Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-08-04T15:35:52.358Z Has data issue: false hasContentIssue false

4 - Biodiversity loss, sustainability, and stability

Published online by Cambridge University Press:  05 June 2014

Charles Perrings
Affiliation:
Arizona State University
Get access

Summary

Sustainability and stability

There has been a burgeoning interest in the sustainability of many current trends – consumption, economic and demographic growth, and environmental change among them. While the origin of the term sustainable development is usually given as the report of the Brundtland Commission, Our Common Future (World Commission on Environment and Development 1987), its roots lie much deeper than that. One of the main precursors to the Brundtland Report, Herman Daly’s Towards a Steady State Economy (Daly 1973), directly appealed to John Stuart Mill’s mid-nineteenth-century thoughts on the stationary state. Mill saw a less growth-oriented strategy as the key to preserving at least some part of the natural environment (Mill 1909). Yet to do no more than maintain average incomes in many developing countries aggregate income is required to grow at rates up to 3.5 percent a year (i.e. to match the population growth rate), and increasing average incomes requires aggregate income to grow at rates above that. As Malthus had observed at the close of the eighteenth century, the consequences of failure to maintain average incomes have historically been severe (Malthus 1999). The challenge given to the global community by the Brundtland Commission was not just to avoid Malthusian crisis through the degradation of the resource base, but also to eliminate poverty worldwide.

The Brundtland definition of sustainable development – “development that meets the needs of the present without compromising the ability of future generations to meet their own needs” – refers to the capacity of a system to maintain a flow of services over time (World Commission on Environment and Development 1987). This is a systems-level property that implies something both about system stability and about the value of system assets over time. What matters for the Brundtland definition is the capacity of the system to continue to deliver benefits over the expected range of environmental conditions.

Type
Chapter
Information
Our Uncommon Heritage
Biodiversity Change, Ecosystem Services, and Human Wellbeing
, pp. 119 - 147
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allesina, S. and Pascual, M. (2008) Network structure, predator–prey modules, and stability in large food webs. Theoretical Ecology, 1, 55–64.CrossRefGoogle Scholar
Allesina, S. and Tang, S. (2012) Stability criteria for complex ecosystems. Nature, 483, 205–208.CrossRefGoogle ScholarPubMed
Anderson, J. R., Hazell, P. B. R. and Evans, L. T. (1987) Variability of cereal yields: sources of change and implications for agricultural research and policy. Food Policy, 12, 199–212.CrossRefGoogle Scholar
Arrow, K., Dasgupta, P., Goulder, L., Daily, G., Ehrlich, P., Heal, G., Levin, S., Mäler, K.-G., Schneider, S., Starrett, D. and Walker, B. (2004) Are we consuming too much? Journal of Economic Perspectives, 18, 147–172.CrossRefGoogle Scholar
Bracken, M. E., Friberg, S. E., Gonzales-Dorantes, C. A. & Williams, S. L. (2008) Functional consequences of realistic biodiversity changes in a marine ecosystem. Proceedings of the National Academy of Sciences, 105, 924–928.CrossRefGoogle Scholar
Bunker, D. E., DeClerck, F., Bradford, J. C., Colwell, R. K., Perfecto, I., Phillips, O. L., Sankaran, M. and Naeem, S. (2005) Species loss and aboveground carbon storage in a tropical forest. Science, 310, 1029–1031.CrossRefGoogle Scholar
Carew, R., Smith, E. G. and Grant, C. (2009) Factors influencing wheat yield and variability: evidence from Manitoba, Canada. Journal of Agricultural and Applied Economics, 41, 625–639.CrossRefGoogle Scholar
Common, M. S. and Perrings, C. (1992) Towards an ecological economics of sustainability. Ecological Economics, 6, 7–34.CrossRefGoogle Scholar
Coomes, O. T., Takasaki, Y. and Rhemtulla, J. M. (2011) Land-use poverty traps identified in shifting cultivation systems shape long-term tropical forest cover. Proceedings of the National Academy of Sciences, 108, 13925–13930.CrossRefGoogle ScholarPubMed
Daly, H. E. (1973) Towards a Steady State Economy. W. H. Freeman, New York.Google Scholar
Dasgupta, P. and Heal, G. M. (1979) Economic Theory and Exhaustible Resources. Cambridge University Press.Google Scholar
Diaz, S. and Cabido, M. (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution, 16, 646–655.CrossRefGoogle Scholar
Diaz, S., Symstad, A. J., Chapin, F. S. I., Wardle, D. A. and Huenneke, L. F. (2003) Functional diversity revealed by removal experiments. Trends in Ecology and Evolution, 18, 140–146.CrossRefGoogle Scholar
Doak, D. F., Bigger, D., Harding, E. K., Marvier, M. A., O’Malley, R. E. and Thomson, D. (1998) The statistical inevitability of stability-diversity relationships in community ecology. The American Naturalist, 151, 264–276.Google ScholarPubMed
Elmqvist, T., Folke, C., Nystrom, M., Peterson, G., Bengtsson, J., Walker, B. and Norberg, J. (2003) Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment, 1, 488–494.CrossRefGoogle Scholar
Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., Carpenter, S. R., Essington, T. E., Holt, R. D., Jackson, J. B. C., Marquis, R. J., Oksanen, L., Oksanen, T., Paine, R. T., Pikitch, E. K., Ripple, W. J., Sandin, S. A., Scheffer, M., Schoener, T. W., Shurin, J. B., Sinclair, A. R. E., Soulé, M. E., Virtanen, R. and Wardle, D. A. (2011) Trophic downgrading of planet Earth. Science, 333, 301–306.CrossRefGoogle ScholarPubMed
Faith, D. P. (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1–10.CrossRefGoogle Scholar
Food and Agriculture Organization, International Fund for Agricultural Development, International Monetary Fund, Organization for Economic Cooperation and Development, United Nations Conference on Trade and Development, World Food Program, World Bank, World Trade Organization, International Food Policy Research Institute and United Nations High-Level Task Force on the Global Food Security (2011) Price Volatility in Food and Agricultural Markets: Policy Responses. FAO, Rome.Google Scholar
Griffin, J. N., O’Gorman, E. J., Emmerson, M. C., Jenkins, S. R., Klein, A.-M., Loreau, M. and Symstad, A. (2009) Biodiversity and the stability of ecosystem functioning. Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (ed. Naeem, D. B. S., Hector, A., Loreau, M. and Perrings, C.), pp. 78–93. Oxford University Press.CrossRefGoogle Scholar
Hartwick, J. (1977) Intergenerational equity and the investing of rents from exhaustible resources. American Economic Review, 66, 972–974.Google Scholar
Hazell, P. B. R. (2009) The Asian Green Revolution. IFPRI Discussion Paper, 00911.
Hector, A., Schmid, B., Beierkuhnlein, C., Caldeira, M. C., Diemer, M., Dimitrakopoulos, P. G., Finn, J. A., Freitas, H., Giller, P. S., Good, J., Harris, R., Högberg, P., Huss-Danell, K., Joshi, J., Jumpponen, A., Körner, C., Leadley, P. W., Loreau, M., Minns, A., Mulder, C. P. H., O’Donovan, G., Otway, S. J., Pereira, J. S., Prinz, A., Read, D. J., Scherer-Lorenzen, M., Schulze, E.-D., Siamantziouras, A.-S. D., Spehn, E. M., Terry, A. C., Troumbis, A. Y., Woodward, F. I., Yachi, S. and Lawton, J. H. (1999) Plant diversity and productivity experiments in European grasslands. Science, 286, 1123–1127.CrossRefGoogle ScholarPubMed
Holdo, R. M., Sinclair, A. R. E., Dobson, A. P., Metzger, K. L., Bolker, B. M., Ritchie, M. E. and Holt, R. D. (2009) A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biology, 7, e1000210.CrossRefGoogle ScholarPubMed
Holling, C. (1973) Resilience and stability of ecological systems. Annual Review Ecology and Systematics, 4, 1–23.CrossRefGoogle Scholar
Holling, C. (1986) The resilience of terrestrial ecosystems: local surprise and global change. Sustainable Development of the Biosphere (ed. Clark, W. C. and Munn, R. E.). Cambridge University Press.Google Scholar
Hooper, D. U. and Vitousek, P. M. (1997) The effects of plant composition and diversity on ecosystem processes. Science, 277, 1302–1305.CrossRefGoogle Scholar
Hotelling, H. (1931) The economics of exhaustible resources. Journal of Political Economy, 39, 137–175.CrossRefGoogle Scholar
Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J. B. C., Kleypas, J., Lough, J. M., Marshall, P., Nystrom, M., Palumbi, S. R., Pandolfi, J. M., Rosen, B. and Roughgarden, J. (2003) Climate change, human impacts, and the resilience of coral reefs. Science, 301, 929–933.CrossRefGoogle ScholarPubMed
Ives, A. and Carpenter, S. (2007) Stability and diversity of ecosystems. Science, 317, 58–62.CrossRefGoogle ScholarPubMed
Jactel, H., Brockerhoff, E. and Duelli, P. (2005) A test of the biodiversity-stability theory: meta-analysis of tree species diversity effects on insect pest infestations, and re-examination of responsible factors. Forest Diversity and Function (ed. Scherer-Lorenzen, M., Körner, C. and Schulze, E.-D.), pp. 235–262. Springer, Berlin and Heidelberg.CrossRefGoogle Scholar
Jones, P. G. and Thornton, P. K. (2002) Spatial modeling of risk in natural resource management. Conservation Ecology, 5, 27.CrossRefGoogle Scholar
Karp, D. S., Ziv, G., Zook, J., Ehrlich, P. R. and Daily, G. C. (2011) Resilience and stability in bird guilds across tropical countryside. Proceedings of the National Academy of Sciences, 108, 21134–21139.CrossRefGoogle ScholarPubMed
Kattge, J., Diaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., Garnier, E., Westoby, M., Reich, P. B., Wright, I. J., Cornelissen, J. H. C., Violle, C., Harrison, S. P., van Bodegom, P. M., Reichstein, M., Enquist, B. J., Soudzilovskaia, N. A., Ackerly, D. D., Anand, M., Atkin, O., Bahn, M., Baker, T. R., Baldocchi, D., Bekker, R., Blanco, C. C., Blonder, B., Bond, W. J., Bradstock, R., Bunker, D. E., Casanoves, F., Cavender-Bares, J., Chambers, J. Q., Chapin, F. S., Chave, J., Coomes, D., Cornwell, W. K., Craine, J. M., Dobrin, B. H., Duarte, L., Durka, W., Elser, J., Esser, G., Estiarte, M., Fagan, W. F., Fang, J., Fernández-Méndez, F., Fidelis, A., Finegan, B., Flores, O., Ford, H., Frank, D., Freschet, G. T., Fyllas, N. M., Gallagher, R. V., Green, W. A., Gutierrez, A. G., Hickler, T., Higgins, S., Hodgson, J. G., Jalili, A., Jansen, S., Joly, C., Kerkhoff, A. J., Kirkup, D. O. N., Kitajima, K., Kleyer, M., Klotz, S., Knops, J. M. H., Kramer, K., Kühn, I., Kurokawa, H., Laughlin, D., Lee, T. D., Leishman, M., Lens, F., Lenz, T., Lewis, S. L., Lloyd, J. O. N., Llusiá, J., Louault, F., Ma, S., Mahecha, M. D., Manning, P., Massad, T., Medlyn, B., Messier, J., Moles, A. T., Müller, S. C., Nadrowski, K., Naeem, S., Niinemets, Ü., Nöllert, S., Nüske, A., Ogaya, R., Oleksyn, J., Onipchenko, V. G., Onoda, Y., Ordoñez, J., Overbeck, G., Ozinga, W. A., Patiño, S., Paula, S., Pausas, J. G., Peñuelas, J., Phillips, O. L., Pillar, V., Poorter, H., Poorter, L., Poschlod, P., Prinzing, A., Proulx, R., Rammig, A., Reinsch, S., Reu, B., Sack, L., Salgado-Negret, B., Sardans, J., Shiodera, S., Shipley, B., Siefert, A., Sosinski, E., Soussana, J.-F., Swaine, E., Swenson, N., Thompson, K. E. N., Thornton, P., Waldram, M., Weiher, E., White, M., White, S., Wright, S. J., Yguel, B., Zaehle, S., Zanne, A. E. and Wirth, C. (2011) TRY – a global database of plant traits. Global Change Biology, 17, 2905–2935.CrossRefGoogle Scholar
Kinzig, A. P., Pacala, S. and Tilman, D. (eds.) (2002) Functional Consequences of Biodiversity: Empirical Progess and Theoretical Extensions. Princeton University Press.
Lhomme, J. P. and Winkel, T. (2002) Diversity–stability relationships in community ecology: re-examination of the portfolio effect. Theoretical Population Biology, 62, 271–279.CrossRefGoogle ScholarPubMed
Libecap, G. D. (2011) Institutional path dependence in climate adaptation: Coman’s “Some Unsettled Problems of Irrigation.”American Economic Review, 101, 64–80.CrossRefGoogle Scholar
Loreau, M., Naeem, S. and Inchausti, P. (2002) Biodiversity and Ecosystem Functioning: Synthesis and Perspectives. Oxford University Press.Google Scholar
Loreau, M., Mouquet, N. and Gonzalez, A. (2003) Biodiversity as spatial insurance in heterogenous landscapes. Proceedings of the National Academy of Sciences, 22, 12765–12770.CrossRefGoogle Scholar
Loskutov, I. G. & Rines, H. R. (2011) Avena. Wild Crop Relatives: Genomic and Breeding Resources (Cereals) (ed. Kole, C.), pp. 109–184. Springer, Berlin.CrossRefGoogle Scholar
Low, B., Ostrom, E., Simon, C. and Wilson, J. (2002) Redundancy and diversity: do they influence optimal management? Navigating Social-Ecological Systems: Building Resilience for Complexity and Change (ed. Berkes, F., Colding, J. and Folke, C.), pp. 83–114. Cambridge University Press.CrossRefGoogle Scholar
Magurran, A. E. (2004) Measuring Biological Diversity. Blackwell, Oxford.Google Scholar
Malthus, T. R. (1999[1798]) An Essay on the Principle of Population. Oxford University Press.Google Scholar
May, R. M. (1973) Stability and Complexity in Model Ecosystems. Princeton University Press.Google ScholarPubMed
McIntyre, P. B., Jones, L. E., Flecker, A. S. and Vanni, M. J. (2007) Fish extinctions alter nutrient recycling in tropical freshwaters. PNAS, 104, 4461–4466.CrossRefGoogle ScholarPubMed
McLeod, K. L. and Leslie, H. M. (eds.) (2009) Ecosystem-Based Management for the Oceans. Island Press, Washington, DC.
Mill, J. S. (1909) Principles of Political Economy with some of their Applications to Social Philosophy, 7th edn. Longmans, Green and Co., London.Google Scholar
Naeem, S. (1998) Species redundancy and ecosystem reliability. Conservation Biology, 12, 39–45.CrossRefGoogle Scholar
Naeem, S. (2002) Disentangling the impacts of diversity on ecosystem functioning in combinatorial experiments. Ecology, 83, 2925–2935.CrossRefGoogle Scholar
Naeem, S. and Wright, J. P. (2003) Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecology Letters, 6, 567–579.CrossRefGoogle Scholar
Naeem, S., Bunker, D., Hector, A., Loreau, M. and Perrings, C. (eds.) (2009) Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective. Oxford University Press.CrossRef
Pace, M. L., Cole, J. J., Carpenter, S. and Kitchell, J. (1999) Trophic cascades revealed in diverse ecosystems. Trends in Ecology & Evolution 14, 483–488.CrossRefGoogle ScholarPubMed
Pandolfi, J. M., Bradbury, R. H., Sala, E., Hughes, T. P., Bjorndal, K. A., Cooke, R. G., McArdle, D., McClenachan, L., Newman, M. J. H., Paredes, G., Warner, R. R. and Jackson, J. B. C. (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science, 301, 955–958.CrossRefGoogle ScholarPubMed
Perrings, C., Naeem, S., Ahrestani, F., Bunker, D. E., Burkill, P., Canziani, G., Elmqvist, T., Ferrati, R., Fuhrman, J., Jaksic, F., Kawabata, Z. I., Kinzig, A., Mace, G. M., Milano, F., Mooney, H., Prieur-Richard, A.-H., Tschirhart, J. and Weisser, W. (2011) Ecosystem services, targets, and indicators for the conservation and sustainable use of biodiversity. Frontiers in Ecology and the Environment, 9, 512–520.CrossRefGoogle Scholar
Petchey, O. L. and Gaston, K. (2002) Functional diversity (FD), species richness and community composition. Ecology Letters, 5, 402–411.CrossRefGoogle Scholar
Petchey, O. L., O’Gorman, E. J. and Flynn, D. F. B. (2009) A functional guide to functional diversity measures. Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (ed. Naeem, S., Bunker, D., Hector, A., Loreau, M. and Perrings, C.), pp. 49–59. Oxford University Press.CrossRefGoogle Scholar
Piesse, J. and Thirtle, C. (2010) Agricultural R&D, technology and productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3035–3047.CrossRefGoogle ScholarPubMed
Pimm, S. L. (1984) The complexity and stability of ecosystems. Nature, 307, 321–326.CrossRefGoogle Scholar
Reisner, M. (1993) Cadillac Desert: The American West and Its Disappearing Water. Penguin, New York.Google Scholar
Schoener, T. W. (1974) Resource partitioning in ecological communities. Science, 185, 27–39.CrossRefGoogle ScholarPubMed
Schweiger, O., Klotz, S., Durka, W. and Kuhn, I. (2008) A comparative test of phylogenetic diversity indices. Oecologia, 157, 485–495.CrossRefGoogle ScholarPubMed
Shannon, C. E. (1948) A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.CrossRefGoogle Scholar
Simpson, E. H. (1949) Measurement of diversity. Nature, 163, 688.CrossRefGoogle Scholar
Smale, M., Hartell, J., Heisey, P. W. and Senauer, B. (1998) The contribution of genetic resources and diversity to wheat production in the Punjab of Pakistan. American Journal of Agricultural Economics, 80, 482–493.CrossRefGoogle Scholar
Solan, M., Cardinale, B. J., Downing, A. L., Engelhardt, K. A. M., Ruesink, J. L. and Srivastava, D. S. (2004) Extinction and ecosystem function in the marine benthos. Science, 306, 1177–1180.CrossRefGoogle ScholarPubMed
Solow, A., Polasky, S. and Broadus, J. (1993) On the measurement of biological diversity. Journal of Environmental Economics and Management, 24, 60–68.CrossRefGoogle Scholar
Sørensen, T. A. (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter, 5, 1–34.Google Scholar
Steneck, R. S., Vavrinec, J. and Leland, A. V. (2004) Accelerating trophic-level dysfunction in kelp forest ecosystems of the Western North Atlantic. Ecosystems, 7, 323–332.CrossRefGoogle Scholar
Swanson, T. M. (1994) The International Regulation of Extinction. New York University Press.CrossRefGoogle Scholar
Swanson, T. M. (1995) Why does biodiversity decline? The analysis of forces for global change. The Economics and Ecology of Biodiversity Decline: The Forces Driving Global Change (ed. Swanson, T. M.), pp. 1–9. Cambridge University Press.Google Scholar
Thompson, I., Mackey, B., McNulty, S. and Mosseler, A. (2009) Forest Resilience, Biodiversity, and Climate Change: A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems. CBD, Montreal.Google Scholar
Tilman, D. and Downing, J. A. (1994) Biodiversity and stability in grasslands. Nature, 367, 363–365.CrossRefGoogle Scholar
Tilman, D., Wedin, D. and Knops, J. (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718–720.CrossRefGoogle Scholar
Tilman, D., Lehman, C. L. and Bristow, C. E. (1998) Diversity–stability relationships: statistical inevitability or ecological consequence? The American Naturalist, 151, 277–282.Google ScholarPubMed
Tilman, D., May, R. M., Polasky, S. and Lehman, C. L. (2005) Diversity, productivity and temporal stability in the economies of humans and nature. Journal of Environmental Economics and Management, 49, 405–426.CrossRefGoogle Scholar
Tilman, D., Reich, P., Knops, J., Wedin, D., Mielke, T. and Lehman, C. (2001) Diversity and productivity in a long-term grassland experiment. Science, 294, 843–845.CrossRefGoogle Scholar
Tisdell, C. (2003) Socioeconomic causes of loss of animal genetic diversity: analysis and assessment. Ecological Economics, 45, 365–376.CrossRefGoogle Scholar
Walker, B. H., Kinzig, A. P. and Langridge, J. (1999) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems, 2, 95–113.CrossRefGoogle Scholar
Weitzman, M. L. (1992) On diversity. Quarterly Journal of Economics, 107, 363–405.CrossRefGoogle Scholar
White, J. A. and Whitham, T. G. (2000) Associational susceptibility of cottonwood to a box elder herbivore. Ecology, 81, 1795–1803.CrossRefGoogle Scholar
Whittaker, R. H. (1972) Evolution and measurement of species diversity. Taxon, 21, 213–251.CrossRefGoogle Scholar
Widawsky, D. and Rozelle, S. (1998) Varietal diversity and yield variability in Chinese rice production. Farmers, Gene Banks, and Crop Breeding (ed. Smale, M.), pp. 159–172. Kluwer, Norwell, MA.Google Scholar
Wohl, D. L., Arora, S. and Gladstone, J. R. (2004) Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment. Ecology, 85, 1534–1540.CrossRefGoogle Scholar
World Commission on Environment and Development (1987) Our Common Future. Island Press, Washington, DC.Google Scholar
Yachi, S. and Loreau, M. (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences, 96, 1463–1468.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×