Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-19T23:29:50.506Z Has data issue: false hasContentIssue false

4 - Separation at the Leading Edge of a Thin Airfoil

Published online by Cambridge University Press:  07 October 2011

Vladimir V. Sychev
Affiliation:
Central Aero-Hydrodynamic Institute, Zhukovskii, Russia
Anatoly I. Ruban
Affiliation:
University of Manchester
Victor V. Sychev
Affiliation:
Central Aero-Hydrodynamic Institute, Zhukovskii, Russia
Georgi L. Korolev
Affiliation:
Central Aero-Hydrodynamic Institute, Zhukovskii, Russia
Get access

Summary

Experimental Observations

Boundary-layer separation at the leading edge of a thin airfoil is the principal factor that limits the lift force acting on an airfoil in a fluid stream. Jones (1934) was the first to describe this kind of separation. Since that time, many researchers have turned to the experimental study of flow around the leading edge of an airfoil. In addition to a great number of original studies, several surveys have been devoted to this theme. The reviews by Tani (1964) and Ward (1963) can be regarded as the most complete.

Experiments show that as the angle of attack increases the picture of the flow around the airfoil changes in the following way. When the angle of attack is small, the flow over the profile is attached. Then the pressure has its maximum at the stagnation point O of the flow, where the zero streamline divides into two – one branch lies along the lower surface of the airfoil, and the second one bends around the leading edge of the airfoil and then lies along its upper surface. As we move from the stagnation point along the upper branch, the pressure first falls rapidly, reaching a minimum at some point M (Figure 4.1a), and then starts to increase, so that the boundary layer downstream from point M finds itself under the influence of an adverse pressure gradient. Its magnitude increases with growth of the angle of attack, finally resulting in boundary-layer separation, which occurs earlier for smaller relative airfoil thickness.

When the boundary layer separates, one can observe the appearance of a closed region of recirculating flow on the upper surface of the airfoil (Figure 4.1a).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×