Opt. Photon. News 21(7), 50-54.CrossRefGoogle Scholar
Tishkovets, V. P., Petrova, E. V., and Mishchenko, M. I. (2011). Scattering of electromagnetic waves by ensembles of particles and discrete random media. J. Quant. Spec-trosc. Radiat. Transfer 112, 2095-2127.Google Scholar
Tolstoy, I. (1981). James Clerk Maxwell: A Biography (Canongate, Edinburgh).Google Scholar
Tsang, L. and Ishimaru, A. (1984). Backscattering enhancement of random discrete scatterers. J. Opt. Soc. Am. A 1, 836-839.CrossRefGoogle Scholar
Tsang, L., Kong, J. A., and Shin, R. T. (1985). Theory of Microwave Remote Sensing (Wiley, New York).Google Scholar
Tsang, L., Kong, J. A., and Ding, K.-H. (2000). Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York).CrossRefGoogle Scholar
Tu, H. and Ray, A. K. (2001). Analysis of time-dependent scattering spectra for studying processes associated with microdroplets. Appl. Opt. 40, 2522-2534.CrossRefGoogle ScholarPubMed
Tuchin, V. V., ed. (2002). Handbook of Optical Biomedical Diagnostics (SPIE Press, Bellingham, WA).
Tuchin, V. V. (2007). Tissue Optics. Light Scattering Methods and Instruments for Medical Diagnostics (SPIE Press, Bellingham, WA).Google Scholar
Tuchin, V. V., Wang, L. V., and Zimnyakov, D. A. (2006). Optical Polarization in Biomedical Applications (Springer, Berlin).Google Scholar
Twersky, V. (1964). On propagation in random media of discrete scatterers. Proc. Symp. Appl. Math. 16, 84-116.Google Scholar
Uhlenbeck, G. E. and Ford, G. W. (1963). Lectures in Statistical Mechanics (American Mathematical Society, Providence, RI).Google Scholar
Ulaby, F. T. and Elachi, C., eds. (1990). Radar Polarimetry for Geoscience Applications (Artech House, Norwood, MA).
Vaillon, R., Geffrin, J.-M., Eyraud, C., et al. (2011). A new implementation of a microwave analog to light scattering measurement device. J. Quant. Spectrosc. Radiat. Transfer 112, 1753-1760.CrossRefGoogle Scholar
Van Albada, M. P. and Lagendijk, A. (1985). Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692-2695.Google Scholar
Van Bladel, J. (1961). Some remarks on Green's dyadic for infinite space. IRE Trans. Antennas Propag. 9, 563-566.CrossRefGoogle Scholar
Van Bladel, J. G. (2007). Electromagnetic Fields (Wiley, Hoboken, NJ).CrossRefGoogle Scholar
van de Hulst, H. C. (1957). Light Scattering by Small Particles (Wiley, New York). (Also: Dover, New York, 1981.)Google Scholar
van de Hulst, H. C. (1980). Multiple Light Scattering. Tables, Formulas, and Applications, Vols. 1 and 2 (Academic Press, San Diego).Google Scholar
van der Mee, C. V. M. and Hovenier, J. W. (1990). Expansion coefficients in polarized light transfer. Astron. Astrophys. 228, 559-568.Google Scholar
Varshalovich, D. A., Moskalev, A. N., and Khersonskii, V. K. (1988). Quantum Theory of Angular Momentum (World Scientific, Singapore). (Original Russian edition: Nauka, Leningrad, 1975.)CrossRefGoogle Scholar
Verhulst, F. (2012). Henri Poincaré-Impatient Genius (Springer, New York).CrossRefGoogle Scholar
Videen, G., Ngo, D., Chýlek, P., and Pinnick, R. G. (1995). Light scattering from a sphere with an irregular inclusion. J. Opt. Soc. Am. A 12, 922-928.CrossRefGoogle Scholar
Videen, G., Yatskiv, Ya., and Mishchenko, M., eds. (2004). Photopolarimetry in Remote Sensing (Kluwer Academic Publishers, Dordrecht, The Netherlands).
Vladimirov, V. S. (1971). Equations of Mathematical Physics (Marcel Dekker, New York).Google Scholar
Voit, F., Schäfer, J., and Kienle, A. (2009) Light scattering by multiple spheres: comparison between Maxwell theory and radiative-transfer-theory calculations. Opt. Lett. 34, 2593-2595.CrossRefGoogle ScholarPubMed
Volakis, J. L., Chatterjee, A., and Kempel, L. C. (1998). Finite Element Method for Electromagnetics (IEEE Press, New York).CrossRefGoogle Scholar
Volkov, S. N., Samokhvalov, I. V., and Kim, D. (2013). Assessing and improving the accuracy of T-matrix calculation of homogeneous particles with point-group symmetries. J. Quant. Spectrosc. Radiat. Transfer 123, 169-175.CrossRefGoogle Scholar
Volten, H., Muñoz, O., Rol, E., et al. (2001). Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm. J. Geophys. Res. 106, 17 375-17 402.CrossRefGoogle Scholar
Voshchinnikov, N. V. and Farafonov, V. G. (1993). Optical properties of spheroidal particles. Astrophys. Space Sci. 204, 19-86.CrossRefGoogle Scholar
Wagner, R., Linke, C., Naumann, K.-H., et al. (2009). A review of optical measurements at the aerosol and cloud chamber AIDA. J. Quant. Spectrosc. Radiat. Transfer 110, 930-949.CrossRefGoogle Scholar
Waterman, P. C. (1971). Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D 3, 825-839.CrossRefGoogle Scholar
Watson, K. M. (1953). Multiple scattering and the many-body problem – applications to photomeson production in complex nuclei. Phys. Rev. 89, 575-587.CrossRefGoogle Scholar
Watson, K. M. (1969). Multiple scattering of electromagnetic waves in an underdense plasma. J. Math. Phys. 10, 688-702.CrossRefGoogle Scholar
Wehrse, R. and Kalkofen, W. (2006). Advances in radiative transfer. Astron. Astrophys. Rev. 13, 3-29.CrossRefGoogle Scholar
Weinzierl, B., Petzold, A., Esselborn, M., et al. (2009). Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006. Tellus B 61, 96-117.CrossRefGoogle Scholar
Welch, A. J. and van Gemert, M. J. C., eds. (2011). Optical-Thermal Response of Laser-Irradiated Tissue (Springer, Berlin).CrossRef
Wendisch, M. and Yang, P. (2012). Theory of Atmospheric Radiative Transfer (Wiley- VCH, Weinheim, Germany).Google Scholar
West, R. A. (1991). Optical properties of aggregate particles whose outer diameter is comparable to the wavelength. Appl. Opt. 30, 5316-5324.CrossRefGoogle ScholarPubMed
Whittaker, E. (1987). A History of the Theories of Aether and Electricity, Vols. I and II (American Institute of Physics, New York).Google Scholar
Wiscombe, W. J. (2005). Scales, tools and reminiscences. In 3D Radiative Transfer in Cloudy Atmospheres, eds. A., Marshak and A. B., Davis, pp. 3-92 (Springer, Berlin).Google Scholar
Wolf, E. (1978). Coherence and radiometry. J. Opt. Soc. Am. 68, 6-17.CrossRefGoogle Scholar
Wolf, P.-E. and Maret, G. (1985). Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696-2699.CrossRefGoogle ScholarPubMed
Wriedt, T., ed. (1999). Generalized Multipole Techniques for Electromagnetic and Light Scattering (Elsevier, Amsterdam).
Wriedt, T. (2002). Using the T-matrix method for light scattering computations by non-axisymmetric particles: superellipsoids and realistically shaped particles. Part. Part. Syst. Charact. 19, 256-268.3.0.CO;2-8>CrossRefGoogle Scholar
Xue, J.-Z., Pine, D. J., Milner, S. T., et al. (1992). Nonergodicity and light scattering from polymer gels. Phys. Rev. A 46, 6550-6563.CrossRefGoogle ScholarPubMed
Yang, P. and Liou, K. N. (1996). Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. Appl. Opt. 35, 6568-6584.CrossRefGoogle ScholarPubMed
Yang, P. and Liou, K. N. (2000). Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles. In Light Scattering by Nonspheri-cal Particles: Theory, Measurements, and Applications, ed. M. I., Mishchenko, J. W., Hovenier, and L. D., Travis, pp. 173-221 (Academic Press, San Diego).Google Scholar
Yang, P. and Liou, K. N. (2006). Light scattering and absorption by nonspherical ice crystals. Light Scattering Rev. 1, 31-71.Google Scholar
Yanovitskij, E. G. (1997). Light Scattering in Inhomogeneous Atmospheres (Springer, Berlin).CrossRefGoogle Scholar
Yee, K. S. (1966). Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302-307.Google Scholar
Yosida, K. (1960). Lectures on Differential and Integral Equations (Interscience, New York).Google Scholar
Yurkin, M. A. and Hoekstra, A. G. (2007). The discrete dipole approximation: an overview and recent developments. J. Quant. Spectrosc. Radiat. Transfer 106, 558-589.CrossRefGoogle Scholar
Yurkin, M. A. and Hoekstra, A. G. (2011). The discrete-dipole-approximation code ADDA: capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer 112, 2234-2247.CrossRefGoogle Scholar
Zangwill, A. (2013). Modern Electrodynamics (Cambridge University Press, Cambridge, UK).Google Scholar
Zdunkowski, W., Trautmann, T., and Bott, A. (2007). Radiation in the Atmosphere (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Zender, C. S. and Talamantes, J. (2006). Solar absorption by Mie resonances in cloud droplets. J. Quant. Spectrosc. Radiat. Transfer 98, 122-129.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Michael I. Mishchenko, NASA-Goddard Space Flight Center
  • Book: Electromagnetic Scattering by Particles and Particle Groups
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139019064.032
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Michael I. Mishchenko, NASA-Goddard Space Flight Center
  • Book: Electromagnetic Scattering by Particles and Particle Groups
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139019064.032
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Michael I. Mishchenko, NASA-Goddard Space Flight Center
  • Book: Electromagnetic Scattering by Particles and Particle Groups
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139019064.032
Available formats
×