Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-04-30T22:33:23.287Z Has data issue: false hasContentIssue false

4 - Small Oscillations and Wave Motion

Published online by Cambridge University Press:  06 November 2019

P. C. Deshmukh
Affiliation:
Indian institute of Technology, Tirupati, India
Get access

Summary

I will be the waves and you will be a strange shore.

I shall roll on and on and on, and break upon your lap with laughter.

And no one in the world will know where we both are.

—Rabindranath Tagore

BOUNDED MOTION IN ONE-DIMENSION, SMALL OSCILLATIONS

Rise and fall, ups and downs, profit and loss, success and failure, happiness and sorrow—almost every experience in life seems to be in a state of oscillation. It is the undulations of the sound waves in air which enable us to hear each other, and it is undulations of the electromagnetic waves in vacuum which bring energy (light) from the stars to us. Quantum theory tells us that there is a wave associated with every particle, and that leaves us with absolutely nothing in the physical world that is not associated with oscillations. Oscillations of what, where and how can only be a matter of details, but there is little doubt that the physical universe requires for its rigorous study an understanding of ‘oscillations’. Oscillations are repetitive physical phenomena, which swing past some event, back and forth. They are ubiquitous, and they maintain things close to some mean behavior, at least most of the times. Whether it is the breeze jiggling the leaves, the rhythmic beating of the heart that is the acclamation of life itself, the gentle ripples on a river bed, or the mighty tides in the oceans, or for that matter fluctuations in the share market, we are always dealing with some expression of the simple harmonic oscillator, or a superposition of several of these, however, complex.

We have learned in earlier chapters that equilibrium, defined as motion at constant momentum, sustains itself when the object is left alone, completely determined by initial conditions. Departure from equilibrium is accounted for by Newton's equation of motion (second law), or equivalently (as we shall see in Chapter 6) by Lagrange's, or Hamilton's equations. In a 1-dimensional region of space, say along the X-axis, we consider a region in which the equilibrium of a particle may change because of spatial dependence of its interaction with the environment. This is represented by a space-dependent potential V(x).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×