Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T11:01:44.040Z Has data issue: false hasContentIssue false

2 - Single semiconductor quantum dots in nanowires: growth, optics, and devices

from Part I - Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires

Published online by Cambridge University Press:  05 August 2012

M. E. Reimer
Affiliation:
Delft University of Technology, The Netherlands
N. Akopian
Affiliation:
Delft University of Technology, The Netherlands
M. Barkelid
Affiliation:
Delft University of Technology, The Netherlands
G. Bulgarini
Affiliation:
Delft University of Technology, The Netherlands
R. Heeres
Affiliation:
Delft University of Technology, The Netherlands
M. Hocevar
Affiliation:
Delft University of Technology, The Netherlands
B. J. Witek
Affiliation:
Delft University of Technology, The Netherlands
E. P. A. M. Bakkers
Affiliation:
Delft University of Technology, The Netherlands
V. Zwiller
Affiliation:
Delft University of Technology, The Netherlands
Alexander Tartakovskii
Affiliation:
University of Sheffield
Get access

Summary

Introduction

Quantum dots have proven to be exciting systems to study light-matter interaction [32, 9]. Self-assembled quantum dots obtained by the Stranski–Krastanow growth mode have been the main system to date [32, 9]. Here we introduce a new type of quantum dot embedded in a one-dimensional nanowire. Quantum dots in nanowires offer a range of advantages over strain-driven Stranski–Krastanov quantum dots. In the case of quantum dots in nanowires, the light extraction efficiency can be very high for the quantum dot emission due to a waveguide effect in the nanowire [14, 45], theoretically approaching 100% according to simulations [14]. Since strain is not the driving mechanism during growth, unprecedented material freedom is available to the quantum engineer in the choice of materials for the quantum dot and the barrier material. At the scale of nanowires, both zincblende and wurtzite crystal structures can coexist, opening the door to a new type of confinement based not only on the material composition, but also on the phase of the crystal lattice [1]. The ability to electrically contact a single nanowire implies that all the current injected in a nanowire will flow through a single quantum dot, enabling an efficient interface between single electrons and single photons [33, 44]. In addition, electrostatic gating is highly versatile, allowing for coherent spin manipulation [36], charge state control [54], and the ability to control the exciton–biexciton splitting by an in-plane electric field [43].

Type
Chapter
Information
Quantum Dots
Optics, Electron Transport and Future Applications
, pp. 21 - 40
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Akopian, N., Patriarche, G., Liu, L., Harmand, J. C. and Zwiller, V. 2010. Crystal phase quantum dots. Nano Letters, 10(4), 1198–1201.Google Scholar
[2] Algra, R. E., Verheijen, M. A., Borgström, M. T. et al. 2008. Twinning superlattices in indium phosphide nanowires. Nature, 456, 369–372.Google Scholar
[3] Atatüre, M., Dreiser, J., Badolato, A. et al. 2006. Quantum-dot spin-state preparation with near-unity fidelity. Science, 312, 551–553.Google Scholar
[4] Avron, J. E., Bisker, G., Gershoni, D. et al. 2008. Entanglement on demand through time reordering. Phys. Rev. Lett., 100(12), 120501.Google Scholar
[5] Baier, M., Findeis, F., Zrenner, A., Bichler, M. and Abstreiter, G. 2001. Optical spectroscopy of charged excitons in single quantum dot photodiodes. Phys. Rev. B, 64, 195326.Google Scholar
[6] Bayer, M., Stern, O., Hawrylak, P., Fafard, S. and Forchel, A. 2000. Hidden symmetries in the energy levels of excitonic ‘artificial atoms’. Nature, 405, 923–926.Google Scholar
[7] Bayer, M., Ortner, G., Stern, O. et al. 2002. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B, 65(19), 195315.Google Scholar
[8] Becher, C., Kiraz, A., Michler, P. et al. 2001. Nonclassical radiation from a single self-assembled InAs quantum dot. Phys. Rev. B, 63(12), 121312.Google Scholar
[9] Bimberg, D., Grundmann, M. and Ledentsov, N. N. 1999. Quantum Dot Heterostructures. John Wiley and Sons, Inc.
[10] Borgstrom, M. T., Immink, G., Ketelaars, B., Algra, R. and Bakkers, E. P. A.M. 2007. Synergetic nanowire growth. Nature Nanotechnology, 2(9), 541–544.Google Scholar
[11] Capasso, F. 1985. Semiconductors and Semimetals. Academic Press.
[12] Caroff, P., Dick, K. A., Johansson, J. et al. 2009. Controlled polytypic and twin-plane superlattices in III-V nanowires. Nature Nanotechnology, 4(1), 50–55.Google Scholar
[13] Chithrani, D., Williams, R. L., Lefebvre, J., Poole, P. J. and Aers, G. C. 2004. Optical spectroscopy of single, site-selected, InAs/InP self-assembled quantum dots. Appl. Phys. Lett., 84(6), 978–980.Google Scholar
[14] Claudon, J., Bleuse, J., Malik, N. S. et al. 2010. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photonics, 4, 174–177.Google Scholar
[15] Dick, K. A., Thelander, C., Samuelson, L. and Caroff, P. 2010. Crystal phase engineering in single InAs nanowires. Nano Letters, 10(9), 3494–3499.Google Scholar
[16] Ding, F., Singh, R., Plumhof, J. D. et al. 2010. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. Phys. Rev. Lett., 104(6), 067405.Google Scholar
[17] Ediger, M., Bester, G., Badolato, A. et al. 2007. Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dot. Nature Physics 3, 3, 774.Google Scholar
[18] Fox, M. 2006. Quantum Optics: An Introduction. Berlin: Oxford University Press.
[19] Fuhrmann, B., Leipner, H. S., Höche, H.-R. et al. 2005. Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Letters, 5(12), 2524–2527.Google Scholar
[20] Gerardot, B. D., Seidl, S., Dalgarno, P. A. et al. 2007. Manipulating exciton fine structure in quantum dots with a lateral electric field. Appl. Phys. Lett., 90(4), 041101.Google Scholar
[21] Heiss, D., Jovanov, V., Bichler, M., Abstreiter, G. and Finley, J. J. 2008. Charge and spin readout scheme for single self-assembled quantum dots. Phys. Rev. B, 77(23), 235442.Google Scholar
[22] Ikonic, Z., Srivastava, G. P. and Inkson, J. C. 1995. Optical properties of twinning superlattices in diamond-type and zinc-blende-type semiconductors. Phys. Rev. B, 52(19), 14078.Google Scholar
[23] Johansson, J., Dick, K. A., Caroff, P. et al. 2010. Diameter dependence of the wurtzite–zinc blende transition in InAs nanowires. J. Phys. Chem. C, 114(9), 3837–3842.Google Scholar
[24] Kim, D., Sheng, W., Poole, P. J. et al. 2009. Tuning the exciton g factor in single InAs/InP quantum dots. Phys. Rev. B, 79(4), 045310.Google Scholar
[25] Kiselev, A. A., Ivchenko, E. L. and Rössler, U. 1998. Electron g factor in one-and zero-dimensional semiconductor nanostructures. Phys. Rev. B, 58(24), 16353–16359.Google Scholar
[26] Kiselev, A. A., Kim, K. W. and Yablonovitch, E. 2001. In-plane light-hole g factor in strained cubic heterostructures. Phys. Rev. B, 64(12), 125303.Google Scholar
[27] Koguchi, M., Kakibayashi, H., Yazawa, M., Hiruma, K. and Katsuyama, T. 1992. Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type. Jap. J. Appl. Phys., 31, 2061–2065.Google Scholar
[28] Korkusinski, M., Reimer, M. E., Williams, R. L. and Hawrylak, P. 2009. Engineering photon cascades from multiexciton complexes in a self-assembled quantum dot by a lateral electric field. Phys. Rev. B, 79(3), 035309.Google Scholar
[29] Kowalik, K., Krebs, O., Lemaître, A. et al. 2007. Monitoring electrically driven cancellation of exciton fine structure in a semiconductor quantum dot by optical orientation. Appl. Phys. Lett., 91(18), 183104.Google Scholar
[30] Krishnamachari, U., Borgstrom, M., Ohlsson, B. J. et al. 2004. Defect-free InP nanowires grown in [001] direction on InP (001). Appl. Phys. Lett., 85(11), 2077–2079.Google Scholar
[31] Mattila, M., Hakkarainen, T., Lipsanen, H., Jiang, H. and Kauppinen, E. I. 2007. Enhanced luminescence from catalyst-free grown InP nanowires. Appl. Phys. Lett., 90(3), 033101+.Google Scholar
[32] Michler, P. (ed). 2003. Single Quantum Dots: Fundamentals, Application and New Concepts. Topics in Applied Physics, vol. 90. Berlin: Springer-Verlag.
[33] Minot, E. D., Kelkensberg, F., van Kouwen, M. et al. 2007. Single quantum dot nanowire LEDs. Nano Letters, 7, 367–371.Google Scholar
[34] Morales, A. M. and Lieber, C. M. 1998. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 279(5348), 208–211.Google Scholar
[35] Murayama, M. and Nakayama, T. 1994. Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. Phys. Rev. B, 49(7), 4710–4724.Google Scholar
[36] Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. and Kouwenhoven, L. P. 2011. Spin–orbit qubit in a semiconductor nanowire. Nature, 468, 1084–1087.Google Scholar
[37] Ohlsson, B. J., Bjork, M. T., Magnusson, M. H. et al. 2001. Size-, shape-, and position-controlled GaAs nano-whiskers. Appl. Phys. Lett., 79(20), 3335–3337.Google Scholar
[38] Pierret, A., Hocevar, M., Diedenhofen, S. L. et al. 2010. Generic nano-imprint process for fabrication of nanowire arrays. Nanotechnology, 21(6), 065305.Google Scholar
[39] Pryor, C. E. and Flatté, M. E. 2006. Landé g factors and orbital momentum quenching in semiconductor quantum dots. Phys. Rev. Lett., 96(2), 026804.Google Scholar
[40] Reimer, M. E., Korkusinski, M., Lefebvre, J. et al. 2007. Voltage induced hidden symmetry and photon entanglement generation in a single, site-selected quantum dot. arXiv:0706.1075 (unpublished).
[41] Reimer, M. E., Korkusiński, M., Dalacu, D. et al. 2008. Prepositioned single quantum dot in a lateral electric field. Phys. Rev. B, 78(19), 195301.Google Scholar
[42] Reimer, M. E., Dalacu, D., Poole, P. J. and Williams, R. L. 2010. Biexciton binding energy control in site-selected quantum dots. J. Phys.: Conf. Ser., 210, 012019.Google Scholar
[43] Reimer, M. E., van Kouwen, M. P., Hidma, A. W. et al. 2011a. Electric field induced removal of the biexciton binding energy in a single quantum dot. Nano Letters, 11(2), 645–650.Google Scholar
[44] Reimer, M. E., van Kouwen, M. P., Barkelid, M. et al. 2011b. Single photon emission and detection at the nanoscale utilizing semiconductor nanowires. J. Nanophoton., 5, 053502.Google Scholar
[45] Reimer, M. E., Bulgarini, G., Akopian, N. et al. 2012. Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun., 3, 737.Google Scholar
[46] Renard, V. T., Jublot, M., Gergaud, P. et al. 2009. Catalyst preparation for CMOS-compatible silicon nanowire synthesis. Nature Nanotechnology, 4, 654–657.Google Scholar
[47] Sarkar, D., van der Meulen, H. P., Calleja, J.M. et al. 2006. Exciton fine structure and biexciton binding energy in single self-assembled InAs/AlAs quantum dots. J. Appl. Phys., 100(2), 023109.Google Scholar
[48] Savio C., Dal, Pierz, K., Ade, G. et al. 2006. Optical study of single InAs on In0.12Ga0.88As self-assembled quantum dots: biexciton binding energy dependence on the dots size. Appl. Phys. B: Lasers and Optics, 84(1), 317–322.Google Scholar
[49] Schmid, H., Bjork, M. T., Knoch, J. et al. 2008. Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si(111) using silane. J. Appl. Phys., 103(2), 024304.Google Scholar
[50] Spirkoska, D., Arbiol, J., Gustafsson, A. et al. 2009. Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys. Rev. B, 80(24), 245325.Google Scholar
[51] Streetman, B. 1990. Semiconductors and Semimetals. Solid State Electronic Devices. Prentice-Hall, Englewood.
[52] Tchernycheva, M., Cirlin, G. E., Patriarche, G. et al. 2007. Growth and characterization of InP nanowires with InAsP insertions. Nano Letters, 7(6), 1500–1504.Google Scholar
[53] Toft, I. and Phillips, R. T. 2007. Hole g factors in GaAs quantumdots fromthe angular dependence of the spin fine structure. Phys. Rev. B, 76(3), 033301.Google Scholar
[54] van Kouwen, M. P., Reimer, M. E., Hidma, A. W. et al. 2010. Single electron charging in optically active nanowire quantum dots. Nano Letters, 10, 1817–1822.Google Scholar
[55] van Kouwen, M. P., van Weert, M.H.M., Reimer, M. E. et al. 2010b. Single quantum dot nanowire photodetectors. Appl. Phys. Lett., 97, 113108.Google Scholar
[56] van Weert, M.H.M., Helman, A., van den Einden, W. et al. 2009a. Zinc incorporation via the vapor–liquid–solid mechanism into InP nanowires. J. Am. Chem. Soc., 131, 4578–4579.Google Scholar
[57] van Weert, M. H. M., Akopian, N., Perinetti, U. et al. 2009b. Selective excitation and detection of spin states in a single nanowire quantum dot. Nano Letters, 9, 1989–1993.Google Scholar
[58] van Weert, M. H. M., Helman, A., van den Einden, W. et al. 2009c. Zinc incorporation via the vapor–liquid–solid mechanism into InP nanowires. J. Am. Chem. Soc., 131(13), 4578–4579. doi: 10.1021/ja809871j.CrossRefGoogle Scholar
[59] Verheijen, M. A., Immink, G., de Smet, T., Borgström, M. T. and Bakkers, E. P. A. M. 2006. Growth kinetics of heterostructured GaP–GaAs nanowires. J. Am. Chem. Soc., 128(4), 1353–1359. doi: 10.1021/ja057157h.CrossRefGoogle Scholar
[60] Verheijen, M. A., Algra, R. E., Borgström, M. T. et al. 2007. Three-dimensional morphology of GaP–GaAs nanowires revealed by transmission electron microscopy tomography. Nano Letters, 7(10), 3051–3055.Google Scholar
[61] Vrijen, R. and Yablonovitch, E. 2001. A spin-coherent semiconductor photo-detector for quantum communication. Physica E: Low-dimensional Systems and Nanostructures, 10(4), 569–575.Google Scholar
[62] Wacaser, B. A., Reuter, M. C., Khayyat, M. M. et al. 2009. Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires. Nano Letters, 9(9), 3296–3301.Google Scholar
[63] Wagner, R. S. and Ellis, W. C. 1964. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett., 4(5), 89–90.Google Scholar
[64] Wen, C. Y., Reuter, M. C., Bruley, J. et al. 2009. Formation of compositionally abrupt axial heterojunctions in silicon–germanium nanowires. Science, 326(5957), 1247–1250.Google Scholar
[65] Xu, X., Sun, B., Berman, P. R. et al. 2008. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nature Physics, 4, 692–695.Google Scholar
[66] Yang, C., Barrelet, C. J., Capasso, F. and Lieber, C. M. 2006. Single p-type/intrinsic/n-type silicon. Nano Letters, 6, 2929–2934.Google Scholar
[67] Young, R. J., Stevenson, R. M., Shields, A. J. et al. 2005. Inversion of exciton level splitting in quantum dots. Phys. Rev. B, 72(11), 113305.Google Scholar
[68] Yu, P. Y. and Cardona, M. 2005. Fundamentals of Semiconductors: Physics and Materials Properties. Berlin: Springer.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×