Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T06:22:40.195Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 March 2015

Luigi Lugiato
Affiliation:
Università degli Studi dell'Insubria, Italy
Franco Prati
Affiliation:
Università degli Studi dell'Insubria, Italy
Massimo Brambilla
Affiliation:
Università degli Studi e Politecnico di Bari, Italy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] A., Einstein, Zur Quantentheorie der Strahlung, Phys. Z. 18, 121 (1917)Google Scholar
[2] M., Planck, Über eine Verbesserung der Wienschen Spektralgleichung, Verhandl. Dtsch. Phys. Ges. 2, 202 (1900); Zur Theorie des Gesetzes der Energieverteilung im Normalspekrum, Verhandl. Dtsch. Phys. Ges.2, 237 (1900)Google Scholar
[3] C., Cohen-Tannoudji, B., Diu, and F., Laloë, Quantum Mechanics, Vols. 1 and 2 (Paris: Wiley and Hermann, 1977)Google Scholar
[4] C., Cohen-Tannoudji, J., Dupont-Roc, and G., Grynberg, Photons and Atoms, Introduction to Quantum Electrodynamics, (New York: Wiley, 1989)Google Scholar
[5] C., Cohen-Tannoudji, J., Dupont-Roc, and G., Grynberg, Atom–Photon Interactions: Basic Processes and Applications (New York: Wiley, 1992)Google Scholar
[6] O., Svelto, Principles of Lasers (New York: Plenum, 1989)Google Scholar
[7] H., Haken, Laser Theory in S., Flugge and L., Genzel (eds.), Handbuch der Physik (Encyclopedia of Physics) vol. XXV/2C (Berlin: Springer, 1970)Google Scholar
[8] M., Sargent III, M. O., Scully, and W., Lamb, Jr., Laser Physics (Reading, MA: Addison-Wesley, 1974)Google Scholar
[9] A., Yariv, Quantum Electronics (New York: Wiley, 1975)Google Scholar
[10] A., Yariv, Optical Electronics (New York: Wiley, 1977)Google Scholar
[11] H., Haken, Light, Vols. 1 and 2 (Amsterdam: North-Holland, 1981)Google Scholar
[12] M., Bertolotti, Masers and Lasers (Bristol: Adam Hilger, 1983)Google Scholar
[13] P. L., KnightQuantum Electronics and Electro-optics (New York: Wiley, 1983)Google Scholar
[14] A. E., Siegman, Lasers (Mill Valley, CA: University Science Books, 1986)Google Scholar
[15] A. N., Oraevski, Research on Laser Theory (Commack, NY: Nova, 1988)Google Scholar
[16] P. M., Milonni and J. H., Eberly, Lasers (New York: Wiley, 1986)Google Scholar
[17] K., Shimoda, Introduction to Laser Physics (Berlin: Springer, 1981)Google Scholar
[18] G., Grynberg, A., Aspect, and C., Fabre, Introduction to Quantum Optics (Cambridge: Cambridge University Press, 2010)Google Scholar
[19] D., Meschede, Light and Lasers (Weinheim: Wiley-VCH, 2004)Google Scholar
[20] B. E. A., Saleh and N. C., Teich, Fundamentals of Photonics, 2nd edn. (New York: Wiley, 2007)Google Scholar
[21] V., Degiorgio and I., Cristiani, Photonics. A Short Course (Springer, Berlin, 2014)Google Scholar
[22] M. O., Scully and M. S., Zubairy, Quantum Optics (Cambridge: Cambridge University Press, 2001)Google Scholar
[23] L., Allen and J. H., Eberly, Optical Resonance & Two-Level Atoms (New York: Wiley, 1975), reprinted in 1987 (New York: Dover)Google Scholar
[24] L., Mandel and E., Wolf, Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press, 1995)Google Scholar
[25] W. P., Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2005)Google Scholar
[26] J., von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton, MA: Princeton University Press, 1955)Google Scholar
[27] I. I., Rabi, Space quantization in a gyrating magnetic field, Phys. Rev. 51, 652 (1937)Google Scholar
[28] F., Bloch, Nuclear induction, Phys. Rev. 60, 460 (1946)Google Scholar
[29] P., Mandel, Nonlinear Optics, An Analytical Approach (Weinheim: VCH Verlagsgesellschaft, 2010)Google Scholar
[30] M., Lax, W. H., Louisell, and W. B., McKnight, From Maxwell to paraxial wave optics, Phys. Rev. A 11, 1365 (1975)Google Scholar
[31] O., Hess, Spatio-Temporal Dynamics of Semiconductor Lasers (Berlin: Wissenschaft und Technik Verlag, 1993)Google Scholar
[32] F. T., Arecchi and R., Bonifacio, Theory of optical maser amplifiers, IEEE J. Quantum Electron. 1, 169 (1965)Google Scholar
[33] A., Icsevgi and W. E., Lamb, Jr., Propagation of light pulses in a laser amplifier, Phys. Rev. 195, 517 (1969)Google Scholar
[34] S. L., McCall and E. L., Hahn, Self-induced transparency, Phys. Rev. 183, 457 (1969)Google Scholar
[35] R. H., Dicke, Coherence in spontaneous radiation processes, Phys. Rev. 93, 99 (1954)Google Scholar
[36] N., ERehler and J. H., Eberly, Superradiance, Phys. Rev. A 3, 1735 (1971)Google Scholar
[37] R., Bonifacio, P., Schwendimann, and F., Haake, Quantum statistical theory of super-radiance. Parts I and II, Phys. Rev. A 4, 302, 854 (1971)Google Scholar
[38] F. T., Arecchi and E., Courtens, Cooperative phenomena in resonant electromagnetic propagation, Phys. Rev. A 2, 1730 (1970)Google Scholar
[39] H. M., Gibbs, Q. H. F., Vrehen, and H. M. J., Hikspoors, Single-pulse superfluorescence in cesium, Phys. Rev. Lett. 39, 547 (1977)Google Scholar
[40] R., Bonifacio and L. A., Lugiato, Cooperative radiation processes in two-level systems: Superfluorescence, Phys. Rev. A 11, 1507 (1975)Google Scholar
[41] N., Skribanowitz, I. P., Herman, J. C., MacGillivray, and M. S., Feld, Observation of Dicke superradiance in optically pumped HF gas, Phys. Rev. Lett. 30, 309 (1973)Google Scholar
[42] R., Bonifacio and G., Preparata, Coherent spontaneous emission, Phys. Rev. A 2, 336 (1970)Google Scholar
[43] M., Tavis and F. W., Cummings, Exact solution for an N-molecule-radiation-field Hamiltonian, Phys. Rev. 170, 379 (1968)Google Scholar
[44] E. T., Jaynes and F. W., Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51, 89 (1963)Google Scholar
[45] P., Goy, J. M., Raimond, M., Gross, and S., Haroche, Observation of cavity-enhanced single-atom spontaneous emission, Phys. Rev. Lett. 50, 1903 (1983)Google Scholar
[46] D., Meschede, H., Walther, and G., Müller, One-atom maser, Phys. Rev. Lett. 54, 551 (1985)Google Scholar
[47] B. R., Mollow, Power spectrum of light scattered by two-level systems, Phys. Rev. 188, 1969 (1969)Google Scholar
[48] E. V., Goldstein and P., Meystre, Dipole–dipole interaction in optical cavities, Phys. Rev. A 56, 5135 (1997)Google Scholar
[49] P., Meystre and M., Sargent III, Elements of Quantum Optics (Berlin: Springer, 1990)Google Scholar
[50] J. D., Jackson, Classical Electrodynamics, 3rd edn. (New York: Wiley, 1998)Google Scholar
[51] P. A., Franken, A. E., Hill, C. W., Peters, and G., Weinreich, Generation of optical harmonics, Phys. Rev. Lett. 7, 118 (1961)Google Scholar
[52] J. A., Armstrong, N., Bloembergen, J., Ducuing, and P. S., Persham, Interactions between light waves in a nonlinear dielectric, Phys. Rev. 127, 1918 (1962)Google Scholar
[53] N., Bloembergen and P. S., Pershan, Light waves at the boundary of nonlinear media, Phys. Rev. 128, 606 (1962)Google Scholar
[54] N., Bloembergen and Y. R., Shen, Quantum-theoretical comparison of nonlinear susceptibilities in parametric media, lasers, and Raman lasers, Phys. Rev. A 133, 37 (1964)Google Scholar
[55] A. C., Newell and J. V., Moloney, Nonlinear Optics (Reading, MA: Addison-Wesley, 1992)Google Scholar
[56] N., Bloembergen, Nonlinear Optics (Singapore: World Scientific, 1996)Google Scholar
[57] R., Menzel, Photonics – Linear and Nonlinear Interactions of Laser Light and Matter (Berlin: Springer, 2001)Google Scholar
[58] Y. R., Shen, The Principles of Nonlinear Optics (New York: Wiley, 2002)Google Scholar
[59] R. W., Boyd, Nonlinear Optics (Amsterdam: Elsevier, 2008)Google Scholar
[60] G. I., Stegeman and R. A., Stegeman, Nonlinear Optics: Phenomena, Materials and Devices (New York: Wiley, 2012)Google Scholar
[61] V. G., Dmitriev, G. G., Gurzadyan, and N., Nikogosyan, Handbook of Nonlinear Optical Crystals (Berlin: Springer, 1991)Google Scholar
[62] R., Loudon, The Quantum Theory of Light (Oxford: Oxford University Press, 2000)Google Scholar
[63] G., Milburn and D. F., Walls, Quantum Optics, 2nd edn. (Berlin: Springer, 2008)Google Scholar
[64] C. C., Gerry and P. L., Knight, Introductory Quantum Optics (Cambridge: Cambridge University Press, 2005)Google Scholar
[65] G., Grynberg, A., Aspect, and C., Fabre, Introduction to Lasers and Quantum Optics (Cambridge: Cambridge University Press, 2010)Google Scholar
[66] G. S., Agarwal, Quantum Optics (Cambridge: Cambridge University Press, 2012)Google Scholar
[67] A., Gatti, E., Brambilla and L. A., Lugiato, Quantum imaging, in E., Wolf (ed.) Progress in Optics vol. LI (Amsterdam: Elsevier, 2008)Google Scholar
[68] V. E., Zacharov and A. B., Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34, 62 (1972)Google Scholar
[69] L. F., Mollenauer, R. H., Stolen, and J. P., Gordon, Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett. 45, 1095 (1980)Google Scholar
[70] A. A., Barthelemy, S., Maneuf, and C., Froelich, Soliton propagation and self confinement of laser beams by Kerr optical nonlinearity, Opt. Commun. 55, 201 (1985)Google Scholar
[71] J. S., Aitchison, Y., Silberberg, A. M., Weiner et al., Spatial optical solitons in planar glass waveguides, J. Opt. Soc. Am. B 8, 1290 (1991)Google Scholar
[72] J. E., Bjorkholm and A., Ashkin, CW self-focusing and self-trapping of light in sodium vapor, Phys. Rev. Lett. 32, 129 (1974)Google Scholar
[73] B., Crosignani, M., Segev, D., Engin et al. Self-trapping of optical beams in photorefractive media, J. Opt. Soc. Am. B 10, 446 (1993)Google Scholar
[74] G. L., Lamb, Elements of Soliton Theory (New York: Wiley, 1980)Google Scholar
[75] G. P., Agrawal and R. W., Boyd, Contemporary Nonlinear Optics (New York: Academic Press, 1992)Google Scholar
[76] J. R., Taylor, Optical Solitons, Theory and Experiment (Cambridge: Cambridge University Press, 1992)Google Scholar
[77] N. N., Akhmediev and A., Ankiewicz, Solitons: Nonlinear Pulses and Beams (London: Chapman and Hall, 1997)Google Scholar
[78] A. V., Buryak, P., Di Trapani, D. V., Skryabin, and S., Trillo, Optical Solitons due to quadratic nonlinearities: from basic physics to futuristic applications, Phys. Rep. 370, 63 (2002)Google Scholar
[79] Y. S., Kivshar and G. P., Agrawal, Optical Solitons: From Fiber to Photonic Crystals (Amsterdam: Academic–Elsevier Science, 2003)Google Scholar
[80] F., Abelès, Sur la propagation des ondes dans les milieux stratifiés, Nuovo Cim. 9, Issue 3 Supplement, 214 (1952)Google Scholar
[81] K., Ishiguro and T., Kato, The reflection and transmission of a multi-layer film, J. Phys. Soc. Japan 8, 77 (1953)Google Scholar
[82] V., Degiorgio, Phase shift between the transmitted and the reflected optical fields of a semireflecting lossless mirror is π/2, Am. J. Phys. 48, 81 (1980)Google Scholar
[83] A., Zeilinger, General properties of lossless beam splitters in interferometry, Am. J. Phys. 49, 882 (1981)Google Scholar
[84] Yu. V., Troitskii, The energy conservation law for optical two-port devices, Opt. Spectrosc. 92, 555 (2002)
[85] R., Bonifacio and L. A., Lugiato, Bistable absorption in a ring cavity, Lett. Nuovo Cim. 21, 505 (1978)Google Scholar
[86] L. A., Lugiato, Theory of optical bistability, in E., Wolf (ed.) Progress in Optics vol. XXI (Amsterdam: North-Holland, 1984), p. 69Google Scholar
[87] L. A., Lugiato, L. M., Narducci, E. V., Eschenazi, D. K., Bandy, and N. B., Abraham, Multimode instabilities in a homogeneously broadened ring laser, Phys. Rev. A 32, 1563 (1985)Google Scholar
[88] L. M., Narducci, J. R., Tredicce, L. A., Lugiato, N. B., Abraham, and D. K., Bandy, Mode–mode competition and unstable behavior in a homogeneously broadened ring laser, Phys. Rev. A 33, 1842 (1986)Google Scholar
[89] V., Degiorgio and M. O., Scully, Analogy between the laser threshold region and a second-order phase transition, Phys. Rev. A 2, 1170 (1970)Google Scholar
[90] R., Graham and H., Haken, Laserlight – First example of a second order phase transition far from thermal equilibrium, Z. Phys. 237, 31 (1970)Google Scholar
[91] H., Haken, Synergetics – An Introduction (Heidelberg: Springer, 1983)Google Scholar
[92] H., Haken, Advanced Synergetics (Heidelberg: Springer, 1983)Google Scholar
[93] G.-L., Oppo and A., Politi, Center-manifold Reduction for Laser Equation with Detuning, Phys. Rev. A 40, 1422 (1989)Google Scholar
[94] T. H., Maiman, Stimulated optical radiation in ruby, Nature 187, 493 (1960)Google Scholar
[95] A., Szöke, V., Daneu, J., Goldhar, and N. A., Kurnit, Bistable optical element and its applications, Appl. Phys. Lett. 15, 376 (1969)Google Scholar
[96] R., Bonifacio and L. A., Lugiato, Cooperative effects and bistability for resonance fluorescence, Opt. Commun. 19, 172 (1976)Google Scholar
[97] R., Bonifacio and L. A., Lugiato, Optical bistability and cooperative effects in resonance fluorescence, Phys. Rev. A 18, 1129 (1978)Google Scholar
[98] R., Bonifacio, M., Gronchi, and L. A., Lugiato, Photon statistics of a bistable absorber, Phys. Rev. A 18, 2266 (1978)Google Scholar
[99] L. A., Lugiato, Optical bistability, Contemp. Phys. 24, 333 (1983)Google Scholar
[100] F. S., Felber and J. H., Marburger, Theory of nonresonant multistable optical devices, Appl. Phys. Lett. 28, 731 (1976)Google Scholar
[101] H. M., Gibbs, S. L., McCall, and T. N. C., Venkatesan, Differential gain and bistability using a sodium-filled Fabry–Perot interferometer, Phys. Rev. Lett. 36, 1135 (1976)Google Scholar
[102] R., Roy and M. S., Zubairy, Beyond the mean-field theory of dispersive optical bistability, Phys. Rev. A 21, 274 (1980)Google Scholar
[103] R., Bonifacio, M., Gronchi, and L. A., Lugiato, Dispersive bistability in homogeneously broadened systems, Nuovo Cim. B 53, 311 (1979)Google Scholar
[104] R., Bonifacio and L. A., Lugiato, Mean field model for absorptive and dispersive bistability with inhomogeneous broadening, Lett. Nuovo Cim. 21, 517 (1978)Google Scholar
[105] S. S., Hassan, P. D., Drummond, and D. F., Walls, Dispersive optical bistability in a ring cavity, Opt. Commun. 27, 480 (1978)Google Scholar
[106] G. P., Agrawal and H. J., Carmichael, Optical bistability through nonlinear dispersion and absorption, Phys. Rev. A 19, 2074 (1979)Google Scholar
[107] W. J., Sandle and A., Gallagher, Optical bistability by an atomic vapor in a focusing Fabry–Perot cavity, Phys. Rev. A 24, 2017 (1981)Google Scholar
[108] E., Arimondo, A., Gozzini, L., Lovich, and E., Pistelli, Microwave dispersive bistability in a confocal Fabry–Perot microwave cavity, in C. M., Bowden, M., Ciftan, and H. R., Robl (eds.) Optical Bistability, Proc. Int. Conf. on Optical Bistability, Asheville (New York: Plenum, 1980)Google Scholar
[109] H. M., Gibbs, Optical Bistability: Controlling Light by Light (New York: Academic Press, 1985)Google Scholar
[110] A., Joshi and Min, Xiao, Controlling Steady–state and Dynamical Properties of Atomic Optical Bistability (Singapore: World Scienific, 2012)Google Scholar
[111] S. L., McCall, Instabilities in continuous-wave light propagation in absorbing media, Phys. Rev. A 9, 1515 (1974)Google Scholar
[112] P., Meystre, On the use of the mean-field theory in optical bistability, Opt. Commun. 26, 277 (1978)Google Scholar
[113] E., Abraham, R. K., Bullough, and S. S., Hassan, Space and time-dependent effects in optical bistability, Opt. Commun. 29, 109 (1979)Google Scholar
[114] E., Abraham, S. S., Hassan, and R. K., Bullough, Dispersive optical bistability in a Fabry–Perot cavity, Opt. Commun. 33, 93 (1980)Google Scholar
[115] E., Abraham and S. S., Hassan, Effects of inhomogeneous broadening on optical bistability in a Fabry–Perot cavity, Opt. Commun. 35, 291 (1980)Google Scholar
[116] R., Roy and M. S., Zubairy, Analytic solutions of the optical bistability equations for a standing wave cavity, Opt. Commun. 32, 163 (1980)Google Scholar
[117] H. J., Carmichael, The mean-field approximation and validity of a truncated Bloch hierarchy in absorptive bistability, Opt. Acta 27, 147 (1980)Google Scholar
[118] J. A., Hermann, Spatial effects in optical bistability, Opt. Acta 27, 159 (1980)Google Scholar
[119] H. J., Carmichael and J. A., Hermann, Analytic description of optical bistability including spatial effects, Z. Phys. B 38, 365 (1980)Google Scholar
[120] K. G., Weyer, H., Wiedenmann, M., Rateike et al., Observation of absorptive optical bistability in a Fabry–Perot cavity containing multiple atomic beams, Opt. Commun. 37, 426 (1981)Google Scholar
[121] V., Benza and L. A., Lugiato, Dressed mode description of optical bistability, Z. Phys. B 35, 383 (1979)Google Scholar
[122] L. A., Lugiato, Many-mode quantum statistical theory of optical bistability, Z. Phys. B 41, 85 (1981)Google Scholar
[123] L. M., Narducci, J. R., Tredicce, L. A., Lugiato, N. B., Abraham, and D. K., Bandy, Multimode laser with an injected signal: Steady-state and linear stability analysis, Phys. Rev. A 32, 1588 (1985)Google Scholar
[124] H., Risken and R., Nummedal, Self-pulsing in lasers, J. Appl. Phys. 39, 4662 (1968)Google Scholar
[125] M. B., Spencer and W. E., Lamb, Jr., Laser with a transmitting window, Phys. Rev. A 5, 884 (1972)Google Scholar
[126] L. A., Lugiato, Instabilities in the laser with injected signal and laser-phase transition analogy, Lett. Nuovo Cim. 23, 609 (1978)Google Scholar
[127] R., Salomaa and S., Stenholm, Gas laser with saturable absorber. I. Single-mode characteristics, Phys. Rev. A 8, 2695 (1973); Gas laser with saturable Absorber. II. Single-mode stability, Phys. Rev. A 8, 2711 (1973)Google Scholar
[128] L. A., Lugiato, P., Mandel, S. T., Dembinski, and A., Kossakowsi, Semiclassical and quantum theories of bistability in lasers containing saturable absorbers, Phys. Rev. A 18, 238 (1978)Google Scholar
[129] S. T., Dembinski, A., Kossakowski, P., Pepłowski, L. A., Lugiato, and P., Mandel, Laser instability below threshold, Phys. Lett. A 68, 20 (1978)Google Scholar
[130] N. B., Abraham, P., Mandel, and L. M., Narducci, Dynamical instabilities and pulsations in lasers in E., Wolf (ed.) Progress in Optics vol. XXV (Amsterdam: North-Holland, 1988), p. 1Google Scholar
[131] P. H., Lee, P. B., Schaefer, and W. B., Barker, Single-mode power from 6328Å laser incorporating neon absorption, Appl. Phys. Lett. 13, 373 (1968)Google Scholar
[132] V. N., Lisitsyn and V. P., Chebotaev, Hysteresis and hard excitation in a gas laser, JETP Lett. 7, 1 (1968)Google Scholar
[133] S., Ruschin and S. H., Bauer, Bistability hysteresis and critical behavior of CO2 laser, with SF6 intracavity as a saturable absorber, Chem. Phys. Lett. 66, 100 (1979)Google Scholar
[134] S., Ruschin and S. H., Bauer, Bistability of a CO2 laser with SF6 intracavity as an absorber: Transient effects, Appl. Phys. 24, 45 (1981)Google Scholar
[135] E., Arimondo, F., Casagrande, L. A., Lugiato, and P., Glorieux, Repetitive passive Q-switching and bistability in lasers with saturable absorber, Appl. Phys. B 30, 57 (1983)Google Scholar
[136] M., Brambilla, F., Castelli, L. A., Lugiato, F., Prati, and G., Strini, Nondegenerate four-wave mixing in a cavity: instabilities and quantum noise reduction, Opt. Commun. 83, 367 (1991)Google Scholar
[137] P. D., Drummond, K. J., McNeil, and D. F., Walls, Non-equilibrium transitions in sub/second harmonic generation, I. Semiclassical theory, Opt. Acta 27, 321 (1980)Google Scholar
[138] P. D., Drummond, K. J., McNeil, and D. F., Walls, Non-equilibrium transitions in sub/second harmonic generation II. Quantum theory, Opt. Acta 28, 211 (1981)Google Scholar
[139] L. A., Lugiato, C., Oldano, C., Fabre, E., Giacobino, and R. J., Horowicz, Bistability, self-pulsing and chaos in optical parametric oscillators, Nuovo Cim. D 10, 959 (1988)Google Scholar
[140] C., Richy, K. I., Petsas, E., Giacobino, C., Fabre, and L. A., Lugiato, Observation of bistability and delayed bifurcation in a triply resonant optical parametric oscillator, J. Opt. Soc. Am. B 12, 456 (1994)Google Scholar
[141] L. A., Lugiato and L. M., Narducci, Nonlinear dynamics in a Fabry–Perot cavity, Z. Phys. 71, 129 (1988)Google Scholar
[142] W. E., Lamb, Theory of an optical maser, Phys. Rev. A 134, 1429 (1964)Google Scholar
[143] C. L., Tang, H., Statz, and G., DeMars, Spectral output and spiking behaviour of solid-state lasers, J. Appl. Phys. 34, 2289 (1963)Google Scholar
[144] H. J., Carmichael, Multimode instability for a standing wave cavity containing a saturable absorber, Opt. Commun. 53, 122 (1985)Google Scholar
[145] K., Ikeda, Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system, Opt. Commun. 30, 257 (1979)Google Scholar
[146] K., Ikeda, H., Daido, and O., Akimoto. Optical turbulence: Chaotic behavior of transmitted light from a ring cavity, Phys. Rev. Lett. 45, 709 (1980)Google Scholar
[147] K., Ikeda and M., Mizuno, Modeling of nonlinear Fabry–Perot resonators by difference-differential equations, IEEE J. Quantum Electron. 21, 1429 (1985)Google Scholar
[148] L. A., Lugiato and F., Prati, Difference differential equations for a resonator with a very thin nonlinear medium, Phys. Rev. Lett. 104, 233902 (2010)Google Scholar
[149] F., Prati and L. A., Lugiato, Instabilities for a coherently driven Fabry–Perot cavity with a very thin absorber, Eur. Phys. J. Special Topics 203, 117 (2012)Google Scholar
[150] J., Mulet and S., Balle, Mode-locking dynamics in electrically driven vertical-external-cavity surface-emitting lasers, IEEE J. Quantum Electron. 41, 1148 (2005)Google Scholar
[151] N. B., Abraham, L. A., Lugiato, P., Mandel, L. M., Narducci, and D. K., Bandy, Steady-state and unstable behaviour of a single-mode inhomogeneously broadened laser, J. Opt. Soc. Am. B 2, 35 (1985)Google Scholar
[152] P., Mandel, Properties of a Lorentz-broadened single-mode unidirectional ring laser, J. Opt. Soc. Am. B 2, 112 (1985)Google Scholar
[153] G. H. B., Thompson, Physics of Semiconductor Laser Devices (New York: Wiley, 1980)Google Scholar
[154] J. E., Carrol, Rate Equations in Semiconductor Electronics (Cambridge: Cambridge University Press, 1985)Google Scholar
[155] P. A., Markovich, The Stationary Semiconductor Device (Berlin: Springer, 1986)Google Scholar
[156] G. P., Agrawal, Long Wavelength Semiconductor Lasers (New York: Van Nostrand Reinhold, 1986)Google Scholar
[157] B., Mroziewicz, M., Bugajski, and W., Nakwaski, Physics of Semiconductor Lasers (Amsterdam: North-Holland, 1991)Google Scholar
[158] J., Buus, Single Frequency Semiconductor Lasers (Bellingham, WA: SPIE, 1991)Google Scholar
[159] M., Ohtsu, Highly Coherent Semiconductor Lasers (Boston, MA: Artech House, 1992)Google Scholar
[160] W. W., Chow, S. W., Koch, and M., Sargent III, Semiconductor-Laser Physics (Berlin: Springer, 1994)Google Scholar
[161] C. F., Klingshirn, Semiconductor Optics (Berlin: Springer, 1995)Google Scholar
[162] W. W., Chow and S. W., Koch, Semiconductor Laser Fundamentals (Berlin: Springer, 1999)Google Scholar
[163] J., Ohtsubo, Semiconductor Lasers – Stability, Instability and Chaos (Berlin: Springer, 2005)Google Scholar
[164] C. H., Henry, Theory of the linewidth of semiconductor lasers, IEEE J. Quantum Electron. 18, 259 (1982)Google Scholar
[165] C., Wilmsen, H., Temkin, and L. A., Coldren (eds.), Vertical-Cavity Surface-Emitting Lasers (Cambridge: Cambridge University Press, 1999)
[166] M. San, Miguel, Q., Feng, and J. V., Moloney, Light-polarization dynamics in surface-emitting semiconductor lasers, Phys. Rev. A, 52, 1728 (1995)Google Scholar
[167] K., Panajotov and F., Prati, Polarization dynamics of VCSELs, in R., Michalzik (ed.) VCSELs (Berlin: Springer-Verlag, 2012) p. 181Google Scholar
[168] J., Mompart and R., Corbalan, Lasing without inversion, J. Opt. B 2, R7 (2000)Google Scholar
[169] E., Arimondo, Coherent population trapping in laser spectroscopy, in E., Wolf (ed.) Progress in Optics vol. XXXV (Amsterdam: North-Holland, 1996), p. 257Google Scholar
[170] G., Alzetta, A., Gozzini, L., Moi, and G., Orriols, An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour, Nuovo Cim. B 36, 5 (1976)Google Scholar
[171] E., Arimondo and G., Orriols, Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping, Lett. Nuovo Cim. 17, 333 (1976)Google Scholar
[172] R. M., Whitley and C. R., Stroud, Jr., Double optical resonance, Phys. Rev. A 14, 1498 (1976)Google Scholar
[173] H. R., Gray, R. M., Whitley and C. R., Stroud, Jr., Coherent trapping of atomic populations, Opt. Lett. 3, 218 (1978)Google Scholar
[174] G., Alzetta, L., Moi, and G., Orriols, Nonabsorption hyperfine resonances in a sodium vapour irradiated by a multimode dye-laser, Nuovo Cim. B 52, 209 (1979)Google Scholar
[175] J. D., Stettler, C. M., Bowden, N. M., Witriol, and J. H., Eberly, Population trapping during laser induced molecular excitation and dissociation, Phys. Lett. A 73, 171 (1979)Google Scholar
[176] R. J., Dalton and P. L., Knight, Population trapping and ultranarrow Raman lineshapes induced by phase-fluctuating fields, Opt. Commun. 42, 411 (1982)Google Scholar
[177] S., Swain, Conditions for population trapping in a three-level system, J. Phys. B 15, 3405 (1982)Google Scholar
[178] P. M., Radmore and P. L., Knight, Population trapping and dispersion in a three-level system, J. Phys. B 15, 561 (1981); Two-photon ionisation: Interference and population trapping, Phys. Lett. A 102, 180 (1984)Google Scholar
[179] G. S., Agarwal and N., Nayak, Effects of long-lived incoherences on coherent population trapping, J. Phys. B 19, 3375 (1986)Google Scholar
[180] K., Zaheer and M. S., Zubairy, Phase sensitivity in atom–field interaction via coherent superposition, Phys. Rev. A 39, 2000 (1989)Google Scholar
[181] S. E., Harris, J. E., Field, and A., Imamoğlu, Nonlinear optical processes using electromagnetically induced transparency, Phys. Rev. Lett. 64, 1107 (1990)Google Scholar
[182] K. H., Hahn, D. A., King, and S. E., Harris, Nonlinear generation of 104.8-nm radiation within an absorption window in zinc, Phys. Rev. Lett. 65, 2777 (1990)Google Scholar
[183] K., Hakuta, L., Marmet, and B., Stoicheff, Electric-field-induced 2nd-harmonic generation with reduced absorption in atomic-hydrogen, Phys. Rev. Lett. 66, 596 (1991)Google Scholar
[184] K.-J., Boller, A., Imamoğlu, and S. E., Harris, Observation of electromagnetically induced transparency, Phys. Rev. Lett. 66, 2593 (1991)Google Scholar
[185] J. E., Field, K. H., Hahn, and S. E., Harris, Observation of electromagnetically induced transparency in collisionally broadened lead vapor, Phys. Rev. Lett. 67, 3062 (1991)Google Scholar
[186] A., Javan, Theory of a three-level maser, Phys. Rev. 107, 1579 (1956)Google Scholar
[187] T. W., Hansch and P. E., Toschek, Theory of a three-level gas laser amplifier, Z. Phys. 236, 213 (1970)Google Scholar
[188] V., Arkhipkin and Yu., Heller, Radiation amplification without population inversion at transitions to autoionizing states, Phys. Lett. A 98, 12 (1983)Google Scholar
[189] O., Kocharovskaya and Ya. I., Khanin, Coherent amplification of an ultrashort pulse in a 3-level medium without a population-inversion, JETP Lett. 48, 630 (1988)Google Scholar
[190] S. E., Harris, Lasers without inversion – Interference of lifetime-broadened resonances, Phys. Rev. Lett. 62, 1033 (1989)Google Scholar
[191] M. O., Scully, S.-Y., Zhu, and A., Gavrielides, Degenerate quantum-beat laser – Lasing without inversion and inversion without lasing, Phys. Rev. Lett. 62, 2813 (1989)Google Scholar
[192] S. E., Harris and J. H., Macklin, Lasers without inversion – Single-atom transient-response, Phys. Rev. A 40, 4135 (1989)Google Scholar
[193] A., Imamoğlu, Interference of radiatively broadened resonances, Phys. Rev. A 40, 2835 (1989)Google Scholar
[194] A., Lyras, X., Tang, P., Lambropoulos, and J., Zhang, Radiation amplification through auto-ionizing resonances without population-inversion, Phys. Rev. A 40, 4131 (1989)Google Scholar
[195] O., Kocharovskaya and P., Mandel, Amplification without inversion – The double-lambda scheme, Phys. Rev. A 42, 523 (1990)Google Scholar
[196] E. E., Fill, M. O., Scully, and S.-Y., Zhu, Lasing without inversion via the lambda-quantum-beat laser in the collision-dominated regime, Opt. Commun. 77, 36 (1990)Google Scholar
[197] O., Kocharovskaya, R.-D., Li, and P., Mandel, Lasing without inversion – The double-lambda scheme, Opt. Commun. 77, 215 (1990)Google Scholar
[198] V. R., Blok and G. M., Krochik, Theory of lasers without inversion, Phys. Rev. A 41, 1517 (1990)Google Scholar
[199] G. S., Agarwal, S., Ravi, and J., Cooper, DC-field-coupled autoionizing states for laser action without population-inversion, Phys. Rev. A 41, 4721 (1990); Lasers without inversion – Raman transitions using autoionizing resonances, Phys. Rev. A 41, 4727 (1990)Google Scholar
[200] S., Basile and P., Lambropoulos, Radiation amplification without population-inversion in discrete 3-level systems, Opt. Commun. 78, 163 (1990)Google Scholar
[201] A., Imamoğlu, J. E., Field, and S. E., Harris, Lasers without inversion – A closed lifetime broadened system, Phys. Rev. Lett. 66, 1154 (1991)Google Scholar
[202] G. S., Agarwal, Origin of gain in systems without inversion in bare or dressed states, Phys. Rev. A 44, R28 (1991)Google Scholar
[203] L. M., Narducci, H. M., Doss, P., Ru, M. O., Scully, and C., Keitel, A simple model of a laser without inversion, Opt. Commun. 81, 379 (1991)Google Scholar
[204] J. A., Bergou and P., Bogár, Quantum theory of a noninversion laser with injected atomic coherence, Phys. Rev. A 43, 4889 (1991)Google Scholar
[205] O., Kocharovskaya, Amplification and lasing without inversionPhys. Rep. 219, 175 (1992)Google Scholar
[206] M. O., Scully, From lasers and masers to phaseonium and phasersPhys. Rep. 219, 191 (1992)Google Scholar
[207] M. O., Scully, S.-Y., Zhu, and H., Fearn, Lasing without inversion. I. Initial atomic coherence, Z. Phys. D 22, 471 (1992); Lasing without inversion. II. Raman process created atomic coherence, Z. Phys. D 22, 483 (1992)Google Scholar
[208] M., Fleischhauer, C. H., Keitel, L. M., Narducci et al., Lasing without inversion – Interference of radiatively broadened resonances in dressed atomic systems, Opt. Commun. 94, 599 (1992)Google Scholar
[209] M. O., Scully, Resolving conundrums in lasing without inversion via exact solutions to simple models, Quantum Optics 6, 203 (1994)Google Scholar
[210] O., Kocharovskaya and P., Mandel, Basic models of lasing without inversion – General form of amplification condition and problem of self-consistency, Quantum Optics 6, 217 (1994)Google Scholar
[211] N. B., Abraham, L. A., Lugiato, and L. M., Narducci (eds.), Feature Issue on Instabilities in Active Optical Media, J. Opt. Soc. Am. B 2 (January 1985)
[212] D. K., Bandy, A. N., Oraevsky, and J. R., Tredicce (eds.), Feature Issue on Nonlinear Dynamics of Lasers, J. Opt. Soc. Am. B 5 (May 1988)
[213] R. W., Boyd, M. G., Raymer, and L. M., Narducci (eds.), Optical Instabilities (Cambridge: Cambridge University Press, 1986)
[214] J., Chrostowsky and N. B., Abraham (eds.), Optical Chaos (Bellingham, MA: SPIE, 1986)
[215] E. R., Pike and S., Sarkar (eds.), Frontiers of Quantum Optics (Bristol: Hilger, 1986)
[216] F. T., Arecchi and R. G., Harrison (eds.), Instabilities and Chaos in Quantum Optics (Berlin: Springer, 1987)
[217] E. R., Pike and L. A., Lugiato (eds.), Chaos, Noise and Fractals (Bristol: Hilger, 1987)
[218] N. B., Abraham, F. T., Arecchi, and L. A., Lugiato (eds.), Instabilities and Chaos in Quantum Optics II (New York: Plenum Press, 1988)
[219] E. J., Quel, J. R., Tredicce, and L. M., Narducci (eds.), Laser Physics and Quantum Optics (Singapore: World Scientific, 1990)
[220] P. W., Milonni, J., Akerhalt, and M.-L., Shih, Chaos in Laser–Matter Interactions (Singapore: World Scientific, 1987)Google Scholar
[221] L. M., Narducci and N. B., Abraham, Laser Physics and Laser Instabilities (Singapore: World Scientific, 1988)Google Scholar
[222] C. O., Weiss and R., Vilaseca, Dynamics of Lasers (Weinheim: VCH, 1991)Google Scholar
[223] R. G., Harrison and D. J., Biswas, Pulsating instabilities and chaos in lasers, Prog. Quantum Electron. 10, 147 (1985)Google Scholar
[224] J. R., Ackerhalt, P. W., Milonni, and M.-L., Shih, Chaos in quantum opticsPhys. Rep. (Phys. Lett. C) 128, 205 (1985)Google Scholar
[225] C. O., Weiss, Chaotic laser dynamics, Opt. Quantum Electron. 20, 1 (1988)Google Scholar
[226] J. C., Englund, R. R., Snapp, and W. C., Schieve, Fluctuations, instabilities and chaos in the laser-driven nonlinear ring cavity in E., Wolf (ed.) Progress in Optics vol. XXI (Amsterdam: North-Holland, 1984), p. 355Google Scholar
[227] R., Vilaseca and R., Corbalan, Nonlinear Dynamics and Quantum Phenomena in Optical Systems (Berlin: Springer, 1991)Google Scholar
[228] L. A., Lugiato and L. M., Narducci, Multistability, chaos and spatio-temporal dynamics, in J., Dalibard, J. M., Raymond, and J., Zinn-Justin (eds.) Fundamental Systems in Quantum Optics, Les Houches, Session LIII, 1990 (Amsterdam: Elsevier, 1992)Google Scholar
[229] R. G., Harrison and J. S., Uppal (Eds), Nonlinear Dynamics and Spatial Complexity in Optical Systems (Bristol and Philadelphia: Scottish University Summer School in Physics and Institute of Physics Publishing, 1993)
[230] Ya. I., Khanin, Principles of Laser Dynamics (Amsterdam: North-Holland, 1995)Google Scholar
[231] K., Otsuka, Nonlinear Dynamics in Optical Complex Systems (Dordrecht: Kluwer Academic, 1999)Google Scholar
[232] P., Mandel, Theoretical Problems in Cavity Nonlinear Optics (Cambridge: Cambridge University Press, 2005)Google Scholar
[233] T., Erneux and P., Glorieux, Laser Dynamics (Cambridge: Cambridge University Press, 2010)Google Scholar
[234] G., Nicolis and I., Prigogine, Self-organization in Non-Equilibrium Systems,(New York: Wiley, 1974)Google Scholar
[235] G., Nicolis, Introduction to Nonlinear Science (Cambridge: Cambridge University Press, 1995)Google Scholar
[236] M., Marsden, The Geometry of the Zeros of a Polynomial in a Complex Variable (Providence, RI: American Mathematical Society, 1949)Google Scholar
[237] J. D., Farmer, Chaotic attractors of an infinite-dimensional dynamical system, Physica D 4, 366 (1982)Google Scholar
[238] P., Grassberger and I., Procaccia, Characterization of strange attractors, Phys. Rev. Lett. 50, 346 (1983)Google Scholar
[239] E., Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130 (1963)Google Scholar
[240] H., Haken, Analogy between higher instabilities in fluids and lasers, Phys. Lett. A 53, 77 (1975)Google Scholar
[241] J. P., Eckmann, Roads to turbulence in dissipative dynamical systems, Rev. Mod. Phys. 53, 643 (1981)Google Scholar
[242] R., Thom, Stabilité structurelle et morphogenèse (Paris: Interéditions, 1972)Google Scholar
[243] G. P., Puccioni, F. T., Arecchi, G.-L., Lippi, and J. R., Tredicce, Deterministic chaos in laser with injected signal, Opt.|Commun. 51, 308 (1984)Google Scholar
[244] G.-L., Oppo and A., Politi, Toda potential in laser equations, Z. Phys. B 59, 111 (1985)Google Scholar
[245] L. W., Casperson, Stability criteria for high-intensity lasers, Phys. Rev. A 21, 911 (1980)Google Scholar
[246] S. T., Hendow and M., Sargent III, The role of population pulsation in single-mode laser instabilities, Opt. Commun. 40, 385 (1982)Google Scholar
[247] L. W., Hillman, R. W., Boyd, and C. R., Stroud, Jr., Natural modes for the analysis of optical bistability and laser instability, Opt. Lett. 7, 426 (1982)Google Scholar
[248] Y., Silberberg and I., Bar-Joseph, The mechanism of instabilities in an optical cavity, Opt. Commun. 48, 53 (1983)Google Scholar
[249] W. J., Firth, E. M., Wright, and E., Cummins, Connection between Ikeda instabilities and phase conjugation in C. R., Bowden, H. M., Gibbs, and S. L., McCall (eds.) Optical Bistability 2 (New York: Plenum Press, 1984), p. 111Google Scholar
[250] L. A., Lugiato and L. M., Narducci, Single-mode and multimode instabilities in lasers and related optical systems, Phys. Rev. A 32, 1576 (1985)Google Scholar
[251] B. R., Mollow, Stimulated emission and absorption near resonance for driven systems, Phys. Rev. A 5, 2217 (1972)Google Scholar
[252] A. M., Bonch-Bruevich, V. A., Khodovoi, and N. A., Chigir, Changes in the absorption spectrum and of dispersion of a two-level system in a rotating monochromatic radiation field, Sov. Phys. JETP 40, 1027 (1975)Google Scholar
[253] F. Y., Wu, S., Ezekiel, M., Ducloy, and B. R., Mollow, Observation of amplification in a strongly driven two-level atomic system at optical frequencies, Phys. Rev. Lett. 38, 1077 (1977)Google Scholar
[254] M. J., Feigenbaum, Quantitative universality for a class of non-linear transformations, J. Statist. Phys. 19, 25 (1978); The universal metric properties of nonlinear transformations, J. Statist. Phys.21, 669 (1979)Google Scholar
[255] C. O., Weiss and J., Brock, Evidence for Lorenz-type chaos in a laser, Phys. Rev. Lett. 57, 2804 (1986)Google Scholar
[256] J., Pujol, F., Laguarta, R., Vilaseca, and R., Corbalan, Influence of pump coherence on the dynamic behavior of a laser, J. Opt. Soc. Am. B 5, 1004 (1988)Google Scholar
[257] R., Graham and H., Haken, Quantum theory of light propagation in a fluctuating laser-active medium, Z. Phys. 213, 420 (1968)Google Scholar
[258] E. M., Pessina, G., Bonfrate, L. A., Lugiato, and F., Fontana, Experimental observation of the Risken–Nummedal–Graham–Haken multimode laser instability, Phys. Rev. A 56, 4086 (1997)Google Scholar
[259] E. M., Pessina, F., Prati, J., Redondo, E., Roldán, and G. J. de, Valcárcel, Multimode instability in a ring fiber laser, Phys. Rev. A 60, 2517 (1999)Google Scholar
[260] T., Voigt, M. O., Lenz, and F., Mitschke, Risken–Nummedal–Graham–Haken instability finally confirmed experimentally, Proc. SPIE 4429, 112 (2001)Google Scholar
[261] E., Roldán, G. J. de, Valcárcel, F., Prati, F., Mitschke, and T., Voigt, Multilongitudinal mode emission in ring cavity class B lasers, in O. G., Calderon and J. M., Guerra (eds.) Trends in Spatiotemporal Dynamics in Lasers, Instabilities, Polarization Dynamics, and Spatial Structures (Kerala: Research Signpost, 2005), p. 1Google Scholar
[262] P., Gerber and M., Buttiker, Stability domain of coherent laser waves, Z. Phys. B 33, 219 (1979)Google Scholar
[263] S. T., Hendow and M., Sargent III, Theory of single-mode laser instabilities, J. Opt. Soc. Am. B 2, 84 (1985)Google Scholar
[264] J. R., Tredicce, L. M., Narducci, D. K., Bandy, L. A., Lugiato, and N. B., Abraham, Experimental evidence of mode competition leading to optical bistability in homogeneously broadened lasersOpt. Commun. 56, 435 (1986)Google Scholar
[265] A., Gordon, C. Y., Wang, L., Diehl et al., Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning, Phys. Rev. A 77, 053804 (2008)Google Scholar
[266] D. K., Bandy, L. M., Narducci, L. A., Lugiato, and N. B., Abraham, Time-dependent behaviour of a unidirectional ring laser with inhomogeneous broadening, J. Opt. Soc. Am. B 2, 56 (1985)Google Scholar
[267] E., Roldán, G. J. de, Valcárcel, F., Silva, and F., Prati, Multimode emission in inhomogeneously broadened lasers, J. Opt. Soc. Am. B 18, 1601 (2001)Google Scholar
[268] J. Y., Zhang, H., Haken, and H., Ohno, Self–pulsing instability in inhomogeneously broadened traveling-wave lasers, J. Opt. Soc. Am. B 2, 141 (1985)Google Scholar
[269] L. W., Casperson, Spontaneous coherent pulsations in laser oscillators, IEEE J. Quantum Electron. 14, 756 (1978)Google Scholar
[270] J., Bentley and N. B., Abraham, Mode-pulling, mode-splitting and pulsing in a high gain He–Xe laser, Opt. Commun. 41, 52 (1982)Google Scholar
[271] R., Bonifacio and P., Meystre, Critical slowing down in optical bistability, Opt. Commun. 27, 147 (1979)Google Scholar
[272] V., Benza and L. A., Lugiato, Analytical treatment of the transient in absorptive optical bistability, Lett. Nuovo Cim. 26, 405 (1979)Google Scholar
[273] S., Barbarino, A., Gozzini, I., Longo, F., Maccarrone, and R., Stampacchia, Critical slowing-down in microwave absorptive bistability, Nuovo Cim. B 71, 183 (1982)Google Scholar
[274] E., Garmire, J. H., Marburger, S. D., Allen, and H. G., Winful, Transient response of hybrid bistable optical devices, Appl. Phys. Lett. 34, 374 (1979)Google Scholar
[275] F., Mitsche, R., Deserno, J., Mlynek, and W., Lange, Transients in all-optical bistability using transverse optical pumping: Observation of critical slowing down, Opt. Commun. 46, 135–140 (1983)Google Scholar
[276] G., Broggi and L. A., Lugiato, Transient noise-induced optical bistability, Phys. Rev. A 29, 2949 (1984)Google Scholar
[277] F., Mitschke, R., Deserno, J., Mlynek, and W., Lange, Transients in optical bistability: Experiments with external noise, IEEE J. Quantum Electron. 21, 1435–1440 (1985)Google Scholar
[278] R., Bonifacio and L. A., Lugiato, Instabilities for a coherently driven absorber in a ring cavity, Lett. Nuovo Cim. 21, 510 (1978)Google Scholar
[279] R., Bonifacio, M., Gronchi, and L. A., Lugiato, Self-pulsing in bistable absorption, Opt. Commun. 30, 129 (1979)Google Scholar
[280] L. A., Lugiato, Self pulsing in dispersive optical bistability, Opt. Commun. 33, 108 (1980)Google Scholar
[281] B., Segard and B., Macke, Self-pulsing in intrinsic optical bistability with two-level molecules, Phys. Rev. Lett. 69, 412 (1988)Google Scholar
[282] B., Segard, B., Macke, L. A., Lugiato, F., Prati, and M., Brambilla, The multimode instability in optical bistability, Phys. Rev. A 39, 703 (1989)Google Scholar
[283] A. J. van, Wonderen and L. G., Suttorp, Instabilities for absorptive optical bistability in a nonideal Fabry–Perot cavity, Phys. Rev. A 40, 7104 (1989)Google Scholar
[284] M. Le, Berre, E., Ressayre, and A., Tallet, Physics in counterpropagating light-beam devices: Phase-conjugation and gain concepts in multiwave mixing, Phys. Rev. A 44, 5958 (1991)Google Scholar
[285] H. M., Gibbs, F. A., Hopf, D. L., Kaplan, and R. L., Shoemaker, Observation of chaos in optical bistability, Phys. Rev. Lett. 46, 474 (1981)Google Scholar
[286] L. A., Lugiato, M. L., Asquini, and L. M., Narducci, The relation between the Bonifacio–Lugiato and the Ikeda instabilities in optical bistability, Opt. Commun. 41, 450 (1982)Google Scholar
[287] R. R., Snapp, H. J., Carmichael, and W. C., Schieve, Period doubling and chaos in the optical bistability, Opt. Commun. 40, 68 (1981)Google Scholar
[288] H. J., Carmichael, R. R., Snapp, and W. C., Schieve, Oscillatory instabilities leading to optical turbulence in a bistable ring cavity, Phys. Rev. A 26, 3408 (1982)Google Scholar
[289] L. A., Lugiato, L. M., Narducci, and M. F., Squicciarini, Exact linear stability analysis of the plane-wave Maxwell–Bloch equations for a ring laser, Phys. Rev. A 34, 3101 (1986)Google Scholar
[290] K., Ikeda and O., Akimoto, Instability leading to periodic and chaotic self-pulsations in a bistable optical cavity, Phys. Rev. Lett. 48, 617 (1982)Google Scholar
[291] L. A., Lugiato, L. M., Narducci, D. K., Bandy, and C. A., Pennise, Self-pulsing and chaos in a mean field model of optical bistability, Opt. Commun. 43, 281 (1982)Google Scholar
[292] L. A., Orozco, A. T., Rosenberger, and H. J., Kimble, Intrinsic dynamical instability in optical bistability with two-level atoms, Phys. Rev. Lett. 53, 2547 (1984)Google Scholar
[293] L. A., Orozco, H. J., Kimble, A. T., Rosenberger et al., Single-mode instability in optical bistability, Phys. Rev. A 39, 1235 (1989)Google Scholar
[294] L. A., Lugiato, L. M., Narducci, D. K., Bandy, and C. A., Pennise, Breathing, spiking, and chaos in a laser with injected signal, Opt. Commun. 46, 64 (1983)Google Scholar
[295] J. R., Tredicce, F. T., Arecchi, G.-L., Lippi, and G. P., Puccioni, Instabilities in lasers with an injected signal, J. Opt. Soc. Am. B 2, 173 (1985)Google Scholar
[296] D. K., Bandy, L. M., Narducci, and L. A., Lugiato, Coexisting attractors in a laser with an injected signal, J. Opt. Soc. Am. B 2, 148 (1985)Google Scholar
[297] J. C., Boulnois, P., Cottin, A. Van, Lenberghe, F. T., Arecchi, and G. P., Puccioni, Self-pulsing in a CO2 ring laser with an injected signal, Opt. Commun. 58, 124 (1986)Google Scholar
[298] E., Brun, B., Derighetti, D., Meier, R., Holzner, and M., Ravani, Observation of order and chaos in a nuclear spin-flip laser, J. Opt. Soc. Am. B 2, 156 (1985)Google Scholar
[299] J. C., Antoranz, L. L., Bonilla, J., Gea, and M. G., Velarde, Bistable limit cycles in a model for a laser with a saturable absorber, Phys. Rev. Lett. 49, 35 (1982)Google Scholar
[300] P., Mandel and T., Erneux, Stationary, harmonic, and pulsed operations of an optically bistable laser with saturable absorber, Phys. Rev. A 30, 1893 (1984)Google Scholar
[301] H. T., Powell and G. J., Wolga, Repetitive passive Q-switching of single-frequency lasers, IEEE J. Quantum Electron. 7, 213 (1971)Google Scholar
[302] O. R., Wood and S. E., Schwartz, Passive Q-switching of a CO2 laser, Appl. Phys. Lett. 11, 88 (1967)Google Scholar
[303] F., de Tomasi, D., Hennequin, B., Zambon, and E., Arimondo, Instabilities and chaos in an infrared laser with saturable absorber. Experiments and vibro-rotational model,J. Opt. Soc. Am. B 6, 45 (1989)Google Scholar
[304] F. L., Hong, M., Tachikawa, T., Oda, and T., Shimizu, Chaotic passive Q-switching pulsation in N2O laser with a saturable absorber, J. Opt. Soc. Am. B 6, 1378 (1989)Google Scholar
[305] B., Zambon, Theoretical investigations of models for the laser with saturable absorber. A case of homoclinic tangency to a periodic orbit, Phys. Rev. A 44, 688 (1991)Google Scholar
[306] L. A., Lugiato, Transverse nonlinear optics: Introduction and review, Chaos, Solitons and Fractals 4, 1251 (1994)Google Scholar
[307] L. A., Lugiato and R., Lefever, Spatial dissipative structures in passive optical systems, Phys. Rev. Lett. 58, 2209 (1987)Google Scholar
[308] L. A., Lugiato and C., Oldano, Stationary spatial patterns in passive optical systems: Two level atoms, Phys. Rev. A 37, 3896 (1988)Google Scholar
[309] L. A., Lugiato, C., Oldano, and L. M., Narducci, Cooperative frequency locking and stationary spatial structures in lasers, J. Opt. Soc. Am. B 5, 879 (1988)Google Scholar
[310] W. J., Firth, Spatial instabilities in a Kerr medium with with a single feedback mirror, J. Mod. Opt. 37, 151 (1990)Google Scholar
[311] G. P., D'Alessandro and W. J., Firth, Hexagonal spatial patterns for a Kerr slice with a feedback mirror, Phys. Rev. A 46, 537 (1992)Google Scholar
[312] F. T., Arecchi, Space–time complexity in nonlinear optics, Physica D 51, 450 (1991)Google Scholar
[313] L. A., Lugiato, Spatio-temporal structures. Part I, Phys. Rep. 219, 293 (1992)Google Scholar
[314] C. O., Weiss, Spatio-temporal structures. Part II. Vortices and defects in lasers. Phys. Rep. 219, 311 (1992)Google Scholar
[315] F. T., Arecchi, Optical morphogenesis: Pattern formation and competition in nonlinear optics, Nuovo Cim. A 107, 1111 (1994)Google Scholar
[316] W. J., Firth, Pattern formation in passive nonlinear optical systems, in M., Vorontsov and W. B., Miller (eds.) Self-organization in Optical Systems and Application to Informaton Technology (Berlin: Springer, 1995)Google Scholar
[317] N. N., Rosanov, Transverse patterns in wide-aperture nonlinear optical systems, in E., Wolf (ed.), Progress in Optics vol. XXXV (Amsterdam: North-Holland, 1996), p. 1Google Scholar
[318] L. A., Lugiato, M., Brambilla, and A., Gatti, Optical pattern formation, in B., Bederson and H., Walther (eds.), Adv. Mol. Opt. Phys. 40, 229 (1999)Google Scholar
[319] F. T., Arecchi, S., Boccaletti, and P.-L., Ramazza, Pattern formation and competition in nonlinear optics, Phys. Rep. 318, 1 (1999)Google Scholar
[320] N. N., Rosanov, Spatial Hysteresis and Optical Patterns (Berlin: Springer, 2002)Google Scholar
[321] K., Staliunas and V. J., Sanchez-Morcillo, Transverse Patterns in Nonlinear Optical Resonators (Berlin: Springer, 2003)Google Scholar
[322] C., Denz, M., Schwob, and C., Weilnau, Transverse Pattern Formation in Photorefractive Optics (Berlin: Springer-Verlag, 2003)Google Scholar
[323] P., Mandel and M., Tlidi, Transverse dynamics in cavity nonlinear optics (2000–2003), J. Opt. B 6, R60 (2004)Google Scholar
[324] N. B., Abraham and W. J., Firth (eds.), Feature issues on transverse effects in nonlinear optics and transverse effects in nonlinear optical systems, J. Opt. Soc. Am. B 7(6, 7) (1990)
[325] M., Saffman and Y., Wang, Collective focussing and modulational instability of light and cold atoms, in N., Akhmediev and A., Ankiewicz (eds.) Dissipative Solitons: From Optics to Biology and Medicine (Berlin: Springer, 2008)Google Scholar
[326] H. A., Haus, Waves and Fields in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall, 1984)Google Scholar
[327] P., Ru, L. M., Narducci, J. R., Tredicce, D. K., Bandy, and L. A., Lugiato, The Gauss–Laguerre modes of a ring resonator, Opt. Commun. 63, 310 (1987)Google Scholar
[328] W. J., Firth and A. J., Scroggie, Spontaneous pattern formation in an absorptive system, Europhys. Lett. 26, 521 (1994)Google Scholar
[329] L. A., Lugiato and R., Lefever, Diffractive stationary patterns in passive optical systems, in Interaction of Radiation with Matter, a volume in honour of Adriano Gozzini (Pisa: Quaderni della Scuola Normale Superiore, 1987), p. 311Google Scholar
[330] G.-L., Oppo, M., Brambilla, and L. A., Lugiato, Formation and evolution of roll patterns in optical parametric oscillators, Phys. Rev. A 49, 2028 (1994)Google Scholar
[331] A. M., Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. London B 237, 37 (1952)Google Scholar
[332] G., Grynberg, E. Le, Bihan, P., Verkerk et al., Observation of instabilities due to mirrorless four-wave mixing oscillation in sodium, Opt. Commun. 67, 363 (1988)Google Scholar
[333] W. H., Press, S. A., Teukolsky, W. T., Vetterling, and B. P., Flannery, Numerical Recipes (Cambridge: Cambridge University Press, 2002)Google Scholar
[334] P., Manneville, Dissipative Structures and Weak Turbolence (San Diego, CA: Academic Press, 1990)Google Scholar
[335] P. K., Jakobsen, J. V., Moloney, A. C., Newell, and R., Indik, Space-time dynamics of wide-gain-section lasers, Phys. Rev. A 45, 8129 (1992)Google Scholar
[336] T. P., Dawling, M. O., Scully, and F. De, Martini, Radiative patterns of a classical dipole in a cavity, Opt. Commun. 82, 415 (1991)Google Scholar
[337] P. K., Jakobsen, J., Lega, Q., Feng et al., Nonlinear transverse modes of large aspect ratio, homogeneously broadened laser I. Analysis and numerical simulation, Phys. Rev. A 49, 4189 (1994)Google Scholar
[338] J., Lega, P. K., Jakobsen, J. V., Moloney, and A. C., Newell, Nonlinear transverse modes of large aspect ratio homogeneously broadened lasers II. Pattern analysis near and beyond threshold, Phys. Rev. A 49, 4201 (1994)Google Scholar
[339] W. J., Firth and C., Paré, Transverse modulational instabilities for counterpropagating beams in Kerr media, Opt. Lett. 13, 1096 (1988)Google Scholar
[340] M., Haelterman and G., Vitrant, Drift instability and spatiotemporal dissipative structures in a nonlinear Fabry–Perot resonator under oblique incidence, J. Opt. Soc. Am. B 9, 1563 (1992)Google Scholar
[341] P. La, Penna and G., Giusfredi, Spatiotemporal instabilities in a Fabry–Perot resonator filled with sodium vapor, Phys. Rev. A 48, 2299 (1993)Google Scholar
[342] A., Petrossian, L., Dambly, and G., Grynberg, Drift instability for a laser beam transmitted through a rubidium cell with feedback mirror, Europhys. Lett. 29, 209 (1995)Google Scholar
[343] J. P., Seipenbusch, T., Ackemann, B., Schapers, B., Berge, and W., Lange, Drift instability and locking behaviour of optical patterns, Phys. Rev. A 56, R4401 (1997)Google Scholar
[344] Yu. A., Logvin, B. A., Samson, A. A., Afanasév, A. M., Samson, and N. A., Loiko, Triadic Hopf-static structures in two-dimensional optical pattern formation, Phys. Rev. A 54, R4548 (1996)Google Scholar
[345] G., Giusfredi, J. F., Valley, R., Pon, G., Khitrova, and H. M., Gibbs, Optical instabilities in sodium vapor, J. Opt. Soc. Am. B 5, 1181 (1988)Google Scholar
[346] F., Papoff, G., D'Alessandro, G.-L., Oppo and W. J., Firth, Local and global effects of boundaries on optical-pattern formation in Kerr media, Phys. Rev. A 48, 634 (1993)Google Scholar
[347] T., Ackemann, Yu. A., Logvin, A., Heuer, and W., Lange, Transition between positive and negative hexagons in optical pattern formation, Phys. Rev. Lett. 75, 3450 (1995)Google Scholar
[348] M., Brambilla, L. A., Lugiato, V., Penna et al., Transverse laser patterns II. Variational principle for pattern selection, spatial multistability and laser hydrodynamics, Phys. Rev. A 43, 5114 (1991)Google Scholar
[349] S. A., Akhmanov, R. V., Khoklov, and A. P., Suchkorukov, Self-focusing, self-defocusing and self-modulation of laser beams, in F. T., Arecchi and E. O., Schultz-DuBois (eds.), Laser Handbook (Amsterdam: North-Holland, 1972), p. 1151Google Scholar
[350] L., Allen, M. W., Beijenbergen, R. J., Spreeuw and J. P., Woerdman, Orbital angular momentum of light and the trasformation of Laguerre–Gaussian laser modes, Phys. Rev. A 45, 8185 (1992)Google Scholar
[351] M. V., Berry, Singularities in waves and rays, in R., Balian, M., Kléman, and J.-P., Poirier (eds.), Physics of Defects, Les Houches, Session XXXV (North-Holland, 1981), p. 453 and references cited thereinGoogle Scholar
[352] M. V., Berry, J. F., Nye, and F. J., Wright, The elliptic umbilic diffraction catastrophe, Phil. Trans. Roy. Soc. Lond. 291, 453 (1979)Google Scholar
[353] P., Coullet, L., Gil, and F., Rocca, Optical vortices, Opt. Commun. 73, 403 (1989)Google Scholar
[354] M., Brambilla, F., Battipede, L. A., Lugiato et al., Transverse laser patterns. I. Phase singularity crystals, Phys. Rev. A 43, 5090 (1991)Google Scholar
[355] F. T., Arecchi, G., Giacomelli, P.-L., Ramazza, and S., Residori, Vortices and defect statistics in optical chaos, Phys. Rev. Lett. 67, 3749 (1991)Google Scholar
[356] S., Mertens, G., Dewel, P., Borckmans, and R., Engelhardt, Pattern selection in bistable systems, Europhys. Lett. 37, 109 (1997)Google Scholar
[357] G.-L., Oppo, Formation and control of Turing patterns and phase fronts in photonics and chemistry, J. Math. Chem. 45, 95 (2009)Google Scholar
[358] J. V., Moloney in F. T., Arecchi and R. G., Harrison (eds.) Instabilities and Chaos in Quantum Optics (Berlin: Springer, 1987), p. 139 and references cited therein
[359] W. J., Firth and C. O., Weiss, Cavity and feedback solitons, Optics Photonics News 13, 54 (2002)Google Scholar
[360] H., Haelterman, S., Trillo, and S., Wabnitz, Dissipative modulation instability in a nonlinear dispersive ring cavity, Opt. Commun. 91, 401 (1992)Google Scholar
[361] R., Lefever, L. A., Lugiato, Wang, Kaige, and N. B., Abraham, Phase dynamics of transverse diffraction patterns in the laser, Phys. Lett. A 135, 254 (1989); Wang Kaige, N. B. Abraham, and L. A. Lugiato, Leading role of the optical phase instabilities in the formation of certain laser transverse patterns, Phys. Rev. A 47, 1263 (1993)Google Scholar
[362] S., Longhi, Transverse patterns in a laser with an injected signal, Phys. Rev. A 56, 2397 (1997)Google Scholar
[363] S., Longhi and A., Geraci, Roll–hexagon transition in an active optical system, Phys. Rev. A 57, R2281 (1998)Google Scholar
[364] W. J., Firth, A. J., Scroggie, G. S., McDonald, and L. A., Lugiato, Hexagonal patterns in optical bistability, Phys. Rev. A 46, 3609 (1992); A. J. Scroggie, W. J. Firth, G. S. McDonald et al., Pattern formation in a passive Kerr cavity, Chaos, Solitons and Fractals4, 1323 (1994)Google Scholar
[365] W. J., Firth, G. K., Harkness, A., Lord et al., Dynamical properties of two-dimensional Kerr cavity solitons, J. Opt. Soc. Am. B 19, 747 (2002)Google Scholar
[366] D., Gomila and P., Colet, Dynamics of hexagonal patterns in a self-focussing Kerr cavity, Phys. Rev. E 76, 016217 (2007)Google Scholar
[367] W. J., Firth, Temporal cavity solitons – Buffering optical data, Nature Photon. 4, 415 (2010)Google Scholar
[368] S., Coen, M., Haelterman, Ph., Emplit et al., Bistable switching induced by modulational instability in a normally dispersive all-fibre optical cavity, J. Opt. B 1, 36 (1999)Google Scholar
[369] S., Coen and M., Haelterman, Competition between modulational instability and switching in optical bistability, Opt. Lett. 24, 80 (1999)Google Scholar
[370] S., Coen and M., Haelterman, Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity, Opt. Lett. 26, 39 (2001)Google Scholar
[371] S., Coen, Passive Nonlinear Optical Fiber Resonators – Fundamentals and Applications, Thèse de doctorat, Université Libre de Bruxelles (2000)Google Scholar
[372] F., Leo, S., Coen, P., Kockaert et al., Temporal cavity solitons in one-dimensional media as bits in an all-optical buffer, Nature Photon. 4, 471 (2010)Google Scholar
[373] F., Leo, L., Gelens, Ph., Emplit, M., Haelterman, and S., Coen, Dynamics of one-dimensional Kerr cavity solitons, Opt. Express 21, 9180 (2013)Google Scholar
[374] P., Del'Haye, A., Schliesser, O., Arcizet et al., Optical frequency comb generation from a monolithic microresonator, Nature 450, 1214 (2007)Google Scholar
[375] S., Coen, H. G., Randle, Th., Sylvestre, and M., Erkintalo, Modeling of octave-spanning Kerr frequency combs using a generalized Lugiato–Lefever model, Opt. Lett. 38, 37 (2013)Google Scholar
[376] F., Leo, P., Kockaert, Ph., Emplit et al., Experimental generation of 1.6-THz repetition-rate pulse-trains in a passive optical fiber resonator, in Proceedings of Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum Electronics and Laser Science. CLEO/QELS (2009); doi: 10.1364/CLEO. 2009.JTuD111CrossRef
[377] L. A., Lugiato, G.-L., Oppo, J. R., Tredicce, L. M., Narducci, and M. A., Pernigo, Instabilities and spatial complexity in a laser, J. Opt. Soc. Am. B 7, 1019 (1990)Google Scholar
[378] L. A., Lugiato, F., Prati, L. M., Narducci et al., Role of transverse effects in laser instabilities, Phys. Rev. A 37, 3847 (1988)Google Scholar
[379] L. A., Lugiato, Wang, Kaige, and N. B., Abraham, Spatial pattern formation in resonators with nonlinear dispersive media, Phys. Rev. A 49, 2049 (1994)Google Scholar
[380] P. D., Drummond, Optical bistability in a radially varying mode, IEEE J. Quantum Electron. 17, 301–306 (1981)Google Scholar
[381] L. A., Lugiato and M., Milani, Effects of Gaussian averaging on laser instabilities, J. Opt. Soc. Am. B 2, 15 (1985)Google Scholar
[382] L. A., Lugiato, G.-L., Oppo, M. A., Pernigo et al., Spontaneous spatial pattern-formation in lasers and cooperative frequency locking, Opt. Commun. 68, 63 (1988)Google Scholar
[383] J. R., Tredicce, E. J., Quel, A. M., Ghazzawi et al., Spatial and temporal instabilities in a CO2 laser, Phys. Rev. Lett. 62, 1274 (1989)Google Scholar
[384] C., Tamm, Frequency locking of two transverse optical modes of a laser, Phys. Rev. A 38, 5960 (1988)Google Scholar
[385] F., Prati, M., Brambilla, and L. A., Lugiato, Pattern formation in lasers, Riv. Nuovo Cim. 17, 1 (1994)Google Scholar
[386] L. A., Lugiato, F., Prati, L. M., Narducci, and G.-L., Oppo, Spontaneous breaking of the cylindrical symmetry in lasers, Opt. Commun. 69, 387 (1989)Google Scholar
[387] P., Colet, M. San, Miguel, M., Brambilla, and L. A., Lugiato, Fluctuations in transverse laser patterns, Phys. Rev. A 43, 3862 (1991)Google Scholar
[388] A. B., Coates, C. O., Weiss, C., Green et al., Dynamical transverse laser patterns, II. Experiments, Phys. Rev. A 49, 1452 (1994)Google Scholar
[389] I., Boscolo, A., Bramati, M., Malvezzi, and F., Prati, Three-mode rotating pattern in aCO2 laser with high cylindrical symmetry, Phys. Rev. A 55, 738 (1997)Google Scholar
[390] N. N., Rosanov and G. V., Khodova, Autosolitons in bistable interferometers, Opt. Spectrosc. 65, 449 (1988)Google Scholar
[391] N. N., Rosanov and G. V., Khodova, Diffractive autosolitons in nonlinear interferometers, J. Opt. Soc. Am. B 7, 1057 (1990)Google Scholar
[392] N. N., Rosanov, V. A., Smirnov, and N. V., Vyssotina, Numerical simulations of interaction of bright spatial solitons in medium with saturable nonlinearity, Chaos, Solitons and Fractals 4, 1767 (1994)Google Scholar
[393] D. W., McLaughlin, J. V., Moloney, and A. C., Newell, New class of instabilities in passive optical cavities, Phys. Rev. Lett. 51, 75 (1983)Google Scholar
[394] S., Fauve and O., Thual, Localised structures generated by subcritical instability, J. Physique. 49, 1829 (1988)Google Scholar
[395] L. Y., Glebsky and L. M., Lerman, On small stationary localized solutions for the generalized Swift–Hohenberg equation, Chaos 5, 424 (1995)Google Scholar
[396] P. B., Umbanhowar, F., Melo, and H. L., Swinney, Localised excitations in a vertical vibrated granular layer, Nature 382, 793 (1986)Google Scholar
[397] K. A., Gorshkov, L. N., Korzinov, M. I., Rabinovich, and L. S., Tsimring, Random pinning of localized states and the birth of deterministic disorder within gradient models, J. Statist. Phys. 74, 1033 (1994)Google Scholar
[398] O., Lioubashevski, H., Arbell, and J., Fineberg, Dissipative solitary states in driven surface waves, Phys. Rev. Lett. 76, 3959 (1996)Google Scholar
[399] L. S., Tsimring and I., Aranson, Cellular and localized structures in a vibrated granular layer, Phys. Rev. Lett. 79, 213 (1997)Google Scholar
[400] J., Dewel, P., Borckmans, A. De, Wit et al., Pattern selection and localized structures in reaction–diffusion systems, Physica A 213, 181 (1995)Google Scholar
[401] G. S., McDonald and W. J., Firth, Spatial solitary wave optical memory, J. Opt. Soc. Am. B 7, 1328 (1990)Google Scholar
[402] C. I., Christov and M. G., Velarde, Dissipative solitonsPhysica D 86, 323 (1995)Google Scholar
[403] N., Akhmediev and A., Ankiewicz (eds.) Dissipative Solitons (Berlin: Springer, 2005)
[404] N., Akhmediev and A., Ankiewicz (eds.) Dissipative Solitons: From Optics to Biology and Medicine (Berlin: Springer, 2008)Google Scholar
[405] E. A., Ultanir, G. J., Stegeman, D., Michaelis, C. H., Lange, and F., Lederer, Stable dissipative solitons in semiconductor optical amplifiers, in N., Akhmediev and A., Ankiewicz (eds.) Dissipative Solitons: From Optics to Biology and Medicine (Berlin: Springer, 2008) p. 37Google Scholar
[406] W. J., Firth and G. K., Harkness, Cavity solitons, Asian J. Phys. 7, 665 (1998)Google Scholar
[407] W. J., Firth, Theory of cavity solitons, in A. D., Boardman and A. P., Sukhorukov (eds.), Soliton-driven Photonics (London: Kluwer, 2001), p. 459Google Scholar
[408] L. A., Lugiato, Introduction to the feature section on cavity solitons: An overview, IEEE J. Quantum Electron. 39, 193 (2003)Google Scholar
[409] L. A., Lugiato, F., Prati, G., Tissoni et al., Cavity solitons in semiconductor devices, in N., Akhmediev and A., Ankiewicz (eds.) Dissipative Solitons: From Optics to Biology and Medicine (Berlin: Springer, 2008), p. 978Google Scholar
[410] Th., Ackemann, W. J., Firth, and G.-L., Oppo, Fundamentals and applications of spatial dissipative solitons in photonic devices, in P. R., Berman, E., Arimondo, and Chun C., Lin (eds.) Advances in Atomic, Molecular and Optical Physics vol. 57 (Amsterdam: Elsevier, 2009), p. 323Google Scholar
[411] S., Barbay, R., Kuszelewicz, and J. R., Tredicce, Cavity solitons in VCSEL devices, Adv. Opt. Technol.628761 (2011)Google Scholar
[412] M., Brambilla, L. A., Lugiato, and M., Stefani, Interaction and control of optical localised structures, Europhys. Lett. 34, 109 (1996)Google Scholar
[413] M., Tlidi, P., Mandel, and R., Lefever, Localised structures and localised patterns in optical bistability, Phys. Rev. Lett. 73, 640 (1994)Google Scholar
[414] W. J., Firth and A. J., Scroggie, Optical bullet holes: Robust controllable localised states of a nonlinear cavity, Phys. Rev. Lett. 76, 1623 (1996)Google Scholar
[415] T., Maggipinto, M., Brambilla, G. K., Harkness, and W. J., Firth, Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties, Phys. Rev. E 62, 8726 (2000)Google Scholar
[416] G.-L., Oppo, A. J., Scroggie, and W. J., Firth, From domain walls to localized structures in degenerate optical parametric oscillators, J. Opt. B 1, 133 (1999)Google Scholar
[417] C., Etrich, D., Michaelis, and F., Lederer, Bifurcation, stability and multistability of cavity solitons in parametric downconversion, J. Opt. Soc. Am. B 19, 792 (2002)Google Scholar
[418] A. G., Vladimirov, J. M., McSloy, D. V., Skryabin, and W. J., Firth, Two-dimensional clusters of solitary structures in driven optical cavities, Phys. Rev. E 65, 0046606 (2002)Google Scholar
[419] B., Schaepers, Th., Ackemann, and W., Lange, Properties of feedback solitons in a single-mirror experiment, IEEE J. Quantum Electron. 39, 227 (2003)Google Scholar
[420] F., Pedaci, P., Genevet, S., Barland, M., Giudici, and J. R., Tredicce, Positioning cavity solitons with a phase mask, Appl. Phys. Lett. 89, 221111 (2006)Google Scholar
[421] J. L., Oudar, T., Rivera, R., Kuszelewicz, and F., Ladan, Etched arrays of quantum well optical bistable microresonators, J. Physique III 4, 2361 (1994)Google Scholar
[422] L., Spinelli, G., Tissoni, L. A., Lugiato, and M., Brambilla, Thermal effects and transverse structures in semiconductor microcavities with population inversion, Phys. Rev. A 66, 023817 (2002)Google Scholar
[423] A. J., Scroggie, J. M., McSloy, and W. J., Firth, Self-propelled cavity solitons in semiconductor microcavities, Phys. Rev. E 66, 036607 (2002)Google Scholar
[424] R., Kheradmand, L. A., Lugiato, G., Tissoni, M., Brambilla, and H., Tajalli, Cavity soliton mobility in semiconductor microresonators, Math. Computing Simulations 69, 346 (2005)Google Scholar
[425] G., Tissoni, L., Spinelli, M., Brambilla et al., Cavity solitons in bulk semiconductor microcavities: microscopic model and modulational instabilities, J. Opt. Soc. Am. B 16, 2083 (1999); Cavity solitons in bulk semiconductor microcavities: dynamical properties and control, J. Opt. Soc. Am. B 16, 2095 (1999)Google Scholar
[426] M., Brambilla, L. A., Lugiato, F., Prati, L., Spinelli, and W. J., Firth, Spatial soliton pixels in semiconductor devices, Phys. Rev. Lett. 79, 2042 (1997)Google Scholar
[427] L., Spinelli, G., Tissoni, M., Brambilla, F., Prati, and L. A., Lugiato, Spatial solitons in semiconductor microcavities, Phys. Rev. A 58, 2542 (1998)Google Scholar
[428] X., Hachair, F., Pedaci, E., Caboche et al., Cavity solitons in a driven VCSEL above threshold, IEEE J. Sel. Top. Quantum Electron. 12, 339 (2006)Google Scholar
[429] S., Barland, J. R., Tredicce, M., Brambilla et al., Cavity solitons as pixels in semiconductors, Nature 419, 699 (2002)Google Scholar
[430] E., Caboche, S., Barland, M., Giudici et al., Cavity soliton motion in presence of device defects, Phys. Rev. A 80, 053814 (2009)Google Scholar
[431] M., Brambilla, L., Columbo, T., Maggipinto, and G., Patera, 3D cavity light bullets in a nonlinear optical resonator, Phys. Rev. Lett. 93, 203901 (2004)Google Scholar
[432] M., Tlidi and P., Mandel, Three-dimensional optical crystals and localized structures in cavity second harmonic generation, Phys. Rev. Lett. 83, 4995 (1999)Google Scholar
[433] S. D., Jenkins, F., Prati, L. A., Lugiato, L., Columbo, and M., Brambilla, Cavity light bullets in a dispersive Kerr medium, Phys. Rev. A 80, 033832 (2009)Google Scholar
[434] Y., Tanguy, Th., Ackemann, W. J., Firth, and R., Jaeger, Realization of a semiconductor-based cavity soliton laser, Phys. Rev. Lett. 100, 013907 (2008)Google Scholar
[435] P., Genevet, S., Barland, M., Giudici, and J. R., Tredicce, Cavity soliton laser based on mutually coupled semiconductor microresonators, Phys. Rev. Lett. 101, 123905 (2008)Google Scholar
[436] T., Elsass, K., Gauthron, G., Beaudoin et al., Fast manipulation of laser localized structures in a monolithic vertical cavity with saturable absorber, Appl. Phys. B 98, 307 (2010)Google Scholar
[437] N. N., Rozanov and S. V., Fedorov, Diffraction switching waves and autosolitons in a laser with saturable absorption, Opt. Spectrosc. 72, 782 (1992)Google Scholar
[438] S. V., Fedorov, A. G., Vladimirov, G. V., Khodova, and N. N., Rosanov, Effect of frequency detunings and finite relaxation rates on laser localized structures, Phys. Rev. E 61, 5814 (2000)Google Scholar
[439] M., Bache, F., Prati, G., Tissoni et al., Cavity soliton laser based on VCSEL with saturable absorber, Appl. Phys. B 81, 913 (2005)Google Scholar
[440] F., Prati, P., Caccia, G., Tissoni et al., Effects of carrier radiative recombination on a VCSEL-based cavity soliton laser, Appl. Phys. B 88, 405 (2007)Google Scholar
[441] G., Tissoni, K. M., Aghdami, F., Prati, M., Brambilla, and L. A., Lugiato, Cavity soliton laser based on a VCSEL with saturable absorber, in O., Descalzi, M., Clerc, S., Residori, and G., Assanto (eds.) Localized States in Physics: Solitons and Patterns (Berlin: Springer, 2011), p. 187Google Scholar
[442] K. M., Aghdami, F., Prati, P., Caccia et al., Comparison of different switching techniques in a cavity soliton laser, Eur. Phys. J. D 47, 447 (2008)Google Scholar
[443] S. V., Fedorov, N. N., Rosanov, and N. A., Shatsev, Two-dimensional solitons in B-class lasers with saturable absorption, Opt. Spectrosc. 102, 449 (2007)Google Scholar
[444] F., Prati, G., Tissoni, L. A., Lugiato, K. M., Aghdami, and M., Brambilla, Spontaneously moving solitons in a cavity soliton laser with circular section, Eur. Phys. J. D 59, 73 (2010)Google Scholar
[445] F., Prati, L. A., Lugiato, G., Tissoni, and M., Brambilla, Cavity soliton billiards, Phys. Rev. A 84, 053852 (2011)Google Scholar
[446] Y., Couder, S., Protiere, E., Fort, and A., Boudaoud, Dynamical phenomena: Walking and orbiting droplets, Nature 437, 208 (2005)Google Scholar
[447] A., Eddi, E., Fort, F., Moisy, and Y., Couder, Unpredictable tunneling of a classical wave–particle association, Phys. Rev. Lett. 102, 240401 (2009)Google Scholar
[448] F., Pedaci, G., Tissoni, S., Barland, M., Giudici, and J. R., Tredicce, Mapping local defects of extended media using localized structures, Appl. Phys. Lett. 93, 111104 (2008)Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Luigi Lugiato, Università degli Studi dell'Insubria, Italy, Franco Prati, Università degli Studi dell'Insubria, Italy, Massimo Brambilla
  • Book: Nonlinear Optical Systems
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107477254.042
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Luigi Lugiato, Università degli Studi dell'Insubria, Italy, Franco Prati, Università degli Studi dell'Insubria, Italy, Massimo Brambilla
  • Book: Nonlinear Optical Systems
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107477254.042
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Luigi Lugiato, Università degli Studi dell'Insubria, Italy, Franco Prati, Università degli Studi dell'Insubria, Italy, Massimo Brambilla
  • Book: Nonlinear Optical Systems
  • Online publication: 05 March 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107477254.042
Available formats
×