Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-04T16:07:19.524Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 January 2013

M. Pollak
Affiliation:
University of California, Riverside
M. Ortuño
Affiliation:
Universidad de Murcia, Spain
A. Frydman
Affiliation:
Bar-Ilan University, Israel
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Electron Glass , pp. 269 - 288
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, E., Anderson, P. W., Licciardello, D. C., and Ramakrishnan, T. V. 1979. Scaling theory of localization — Absence of quantum diffusion in 2 dimensions. Physical Review Letters, 42(10), 673–676.Google Scholar
Adkins, C. J., Benjamin, J. D., Thomas, J. M. D., Gardner, J. W., and McGeown, A. J. 1984. Potential disorder in granular metal systems: the field effect in discontinuous metal films. Journal of Physics-Solid State Physics, 17(26), 4633–4644.Google Scholar
Altshuler, B. L. 1985. Fluctuations in the extrinsic conductivity of disordered conductors. JETP Letters, 41, 648–651.Google Scholar
Altshuler, B. L., and Aronov, A. G. 1979. Zero bias anomaly in tunnel resistance and electron-electron interaction. Solid State Communications, 30(3), 115–117.Google Scholar
Altshuler, B. L., and Aronov, A. G. 1985. The effect of Coulomb interactions on electronic states and transport in disordered insulators. In: Efros, A. L., and Pollak, M. (eds), Electron-electron interactions in disordered systems. Amsterdam: North-Holland.
Altshuler, B. L., Kravtsov, V. E., Lerner, I. V., and Aleiner, I. L. 2009. Jumps in current-voltage characteristics in disordered films. Physical Review Letters, 102(17), 176803.Google Scholar
Ambegaokar, V., Halperin, B. I., and Langer, J. S. 1971. Hopping conductivity in disordered systems. Physical ReviewB, 4(8), 2612–2620.Google Scholar
Amir, A., Oreg, Y., and Imry, Y. 2008. Meanfield model for electron-glass dynamics. Physical ReviewB, 77(16), 165207.Google Scholar
Amir, A., Oreg, Y., and Imry, Y. 2009a. 1/f noise and slow relaxations in glasses. Annalen der Physik, 18(12), 836–843.Google Scholar
Amir, A., Oreg, Y., and Imry, Y. 2009b. Slow relaxations and aging in the electron glass. Physical Review Letters, 103(12), 126403.Google Scholar
Amir, A., Oreg, Y., and Imry, Y. 2009c. Variable range hopping in the Coulomb glass. Physical ReviewB, 80(24), 245214.Google Scholar
Amir, A., Oreg, Y., and Imry, Y. 2010. Localization, anomalous diffusion, and slow relaxations: a random distance matrix approach. Physical Review Letters, 105(7), 070601.Google Scholar
Amir, A., Borini, S., Oreg, Y., and Imry, Y. 2011a. Huge (but finite) time scales in slow relaxations: beyond simple aging. Physical Review Letters, 107(Oct), 186407.Google Scholar
Amir, A., Oreg, Y., and Imry, Y. 2011b. Electron glass dynamics. Pages 235–262 of: Langer, J. S. (ed), Annual Review of Condensed Matter Physics, Vol. 2. Annual Reviews.
Amir, A., Oreg, Y., and Imry, Y. 2012. On relaxations and aging of various glasses. Proceedings of the National Academy of Sciences of the United States of America, 109, 1850–1855.Google Scholar
Anderson, P. W. 1958. Absence of diffusion in certain random lattices. Physical Review, 109(5), 1492–1505.Google Scholar
Anderson, P. W. 1967. Infrared catastrophe in Fermi gases with local scattering potentials. Physical ReviewB, 18(24), 1049–1051.Google Scholar
Anderson, P. W., Halperin, P. I., and Varma, C. M. 1972. Anomalous thermal properties of glasses and spin glasses. Philosophical Magazine, 25, 1–8.Google Scholar
Anderson, P. W., Abrahams, E., and Ramakrishnan, T. V. 1979. Possible explanation of non-linear conductivity in thin-film metal wires. Physical Review Letters, 43(10), 718–720.Google Scholar
Anissimova, S., Kravchenko, S. V., Punnoose, A., Finkel'stein, A. M., and Klapwijk, T. M. 2007. Flow diagram of the metal–insulator transition in two dimensions. Nature Physics, 3, 707–710.Google Scholar
Aoki, N. 2000. Real-space renormalisation-group theory for Anderson localisation: decimation method for electron systems. Journal of Physics C: Solid State Physics, 13(18), 3369–3386.Google Scholar
Apsley, N., and Hughes, H. P. 1975. Temperature-dependence and field-dependence of hopping conduction in disordered systems. 2. Philosophical Magazine, 31(6), 1327–1339.Google Scholar
Apsley, N., Davis, E. A., Troupt, A. P., and Yoffe, D. A. 1978. Electronic properties of ion-bombarded evaporated germanium and silicon. Journal of PhysicsC, 11(24), 4983–4996.Google Scholar
Arsenault, L. F., Movaghar, B., Desjardins, P., and Yelon, A. 2008. Magnetotransport in the insulating regime of Mn-doped GaAs. Physical ReviewB, 78, 075202.Google Scholar
Austin, I. G., and Mott, N. F. 1969. Polarons in crystalline and non-crystalline materials. Advances in Physics, 81, 41–102.Google Scholar
Ballesteros, H. G., Cruz, A., Fernández, L. A., Martín-Mayor, V., Pech, J., Ruiz-Lorenzo, J. J., Tarancón, A., Téllez, P., Ullod, C. L., and Ungil, C. 2000. Critical behavior of the three-dimensional Ising spin glass. Physical ReviewB, 62, 14237–14245.Google Scholar
Baranovskii, S. D., Efros, A. L., Gelmont, B. L., and Shklovskii, B. I. 1979. Coulomb gap in disordered systems – Computer-simulation. Journal of PhysicsC, 12(6), 1023–1034.Google Scholar
Baranovskii, S. D., Shklovskii, B. I., and Efros, A. L. 1980. Elementary excitations in disordered systems with localized electrons. Soviet JETP, 51(1), 199–207.Google Scholar
Basko, D. M., Aleiner, I. L., and Altshuler, B. L. 2006. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Annals of Physics, 321, 1126–1205.Google Scholar
Baturina, T. I., Mironov, A. Yu., Vinokur, V. M., Baklanov, M. R., and Strunk, C. 2007. Localized superconductivity in the quantum-critical region of the disorder-driven superconductor-insulator transition in TiN thin films. Physical Review Letters, 99, 257003.Google Scholar
Belanger, D. P. 1995. Experiments on the random field Ising model. Pages 251–276 of: Young, A. P. (ed), Spin Glasses and Random Fields. Singapore: World Scientific.
Ben-Chorin, M., Ovadyahu, Z., and Pollak, M. 1993. Nonequilibrium transport and slow relaxation in hopping conductivity. Physical ReviewB, 48(20), 15025–15034.Google Scholar
Bergli, J., Somoza, A. M., and Ortuño, M. 2009. Study of two-electron jumps in relaxation of Coulomb glasses. Annalen der Physik, 18(12), 873–876.Google Scholar
Bergli, J., Somoza, A. M., and Ortuño, M. 2011. Effects of many-electron jumps in relaxation and conductivity of Coulomb glasses. Physical ReviewB, 84(17), 174201.Google Scholar
Bergmann, G. 1984. Weak localization in thin films – a time of flight experiment with conduction electrons. Physics Report, 107, 1–58.Google Scholar
Berkelbach, T. C., and Reichman, D. R. 2010. Conductivity of disordered quantum lattice models at infinite temperature: many-body localization. Physical ReviewB, 81(22), 224429.Google Scholar
Berkovits, R. 2003. Electron–hole generations: a numerical approach to interacting fermion systems. Solid State Communications, 127, 725–729.Google Scholar
Berthier, L., and Biroli, G. 2011. Theoretical perspective on the glass transition and amorphous materials. Review Modern Physics, 83, 587–645.Google Scholar
Bielejec, E., Ruan, J., and Wu, W. 2001. Hard correlation gap observed in quench-condensed ultrathin beryllium. Physical Review Letters, 87(3), 036801.Google Scholar
Binder, K. (ed). 1992. The Monte Carlo Method in Condensed Matter Physics. Berlin: Springer-Verlag.
Binder, K., and Heermann, D. W. 2010. Monte Carlo Simulation in Statistical Physics. 5th edn. Heidelberg: Springer.
Binder, K., and Young, A. P. 1986. Spin glasses: experimental facts, theoretical concepts, and open questions. Review Modern Physics, 58, 801–976.Google Scholar
Bitton, L., Gutman, D. B., Berkovits, R., and Frydman, A. 2011. Coexistence of Coulomb blockade and zero bias anomaly in a strongly coupled nanodot. Physical Review Letters, 106, 016803.Google Scholar
Blatter, G., Feigel'man, M. V., Geshkenbein, V. B., Larkin, A. I., and Vinokur, V. M. 1994. Vortices in high-temperature superconductors. Review Modern Physics, 66, 1125–1388.Google Scholar
Bleibaum, O., Sandow, B., and Schirmacher, W. 2004. Break-junction tunneling spectroscopy for doped semiconductors in the hopping regime. Physical ReviewB, 70(4), 045308.Google Scholar
Bloch, I., Dalibard, J., and Zwerger, W. 2008. Many-body physics with ultracold gases. Reviews of Modern Physics, 80(3), 885–964.Google Scholar
Boettcher, S., Katzgraber, H. G., and Sherrington, D. 2008. Local field distributions in spin glasses. Journal of Physics A: Mathematical and Theoretical, 41, 324007.Google Scholar
Boettger, H., and Bryksin, V. V. 1977. A theory of the Hall effect in the hopping region in disordered systems. Physica Status SolidiB, 81, 433–441.Google Scholar
Bokacheva, L., Teizer, W., Hellman, F., and Dynes, R. C. 2004. Variation of the density of states in amorphous GdSi at the metal–insulator transition. Physical ReviewB, 69(23), 235111.Google Scholar
Borini, S. 2008. Experimental observation of glassy dynamics driven by gas adsorption on porous silicon. Journal of Physics: Condensed Matter, 20, 385207.Google Scholar
Bray, A. J., and Moore, M. A. 1985. Critical behavior of the three-dimensional Ising spin glass. Physical ReviewB, 31, 631–633.Google Scholar
Bray, A. J., and Moore, M. A. 1987. Chaotic nature of the spin-glass phase. Physical Review Letters, 58, 57–60.Google Scholar
Briggs, A., Guldner, Y., Vieren, J. P., Voos, M., Hirtz, J. P., and Razeghi, M. 1983. Low-temperature investigations of the quantum Hall effect in InxGa1-xAs – InP heterojunctions. Physical ReviewB, 27, 6549–6552.Google Scholar
Broadbent, S. R., and Hammersley, J. M. 1957. Percolation processes. Mathematical Proceedings of the Cambridge Philosophical Society, 53(3), 629–641.Google Scholar
Burin, A. L. 1995. Dipole gap effects in low energy excitation spectrum of amorphous solids. Theory of dielectric relaxation. Journal of Low Temperature Physics, 100, 309–337.Google Scholar
Burin, A. L., and Kurnosov, A. K. 2012. Fluctuator model of memory dip in hopping insulators. Journal of Low Temperature Physics, 167, 318–328.Google Scholar
Burin, A. L., Shklovskii, B. I., Kozub, V. I., Galperin, Y. M., and Vinokur, V. 2006. Many electron theory of 1/f noise in hopping conductivity. Physical ReviewB, 74(7), 075205.Google Scholar
Busch, G., and Labhart, H. 1946. Uber den mechanismus der elektrischen leitfahigkeit des siliciumcarbids. Helvetica Physica Acta, 19(6–7), 463–492.Google Scholar
Butko, V. Y., DiTusa, J. F., and Adams, P. W. 2000. Coulomb gap: how a metal film becomes an insulator. Physical Review Letters, 84(7), 1543–1546.Google Scholar
Callen, H. B., and Greene, R. F. 1952. On a theorem of irreversible thermodynamics. Physical Review, 86, 702–710.Google Scholar
Cannella, V., and Mydosh, J. A. 1972. Magnetic ordering in gold-iron alloys. Physical ReviewB, 6, 4220–4237.Google Scholar
Capek, V. 1976. A quantitative discussion of theories of the phonon-assisted hopping. Czechoslovak Journal of Physics, 26, 1191–1194.Google Scholar
Caravaca, M., Somoza, A. M., and Ortuño, M. 2010. Nonlinear conductivity of two-dimensional Coulomb glasses. Physical ReviewB, 82(Oct), 134204.Google Scholar
Carter, J. M., and MacKinnon, A. 2005. Disorder and interactions in one-dimensional systems. Physical ReviewB, 72(2), 024208.Google Scholar
Chan, H. B., Glicofridis, P. I., Ashoori, R. C., and Melloch, M. R. 1997. Universal linear density of states for tunneling into the two-dimensional electron gas in a magnetic field. Physical Review Letters, 79(15), 2867–2870.Google Scholar
Chase, K. S., and Thouless, D. J. 1989. Correlation effects in hopping conductivity. Physical ReviewB, 39(14), 9809–9815.Google Scholar
Chicón, R., Ortuño, M., and Pollak, M. 1988. Hardening of the Coulomb gap by electronic polarons. Physical ReviewB, 37(18), 10520–10525.Google Scholar
Chowdhury, D. 1986. Spin Glasses and Other Frustrated Systems. Singapore: World Scientific.
Choy, T. C., Stoneham, A. M., Ortuño, M., and Somoza, A. M. 2008. Negative magnetoresistance in ultrananocrystalline diamond: strong or weak localization?Applied Physics Letters, 92(1), 012120.Google Scholar
Cohen, O., and Ovadyahu, Z. 1994. Resistance noise near the Anderson transition. Physical ReviewB, 50, 10442–10449.Google Scholar
Cohen, O., Ovadyahu, Z., and Rokni, M. 1992. 1/f noise and incipient localization. Physical Review Letters, 69, 3555–3558.Google Scholar
Conwell, E. M. 1956. Impurity band conduction in germanium and silicon. Physical Review, 103, 51–61.Google Scholar
Coulson, C. A., and Fischer, I. 1949. Notes on the molecular orbital treatment of the hydrogen molecule. Philosophical Magazine, 40(303), 386–393.Google Scholar
Crisanti, A., and Ritort, F. 2003. Violation of the fluctuation-dissipation theorem in glassy systems: basic notions and the numerical evidence. Journal of Physics A: Mathematical and General, 36, R181–R290.Google Scholar
Cuevas, E., and Ortuño, M. 1992. Coulomb gap and tunneling conductance in one-dimensional and 2-dimensional systems. Philosophical MagazineB, 65(4), 681–684.Google Scholar
Cuevas, E., Ortuño, M., Ruiz, J., Gasparian, V., and Pollak, M. 1994. Electrode screening of the Coulomb gap. Philosophical MagazineB, 70(6), 1231–1235.Google Scholar
Cugliandolo, L. F., Kurchan, J., and Peliti, L. 1997. Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics. Physical ReviewE, 55(4), 3898–3914.Google Scholar
Davies, J. H. 1985. The density of states in the Coulomb gap. Philosophical MagazineB, 52(3), 511–520.Google Scholar
Davies, J. H., and Franz, J. R. 1986. Coulomb gap in sodium tungsten bronzes. Physical Review Letters, 57(4), 475–478.Google Scholar
Davies, J. H., Lee, P. A., and Rice, T. M. 1982. Electron glass. Physical Review Letters, 49(10), 758–761.Google Scholar
Davies, J. H., Lee, P. A., and Rice, T. M. 1984. Properties of the electron glass. Physical ReviewB, 29(8), 4260–4271.Google Scholar
De Gennes, P. G. 1976. On a relation between percolation theory and the elasticity of gels. Journal de Physique Letters, 37, L1–L2.Google Scholar
Delahaye, J., Grenet, T., and Gay, F. 2008. Coexistence of anomalous field effect and mesoscopic conductance fluctuations in granular aluminium. European Physical JournalB, 65(1), 5–19.Google Scholar
Delahaye, J., Honoré, J., and Grenet, T. 2011. Slow conductance relaxation in insulating granular A1: evidence for screening effects. Physical Review Letters, 106(18), 186602.Google Scholar
Demishev, S. V., Pronin, A. A., Sluchanko, N. E., Samarin, N. A., Glushkov, V. V., Lyapin, A. G., Varfolomeeva, T. D., Popova, S. V., and Brazhkin, V. V. 2004. Hopping conductivity in carbynes. Magnetoresistance and Hall effect. Physica Status SolidiC, 1, 29–32.Google Scholar
Deviatov, E. V., Shashkin, A. A., Dolgopolov, V. T., Hansen, W., and Holland, M. 2000. Tunneling measurements of the Coulomb pseudogap in a two-dimensional electron system in a quantizing magnetic field. Physical ReviewB, 61(4), 2939–2944.Google Scholar
Dial, O. E., Ashoori, R. C., Pfeiffer, L. N., and West, K. W. 2010. Anomalous structure in the single particle spectrum of the fractional quantum Hall effect. Nature, 464, 566–570.
Díaz-Sánchez, A., and Pérez-Garrido, A. 2001. Stretched exponential relaxation in the Coulomb glass. European Physical JournalB, 24(4), 483–486.Google Scholar
Díaz-Sánchez, A., Möbius, A., Ortuño, M., Pérez-Garrido, A., and Schreiber, M. 1998. Coulomb glass simulations: creation of a set of low-energy many-particle states, non-ergodic effects in the specific heat. Physica Status SolidiB, 205(1), 17–19.Google Scholar
Díaz-Sánchez, A., Möbius, A., Ortuño, M., Neklioudov, A., and Schreiber, M. 2000a. Nonergodic effects in the Coulomb glass: specific heat. Physical ReviewB, 62(12), 8030–8037.Google Scholar
Díaz-Sánchez, A., Ortuño, M., Pérez-Garrido, A., and Cuevas, E. 2000b. Phase Transition in Coulomb Glasses. Physica Status SolidiB, 218(1), 11–16.Google Scholar
Dokow, A. Y., Vilchik, H., and Frydman, A. 2005. Magnetoresistance of mesoscopic granular ferromagnets. Physical ReviewB, 72, 094402.Google Scholar
Doussal, P. Le. 1989. Percolationlike exponent for the conductivity of highly disordered resistor networks. Physical ReviewB, 39(Jan), 881–884.Google Scholar
Dvurechenskii, A. V., Dravin, V. A., and Yakimov, A. I. 1988. Activationless hopping conductivity along the states of the Coulomb gap in a-Si(Mn). JETP Letters, 48(3), 155–159.Google Scholar
Dyre, J. C., and Schrøder, T. B. 2000. Universality of ac conduction in disordered solids. Review Modern Physics, 72, 873–892.Google Scholar
Ebert, G., Klitzing, K. von, Probst, C., Schuberth, E., Ploog, K., and Weimann, G. 1983. Hopping conduction in the Landau level tails in GaAs-AlxGa1-xAs heterostructures at low temperatures. Solid State Communications, 45(7), 625–628.Google Scholar
Edwards, S. F., and Anderson, P. W. 1975. Theory of spin glasses. Journal of Physics F-Metal Physics, 5(5), 965–974.Google Scholar
Efetov, K. B. 1997. Supersymmetry in Disorder and Chaos. Cambridge University Press.
Efros, A. L. 1976. Coulomb gap in disordered systems. Journal of PhysicsC, 9(11), 2021–2030.Google Scholar
Efros, A. L. 1986. Physics and geometry of disorder: percolation theory. Moscow: Mir.
Efros, A.L. and Shklovskii, B.I. 1971. Impurity band and conductivity of compensated semiconductors, Sov. Phys.JETP 33(2), 468–474.Google Scholar
Efros, A. L., and Shklovskii, B. I. 1975. Coulomb gap and low-temperature conductivity of disordered systems. Journal of PhysicsC, 8(4), L49–L51.Google Scholar
Efros, A. L., and Shklovskii, B. I. 1985. Coulomb interactions in disordered systems with localized electronic states. Pages 409–482 of: Efros, A. L., and Pollak, M. (eds), Electron-electron interactions in disordered systems. Amsterdam: North-Holland.
Efros, A. L., Tsigankov, D. N., Pazy, E., and Laikhtman, B. D. 2004. Long-time relaxation of conductivity in hopping regime. Physica Status SolidiB, 241(1), 20–25.Google Scholar
Eisenbach, A., Havdala, T., and Frydman, A.Ferromagnetic electron glasses.” (unpublished manuscript, 2012).
Elliott, S. R. 1977. Theory of AC conduction in chalcogenide glasses. Philosophical MagazineB, 36, 1291–1304.Google Scholar
Emin, D. 1974. Phonon-assisted jump rate in noncrystalline solids. Physical Review Letters, 32(6), 303–307.Google Scholar
Epperlein, F., Schreiber, M., and Vojta, T. 1997. Quantum Coulomb glass within a Hartree-Fock approximation. Physical ReviewB, 56(10), 5890–5896.Google Scholar
Epperlein, F., Schreiber, M., and Vojta, T. 1998. Quantum Coulomb glass – Hartree-Fock approximation versus exact diagonalization. Physica Status SolidiB, 205(1), 233–236.Google Scholar
Evers, F., and Mirlin, A. D. 2008. Anderson transitions. Review Modern Physics, 80, 1355–1417.Google Scholar
Faran, O., and Ovadyahu, Z. 1988. Magnetoconductance in the variable-range-hopping regime due to a quantum-interference mechanism. Physical ReviewB, 38(8), 5457–5465.Google Scholar
Fischer, K. H., and Hertz, J. A. 1991. Spin Glasses. Cambridge University Press.
Fisher, D. S., and Huse, D. A. 1986. Ordered phase of short-range Ising spin-glasses. Physical Review Letters, 56(15), 1601–1604.Google Scholar
Fisher, M. P. A. 1989. Vortex-glass superconductivity: a possible new phase in bulk high-Tc oxides. Physical Review Letters, 62, 1415–1418.Google Scholar
Fisher, M. P. A., Tokuyasu, T. A., and Young, A. P. 1991. Vortex variable-range-hopping resistivity in superconducting films. Physical Review Letters, 66(22), 2931–2934.Google Scholar
Fistul, M. V., Vinokur, V. M., and Baturina, T. I. 2008. Collective Cooper-pair transport in the insulating state of Josephson-junction arrays. Physical Review Letters, 100, 086805.Google Scholar
Fleishman, L., and Anderson, P. W. 1980. Interactions and the Anderson transition. Physical ReviewB, 21(6), 2366–2377.Google Scholar
Fleury, G., and Waintal, X. 2008a. Many-body localization study in low-density electron gases: do metals exist in two dimensions?Physical Review Letters, 101(22), 226803.Google Scholar
Fleury, G., and Waintal, X. 2008b. Numerical finite size scaling approach to many-body localization. Physical Review Letters, 100(7), 076602.Google Scholar
Fowler, A. B., Hartstein, A., and Webb, R. A. 1982. Conductance in restricted-dimensionality accumulation layers. Physical Review Letters, 48, 196–199.Google Scholar
Fowler, A. B., Timp, G. L., Wainer, J. J., and Webb, R. A. 1986. Observation of resonant tunneling in silicon inversion layers. Physical Review Letters, 57, 138–141.Google Scholar
Friedman, L. 1964. Transport properties of organic semiconductors. Physical Review, 133(6A), A1668–A1679.Google Scholar
Friedman, L. H., and Pollak, M. 1981. The Hall Effect in the variable range hopping regime. Philosophical MagazineB, 44, 487–507.Google Scholar
Fritzsche, H. 1955. Electrical properties of germanium semiconductors at low temperatures. Physical Review, 6(2), 406–419.Google Scholar
Fritzsche, H. 1958. Resisitvity and hall coefficient of antimony doped germanium at low temperatures. Journal of Physics and Chemistry and Solids, 6, 69–880.Google Scholar
Fritzsche, H., and Cuevas, M. 1960. Impurity conduction in transmutation-doped p-type germanium. Physical Review, 119(4), 1238–1245.Google Scholar
Frydman, A., and Dynes, R. C. 1999. Magnetoresistance of granular ferromagnets – Observation of a magnetic proximity effect?Solid State Communications, 110, 485–490.Google Scholar
Frydman, A., and Ovadyahu, Z. 1995. Spin and quantum interference effects in hopping conductivity. Solid State Communications, 94, 745–749.Google Scholar
Frydman, A., Cohen, O., and Ovadyahu, Z. 1992. Evidence for fractal behavior in a hopping system. Solid State Communications, 83, 249–252.Google Scholar
Frydman, A., Kirk, T. L., and Dynes, R. C. 2000. Superparamagnetism in discontinuous Ni films. Solid State Communications, 114, 481–486.Google Scholar
Galeazzi, M., Liu, D., McCammon, D., Rocks, L. E., Sanders, W. T., Smith, B., Tan, P., Vaillancourt, J. E., Boyce, K. R., Brekosky, R. P., Gygax, J. D., Kelley, R. L., Kilbourne, C. A., Porter, F. S., Stahle, C. M., and Szymkowiak, A. E. 2007. Hot-electron effects in strongly localized doped silicon at low temperature. Physical ReviewB, 76(15), 155207.Google Scholar
Gershenson, M. E., Khavin, Y. B., Reuter, D., Schafmeister, P., and Wieck, A. D. 2000. Hot-electron effects in two-dimensional hopping with a large localization length. Physical Review Letters, 85(8), 1718–1721.Google Scholar
Geyer, C. J. 1991. Markov chain Monte Carlo maximum likelihood. Pages 156–163 of: Computing Science and Statistics. New York: American Statistical Association.
Gingold, D. B., and Lobb, C. J. 1990. Percolative conduction in three dimensions. Physical ReviewB, 42(Nov), 8220–8224.Google Scholar
Glatz, A., Vinokur, V. M., and Galperin, Y. M. 2007. Statistics of deep energy states in Coulomb glasses. Physical Review Letters, 98, 196401.Google Scholar
Goethe, M., and Palassini, M. 2009. Phase diagram, correlation gap, and critical properties of the Coulomb glass. Physical Review Letters, 103(4), 045702.Google Scholar
Gorkov, L. P., Larkin, A. I., and Khmelnitskii, D. E. 1979. Particle conductivity in a two-dimensional random potential. JETP Letters, 30(4), 228–232.Google Scholar
Gosar, P. 1983a. Many-electron hopping. Physica Status SolidiB, 118(2), 853–860.Google Scholar
Gosar, P. 1983b. Many-electron hopping in semiconductors. PhysicaA, 120(1–2), 339–350.Google Scholar
Grannan, E. R., and Yu, C. C. 1993. Critical-behavior of the Coulomb glass. Physical Review Letters, 71(20), 3335–3338.Google Scholar
Grannan, S. M., Lange, A. E., Haller, E. E., and Beeman, J. W. 1992. Non-Ohmic hopping conduction in doped germanium at T<1 K. Physical ReviewB, 45(8), 4516–4519.Google Scholar
Green, M., and Pollak, M. 1992. Electrode screening of two-dimensional disordered systems. Pages 155–167 of: Aoki, H., Tsukuda, M., Schluter, M., and Levy, F. (eds), New Horizons in Low Dimensional Electron Systems. Dordrecht: Kluwer Academic Publishers.
Grempel, D. R. 2004. Off-equilibrium dynamics of the two-dimensional Coulomb glass. Europhysics Letters, 66(6), 854–860.Google Scholar
Grenet, T., and Delahaye, J. 2010. Manifestation of ageing in the low temperature conductance of disordered insulators. European Physical JournalB, 76(3), 229–236.Google Scholar
Grenet, T., Delahaye, J., Sabra, M., and Gay, F. 2007. Anomalous electricfield effect and glassy behaviour in granular aluminium thin films: electron glass?European Physical JournalB, 56(3), 183–197.Google Scholar
Grunewald, M., Mueller, H., Thomas, P., and Wurtz, D. 1981. The hopping Hall mobility – A percolation approach. Solid State Communications, 38, 1011–1014.Google Scholar
Havdala, T., Eisenbach, A., and Frydman, A. 2012. Ulta-slow relaxation in discontinuous-film based electron glasses. Europhysics Letters, 98, 67006.Google Scholar
Helgren, E., Armitage, N. P., and Gruner, G. 2002. Electrodynamics of a Coulomb glass in n-type silicon. Physical Review Letters, 89(24), 246601.Google Scholar
Hertel, G., Bishop, D. J., Spencer, E. G., Rowell, J. M., and Dynes, R. C. 1983. Tunneling and transport measurements at the metal-insulator transition of amorphous Nb:Si. Physical Review Letters, 50(10), 743–746.Google Scholar
Hill, R. M. 1971. Poole-Frenkel conduction in amorphous solids. Philosophical Magazine, 23(181), 59–86.Google Scholar
Hollinger, G., Pertosa, P., Doumerc, J. P., Himpsel, F. J., and Reihl, B. 1985. Metal–nonmetal transition in tungsten bronzes: a photoemission study. Physical ReviewB, 32(4), 1987–1991.Google Scholar
Holstein, T. 1959a. Studies of polaron motion: Part I. The molecular crystal model. Annals of Physics, 8(3), 325–342.Google Scholar
Holstein, T. 1959b. Studies of polaron motion: Part II. The “small” polaron. Annals of Physics, 8(3), 343–389.Google Scholar
Holstein, T. 1961. Hall effect in impurity conduction. Physical Review, 124, 1329–1347.Google Scholar
Hooge, F. N. 1969. 1/f noise is no surface effect. Physics Letters, 29A, 139–140.Google Scholar
Hooge, F. N., Kleinpennig, T. G. M., and Vandamme, L. K. J. 1981. Experimental studies of 1/f noise. Reports on Progress in Physics, 44, 479–532.Google Scholar
Hopgfield, J. J. 1982. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554–2558.Google Scholar
Hubbard, J. 1963. Electron correlations in narrow energy bands. Proceedings of the Royal Society of London SeriesA, 276(NOV-26), 238–257.Google Scholar
Hukushima, K., and Nemoto, K. 1996. Exchange Monte Carlo method and application to spin glass simulations. Journal of the Physical Society of Japan, 65(6), 1604–1608.Google Scholar
Hunklinger, S., and Raychaudhuri, A. K. 1986. Thermal and elastic anomalies in glasses at low temperatures. Progress in Low Temperature Physics, 9, 265–344.Google Scholar
Hunt, A. G. 1992. The low frequency conductivity of the Fermi glass. Journal of Physics: Condensed Matter, 4(33), 6957–6970.Google Scholar
Hunt, A. G. 1998. A new calculation of 1/f noise in disordered systems with hopping transport. Journal of Physics: Condensed Matter, 10, L303–L310.Google Scholar
Hunt, A. G. 2001. AC hopping conduction: perspective from percolation theory. Philosophical MagazineB, 81, 875–913.Google Scholar
Hunt, A. G., and Ewing, R. 2009. Percolation theory for flow in porous media. 2nd edn. Berlin: Springer Verlag.
Imry, Y. 1997. Introduction to Mesoscopic Physics. Oxford University Press.
Ionov, A., Rentzsch, R., and Shlimak, I. 1996. Role of electron “lakes” in the negative magnetoresistance effect in the region of Mott hopping conductivity. JETP Letters, 63, 199–203.Google Scholar
Ionov, A. N., Matveev, M. N., Shlimak, I. S., and Rentch, R. 1987. Nonohmic hopping conductivity with variable-range hopping in crystalline silicon. JETP Letters, 45(5), 310–313.Google Scholar
Jain, H., and Raychaudhuri, A. K. 2008. Hot electron effects and nonlinear transport in hole doped manganites. Applied Physics Letters, 93(18), 182110.Google Scholar
Jaroszynski, J., and Popovic, D. 2007a. Aging effects across the metal–insulator transition in a two dimensions. Physical Review Letters, 99(21), 216401.Google Scholar
Jaroszynski, J., and Popovic, D. 2007b. Nonequilibrium relaxations and aging effects in a two-dimensional Coulomb glass. Physical Review Letters, 99(4), 046405.Google Scholar
Jonscher, A. K. 1977. Universal dielectric response. Nature, 267(5613), 673–679.Google Scholar
Kamimura, H. 1979. Theoretical models of the transition in doped semiconductors. Pages 327–368 of: Friedman, L.R., and Tunstall, D.P. (eds), The Metal–Insulator Transition in Disordered Systems. Edinburg: Scottish Universities Summer School.
Kamimura, H., and Aoki, H. 1989. The Physics of Interacting Electrons in Disordered Systems. Oxford University Press.
Kanda, A., and Kobayashi, S. 1995. Precursor of charge KTB transition in normal and superconducting tunnel-junction arrays. Journal of the Physical Society of Japan, 64(1), 19–21.Google Scholar
Karahalios, A., Metavitsiadis, A., Zotos, X., Gorczyca, A., and Prelovsek, P. 2009. Finite-temperature transport in disordered Heisenberg chains. Physical ReviewB, 79(2), 024425.Google Scholar
Karpov, I. V., Mitra, M., Kau, D., Spadini, G., Kryukov, Y. A., and Karpov, V. G. 2007. Fundamental drift of parameters in chalcogenide phase change memory. Journal of Applied Physics, 102(12), 124503.Google Scholar
Kauzmann, W. 1948. The nature of the glassy state and the behavior of liquids at low temperatures. Chemical Reviews, 43, 219–256.Google Scholar
Keldysh, L. V. 1979. Coulomb interaction in thin semiconductor and semimetal films. JETP Letters, 29(11), 658–661.Google Scholar
Kerler, W., and Rehberg, P. 1994. Simulated-tempering procedure for spinglass simulations. Physical ReviewE, 50(5), 4220–4225.Google Scholar
Keyes, R. W., and Sladek, R. J. 1956. Effect of a magnetic field on donor impurity levels in InSb. Journal of Physics and Chemistry and Solids, 1, 143–145.Google Scholar
Khondaker, S. I., Shlimak, I. S., Nicholls, J. T., Pepper, M., and Ritchie, D. A. 1999a. Crossover phenomenon for two-dimensional hopping conductivity and density of states near the Fermi level. Solid State Communications, 109(8), 751–756.Google Scholar
Khondaker, S. I., Shlimak, I. S., Nicholls, J. T., Pepper, M., and Ritchie, D. A. 1999b. Two-dimensional conductivity in a delta-doped GaAs/AlxGa1-xAs heterostructure. Physical ReviewB, 59(7), 4580–4583.Google Scholar
Kinkhabwala, Y. A., Sverdlov, V. A., and Likharev, K. K. 2006a. A numerical study of Coulomb interaction effects on 2D hopping transport. Journal of Physics – Condensed Matter, 18(6), 2013–2027.Google Scholar
Kinkhabwala, Y. A., Sverdlov, V. A., Korotkov, A. N., and Likharev, K. K. 2006b. A numerical study of transport and shot noise in 2D hopping. Journal of Physics – Condensed Matter, 18(6), 1999–2012.Google Scholar
Kirkengen, M., and Bergli, J. 2009. Slow relaxation and equilibrium dynamics in a two-dimensional Coulomb glass: demonstration of stretched exponential energy correlations. Physical ReviewB, 79(7), 075205.Google Scholar
Kirkpatrick, S. 1973. Percolation and Conduction. Review Modern Physics, 45(4), 574–588.Google Scholar
Klein, R. S. 1985. Investigation of the Hall effect in impurity-hopping conduction. Physical ReviewB, 31, 2014–2021.Google Scholar
Knotek, M. L. 1975. Temperature and thickness dependence of low temperature transport in amorphous silicon thin films: a comparison to amorphous germanium. Solid State Communications, 17(11), 1431–1433.Google Scholar
Knotek, M. L. 1977. High-field magnetoresistance of hopping transport in the disordered impurity system of transmutation-doped Ge. Physical ReviewB, 16, 2629–2641.Google Scholar
Knotek, M. L., and Pollak, M. 1972. Impurity conduction by multi-electron transitions. Journal of Non-Crystalline Solids, 8, 505–510.Google Scholar
Knotek, M. L., and Pollak, M. 1974. Correlation effects in hopping conduction – Treatment in terms of multielectron transitions. Physical ReviewB, 9(2), 664–681.Google Scholar
Knotek, M. L., and Pollak, M. 1977. Evidence for correlated hopping in impurity conduction at moderate impurity conduction. Solid State Communications, 21, 183–184.Google Scholar
Knotek, M. L., Pollak, M., Donovan, T. M., and Kurtzman, H. 1973. Thickness dependence of hopping transport in amorphous-Ge films. Physical Review Letters, 30(18), 853–856.Google Scholar
Kob, W. 1997. In: Fourkas, J., Kivelson, D., Mohanty, U., and Nelson, K. (eds), Experimental and theoretical approaches to supercooled liquids. Washington, D.C.: ACS Books.
Kogan, S. 1998. Electron glass: intervalley transitions and the hopping conduction noise. Physical ReviewB, 57, 9736–9744.Google Scholar
Kogan, S. M., and Shklovskii, B.I. 1981. Excess low frequency noise in hopping conduction. Soviet Physics Semiconductors, 15, 605.Google Scholar
Kolton, A. B., Grempel, D. R., and Dominguez, D. 2005. Heterogeneous dynamics of the three-dimensional Coulomb glass out of equilibrium. Physical ReviewB, 71(2), 024206.Google Scholar
Koon, D. W., and Castner, T. G. 1990. Hall effect near the metal–insulator transition. Physical ReviewB, 41, 12054–12070.Google Scholar
Kopnin, N. B., Galperin, Y. M., Bergli, J., and Vinokur, V. M. 2009. Nonequilibrium electrons in tunnel structures under high-voltage injection. Physical ReviewB, 80, 134502.Google Scholar
Koren, G., Mor, Y., Auerbach, A., and Polturak, E. 2007. Quantum vortex tunneling in YBa2Cu3O7-δ thin films. Physical ReviewB, 76, 134516.Google Scholar
Kozub, V. I. 1996. Low frequency noise due to site energy fluctuations in hopping conductivity. Solid State Communications, 97, 843–846.Google Scholar
Kozub, V. I., Galperin, Y. M., Vinokur, V., and Burin, A. L. 2008. Memory effects in transport through a hopping insulator: understanding two-dip experiments. Physical ReviewB, 78(13), 132201.Google Scholar
Kramer, B., and MacKinnon, A. 1993. Localization: theory and experiment. Reports on Progress in Physics, 56(1), 1469–1564.Google Scholar
Kravchenko, S. V., and Sarachik, M. P. 2010. A metal insulator transition in 2D, established facts and open questions. International Journal of Modern PhysicsB, 24, 1640–1663.Google Scholar
Kravchenko, S. V., Mason, Whitney E., Bowker, G. E., Furneaux, J. E., Pudalov, V. M., and D'Iorio, M. 1995. Scaling of an anomalous metal-insulator transition in a two-dimensional system in silicon at B=0. Physical ReviewB, 51, 7038–7045.Google Scholar
Kurchan, J. 2005. In and out of equilibrium. Nature, 433(7023), 222–225.
Kurkijärvi, J. 1973. Hopping conductivity in one dimension. Physical ReviewB, 8, 922–924.Google Scholar
Kurobe, A., and Kamimura, H. 1982. Correlation-effects on variable range hopping conduction and the magnetoresistance. Journal of the Physical Society of Japan, 51(6), 1904–1913.Google Scholar
Kurzweil, N., and Frydman, A. 2007. Inverse slow relaxation in granular hopping systems. Physical ReviewB, 75(2), 020202(R).Google Scholar
Kurzweil, N., Kogan, E., and Frydman, A. 2009. Itinerant ferromagnetism in the limit of electron localization. Physical Review Letters, 102, 096603.Google Scholar
Kurzweil, N., Kogan, E., and Frydman, A. 2010. Absence of weak antilocalization in ferromagnetic films. Physical ReviewB, 82, 235104.Google Scholar
Laarhoven, P. v., and Aarts, E. H. L. 1992. Simulated Annealing: Theory and Applications. Dordrecht: Kluwer.
Ladieu, F., Sanquer, M., and Bouchaud, J. P. 1996. Depinning transition in Mott-Anderson insulators. Physical ReviewB, 53(3), 973–976.Google Scholar
Ladieu, F., L'Hôte, D., and Tourbot, R. 2000. Non-Ohmic hopping transport in a-YSi: From isotropic to directed percolation. Physical ReviewB, 61(12), 8108–8118.Google Scholar
Larkin, A. I., and Khmelnitskii, D. E. 1982. Activation conductivity in disordered systems with large localization length. Soviet Physics JETP, 56(3), 647–652.Google Scholar
Lebanon, E., and Müller, M. 2005. Memory effect in electron glasses: theoretical analysis via a percolation approach. Physical ReviewB, 72(17), 174202.Google Scholar
Lee, M., and Stutzmann, M. L. 2001. Microwave ac conductivity spectrum of a Coulomb glass. Physical Review Letters, 87(5), 056402.Google Scholar
Lee, M., Massey, J. G., Nguyen, V. L., and Shklovskii, B. I. 1999. Coulomb gap in a doped semiconductor near the metal–insulator transition: tunneling experiment and scaling ansatz. Physical ReviewB, 60(3), 1582–1591.Google Scholar
Lee, M., Oikonomou, P., Segalova, P., Rosenbaum, T. F., Hoekstra, A. F. T., and Littlewood, P. B. 2005. The electron glass in a switchable mirror: relaxation, ageing and universality. Journal of Physics – Condensed Matter, 17(43), L439–L444.Google Scholar
Lee, P. A. 1982. Density of states and screening near the mobility edge. Physical ReviewB, 26(10), 5882–5885.Google Scholar
Lee, P. A. 1984. Variable-range hopping in finite one-dimensional wires. Physical Review Letters, 53, 2042–2045.Google Scholar
Lee, P. A., and Fisher, D. S. 1981. Anderson localization in two dimensions. Physical Review Letters, 47, 882–885.Google Scholar
Lee, P. A., and Ramakrishnan, T. V. 1985. Disordered electronic systems. Review of Modern Physics, 57(2), 287–337.Google Scholar
Leggett, A. J., Chakravarty, S., Dorsey, A. T., Fisher, M. P. A., Garg, A., and Zwerger, W. 1987. Dynamics of the dissipative two state system. Review of Modern Physics, 59(1), 1–85.Google Scholar
Leturcq, R., L'Hôte, D., Tourbot, R., Senz, V., Gennser, U., Ihn, T., Ensslin, K., Dehlinger, G., and Grützmacher, D. 2003. Hot-hole effects in a dilute two-dimensional gas in SiGe. Europhysics Letters, 61(4), 499–505.Google Scholar
Levin, E. I., Nguyen, V. L., Shklovskii, B. I., and Efros, A. L. 1987. Coulomb gap and hopping electric conduction – Computer simulation. Soviet Physics JETP, 65(4), 842–848.Google Scholar
Li, Q. M., and Phillips, P. 1993. Effect of quantum hopping on the Coulomb gap of localized electrons in disordered systems. Physical ReviewB, 48(20), 15035–15039.Google Scholar
Li, Q. M., and Phillips, P. 1994. Unexpected activated temperature-dependence of the conductance in the presence of a soft Coulomb gap in 3 dimensions. Physical ReviewB, 49(15), 10269–10277.Google Scholar
Long, A. R., McMillan, J., Balkan, N., and Summerfield, S. 1988. The application of the extended pair approximation to hopping conduction in rf sputtered amorphous-silicon. Philosophical MagazineB, 58, 153.Google Scholar
Malik, V., and Kumar, D. 2008. Phase diagram and excitations of a Coulomb glass. Physica Status SolidiC, 5(3), 684–688.Google Scholar
Mansfield, R. 1991. Hopping conduction in III–V compounds. Pages 349–395 of: Pollak, M., and Shklovskii, B. I. (eds), Hopping Transport in Solids. Amsterdam: North-Holland.
Mares, J. J., Hubik, P., Kristofik, J., Kindl, D., Fanta, M., Nesladek, M., Williams, O., and Gruen, D. M. 2006. Weak localization in ultrananocrystalline diamond. Applied Physics Letters, 88(9), 092107.Google Scholar
Marinari, E., and Parisi, G. 1992. Simulated tempering: a new Monte Carlo scheme. Europhysics Letters, 19, 451–458.Google Scholar
Marinari, E., and Parisi, G. 2000. Effects of changing the boundary conditions on the ground state of Ising spin glasses. Physical ReviewB, 62, 11677–11685.Google Scholar
Markos, P. 2006. Numerical analysis of the Anderson localization. Acta Physica Slovaca, 56, 561–685.Google Scholar
Marković, N., Christiansen, C., Grupp, D. E., Mack, A. M., Martinez-Arizala, G., and Goldman, A. M. 2000. Anomalous hopping exponents of ultrathin metal films. Physical ReviewB, 62(3), 2195–2200.Google Scholar
Mason, W., Kravchenko, S. V., Bowker, G. E., and Furneaux, J. E. 1995. Experimental evidence for a Coulomb gap in two dimensions. Physical ReviewB, 52(11), 7857–7859.Google Scholar
Massey, J. G., and Lee, M. 1995. Direct observation of the coulomb correlation gap in a nonmetallic semiconductor, Si:B. Physical Review Letters, 75(23), 4266–4269.Google Scholar
Massey, J. G., and Lee, M. 1996. Electron tunneling study of Coulomb correlations across the metal–insulator transition in Si:B. Physical Review Letters, 77(16), 3399–3402.Google Scholar
Massey, J. G., and Lee, M. 1997. Low-frequency noise probe of interacting charge dynamics in variable-range hopping boron-doped Si. Physical Review Letters, 79(20), 3986–3989.Google Scholar
Massey, J. G., and Lee, M. 2000. Evidence for many-electron composite charge excitations in a Coulomb glass. Physical ReviewB, 62(20), R13270–R13273.Google Scholar
McCammon, D., Galeazzi, M., Liu, D., Sanders, W. T., Smith, B., Tan, P., Boyce, K. R., Brekosky, R., Gygax, J.D., Kelley, R., Mott, D. B., Porter, F. S., Stahle, C. K., Stahle, C. M., and Szymkowiak, A. E. 2002. 1/f noise and hot electron effects in variable range hopping conduction. Physica Status SolidiB, 230(1), 197–204.Google Scholar
McMillan, W. L. 1984. Scaling theory of Ising spin glasses. Journal of Physics C: Solid State Phys., 17, 3179–3187.Google Scholar
Medina, E., and Kardar, M. 1992. Quantum interference effects for strongly localized electrons. Physical ReviewB, 46, 9984–10006.Google Scholar
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21(6), 1087–1092.Google Scholar
Mézard, M., Parisi, G., Sourlas, N., Toulouse, G., and Virasoro, M. 1984. Nature of the spin-glass phase. Physical Review Letters, 52, 1156–1159.Google Scholar
Mézard, M., Parisi, G., Sourlas, N., and Virasoro, M. A. 1987. Spin Glass Theory and Beyond. Singapore: World Scientific.
Mildenberger, A., Evers, F., and Mirlin, A. D. 2002. Dimensionality dependence of the wave-function statistics at the Anderson transition. Physical ReviewB, 66, 033109.Google Scholar
Miller, A., and Abrahams, E. 1960. Impurity conduction at low concentrations. Physical Review, 120(3), 745–755.Google Scholar
Milliken, F. P., and Ovadyahu, Z. 1990. Observation of conductance fluctuations in large In2O3-x films. Physical Review Letters, 65, 911–914.Google Scholar
Millis, A. J., Kent, A. D., Sarachik, M. P., and Yeshurun, Y. 2010. Pure and random-field quantum criticality in the dipolar Ising model: theory of Mn12 acetates. Physical ReviewB, 81, 024423.Google Scholar
Möbius, A., and Pollak, M. 1996. Low-temperature specific heat of the Coulomb glass: role of correlations. Physical ReviewB, 53(24), 16197–16200.Google Scholar
Möbius, A., Richter, M., and Drittler, B. 1992. Coulomb gap in 2-dimensional and 3-dimensional systems – Simulation results for large samples. Physical ReviewB, 45(20), 11568–11579.Google Scholar
Möbius, A., Neklioudov, A., Díaz-Sánchez, A., Hoffmann, K. H., Fachat, A., and Schreiber, M. 1997. Optimization by Thermal Cycling. Physical Review Letters, 79(22), 4297–4301.Google Scholar
Möbius, A., Freisleben, B., Merz, P., and Schreiber, M. 1999. Combinatorial optimization by iterative partial transcription. Physical ReviewE, 59(4), 4667–4674.Google Scholar
Möbius, A., Thomas, P., Talamantes, J., and Adkins, C. J. 2001. Specific heat of the Coulomb glass. Philosophical MagazineB, 81(9), 1105–1116.Google Scholar
Möbius, A., Karmann, P., and Schreiber, M. 2009. Coulomb gap revisited – A renormalisation approach. Journal of Physics – Condensed Matter, 150, 022057.Google Scholar
Mochena, M., and Pollak, M. 1991a. Low-temperature properties of interacting particles in disordered media – A method with application to Coulomb glass. Physical Review Letters, 67(1), 109–111.Google Scholar
Mochena, M., and Pollak, M. 1991b. Studies of relaxation effects in the Coulomb gap. Journal of Non-Crystalline Solids, 131, 1260–1266.Google Scholar
Mogilyansky, A. A., and Raikh, M. E. 1989. Self-consistent description of Coulomb gap for finite temperatures. Soviet Physics JETP, 68, 1081–1086.Google Scholar
Monroe, D., Gossard, A. C., English, J. H., Golding, B., Haemmerle, W. H., and Kastner, M. A. 1987. Long-lived Coulomb gap in a compensated semiconductor – The electron glass. Physical Review Letters, 59(10), 1148–1151.Google Scholar
Monthus, C., and Garel, T. 2010. Many-body localization transition in a lattice model of interacting fermions: statistics of renormalized hoppings in configuration space. Physical ReviewB, 81(13), 134202.Google Scholar
Mora, N. A., Bermon, S., and Loferski, J. J. 1971. Zero-bias anomaly in irradiated Pb-GaAs tunnel junctions, and the Mott transition. Physical Review Letters, 27, 664–667.Google Scholar
Mott, N. F. 1949. The basis of the electron theory of metals, with special reference to the transition metals. Proceedings of the Physical Society of London SectionA, 62(355), 416–422.Google Scholar
Mott, N. F. 1956. On the transition to metallic conduction in semiconductors. Canadian Journal of Physics, 34(12), 1356–1368.Google Scholar
Mott, N. F. 1958. The transition from the metallic to the non-metallic state. Supplement to Nuevo Cimento, 7, 312–328.Google Scholar
Mott, N. F. 1967. Electrons in disordered structures. Advances in Physics, 16, 49–144.Google Scholar
Mott, N. F. 1968. Conduction in glasses containing transition metal ions. Journal of Non-Crystalline Solids, 1(1), 1–17.Google Scholar
Mott, N. F. 1970. Conduction in non-crystalline systems 4: Anderson localization in a disordered lattice. Philosophical Magazine, 22, 7–29.Google Scholar
Mott, N. F., and Twose, W. D. 1961. The theory of impurity conduction. Advances in Physics, 10(38), 107–163.Google Scholar
Müller, M., and Ioffe, L. B. 2004. Glass transition and the Coulomb gap in electron glasses. Physical Review Letters, 93(25), 256403.Google Scholar
Müller, M., and Pankov, S. 2007. Mean-field theory for the three-dimensional Coulomb glass. Physical ReviewB, 75(14), 144201.Google Scholar
Nelson, D. R., and Vinokur, V. M. 1993. Boson localization and correlated pinning of superconducting vortex arrays. Physical ReviewB, 48, 13060–13097.Google Scholar
Ng, T. K. 1990. Orthogonality catastrophe in Coulomb glass. Journal of Physics–Condensed Matter, 2(50), 10205–10210.Google Scholar
Nguyen, V. L., and Shklovskii, B. I. 1981. Hopping conduction in strong electric fields and directed percolation. Solid State Communications, 38(2), 99–102.Google Scholar
Nguyen, V. L., Spivak, B. Z., and Shklovskii, B. I. 1985. Tunnel hopping in disordered systems. Soviet Physics JETP, 62, 1021–1029.Google Scholar
Nordblad, P., Svedlindh, P., Lundgren, L., and Sandlund, L. 1986. Time decay of the remanent magnetization in a CuMn spin glass. Physical ReviewB, 33, 645–648.Google Scholar
Normand, J. M., Herrmann, H. J., and Hajjar, M. 1988. Precise calculation of the dynamical exponent of two-dimensional percolation. Journal of Statistical Physics, 52(1–2), 441–446.Google Scholar
Oganesyan, V., and Huse, D. A. 2007. Localization of interacting fermions at high temperature. Physical ReviewB, 75(15), 155111.Google Scholar
Onsager, L. 1931. Reciprocal relations in irreversible processes. I. Physical Review, 37(4), 405–426.Google Scholar
Orlyanchik, V., and Ovadyahu, Z. 2004. Stress aging in the electron glass. Physical Review Letters, 92(6), 066801.Google Scholar
Orlyanchik, V., and Ovadyahu, Z. 2005. Conductance noise in interacting Anderson insulators driven far from equilibrium. Physical ReviewB, 72(2), 024211.Google Scholar
Orlyanchik, V., and Ovadyahu, Z. 2007. Electron glass in samples approaching the mesoscopic regime. Physical ReviewB, 75(17), 174205.Google Scholar
Orlyanchik, V., Vaknin, A., Ovadyahu, Z., and Pollak, M. 2002. Impairing the memory of an electron-glass by IR excitation. Physica Status SolidiB, 230(1), 61–66.Google Scholar
Orlyanchik, V., Kozub, V. I., and Ovadyahu, Z. 2006. Non-Gaussian conductance noise in disordered electronic systems due to a nonlinear mechanism. Physical ReviewB, 74(23), 235206.Google Scholar
Ortuño, M., and Pollak, M. 1983. The activation energy of hopping transport with sequential correlations of hops due to Coblomb interactions. Journal of Physics C: Solid State Theory, 16(5), 1459–1467.Google Scholar
Ortuño, M., and Somoza, A. M. 2012. Numerical studies of relaxation in Coulomb glasses. Journal of Physics: Conference Series, 376, 012009.Google Scholar
Ortuño, M., Talamantes, J., Cuevas, E., and Díaz-Sánchez, A. 2001. Coulomb interactions in Anderson insulators. Philosophical MagazineB, 81(9), 1049–1064.Google Scholar
Ossi, N., Bitton, L., Gutman, D., and Frydman, A.Zero bias anomaly in a two dimensional granular insulator.” (unpublished manuscript, 2012) arXiv:1203.5504.
Ovadia, M., Sacépé, B., and Shahar, D. 2009. Electron–phonon decoupling in disordered insulators. Physical Review Letters, 102(17), 176802.Google Scholar
Ovadyahu, Z. 2006. Temperature- and field-dependence of dynamics in electron glasses. Physical ReviewB, 73(21), 214208.Google Scholar
Ovadyahu, Z. 2007. Relaxation dynamics in quantum electron glasses. Physical Review Letters, 99(22), 226603.Google Scholar
Ovadyahu, Z. 2008. Slow conductance relaxations: distinguishing the electron glass from extrinsic mechanisms. Physical ReviewB, 78(19), 195120.Google Scholar
Ovadyahu, Z. 2009. Conductance relaxation in the electron glass: microwave versus infrared response. Physical Review Letters, 102(20), 206601.Google Scholar
Ovadyahu, Z. 2011. Optical excitation of electron glasses. Physical ReviewB, 83, 235126.Google Scholar
Ovadyahu, Z. 2012. Suppression of inelastic electron-electron scattering in Anderson insulators. Physical Review Letters, 108(15), 156602.Google Scholar
Ovadyahu, Z., and Pollak, M. 2003. History-dependent relaxation and the energy scale of correlation in the electron glass. Physical ReviewB, 68(18), 184204.Google Scholar
Ovadyahu, Z., Xiong, Y. M., and Adams, P. W. 2010. Intrinsic electron glassiness in strongly localized Be films. Physical ReviewB, 82(Nov), 195404.Google Scholar
Overlin, M. H., Wong, L. A., and Yu, C. C. 2004. Effect of increasing disorder on the critical behavior of a Coulomb system. Physical ReviewB, 70(21), 214203.Google Scholar
Pal, A., and Huse, D. A. 2010. Many-body localization phase transition. Physical ReviewB, 82(17), 174411.Google Scholar
Palassini, M., and Caracciolo, S. 1999. Universal finite-size scaling functions in the 3D Ising spin glass. Physical Review Letters, 82, 5128–5131.Google Scholar
Palassini, M., and Goethe, M. 2012. Elementary excitations and avalanches in the Coulomb glass. Journal of Physics: Conference Series, 376, 012009.Google Scholar
Palassini, M., and Young, A. P. 2000. Nature of the spin glass state. Physical Review Letters, 85, 3017–3020.Google Scholar
Palassini, M., Liers, F., Juenger, M., and Young, A. P. 2003. Low-energy excitations in spin glasses from exact ground states. Physical ReviewB, 68(6), 064413.Google Scholar
Palmer, R. G., and Pond, C. M. 1979. Internal field distributions in model spin glasses. Journal Physics F: Metal Physics, 9(7), 1451–1459.Google Scholar
Parisi, G. 1979. Infinite number of order parameters for spin-glasses. Physical Review Letters, 43, 1754–1756.Google Scholar
Parisi, G. 1983. Order parameter for spin-glasses. Physical Review Letters, 50(24), 1946–1948.Google Scholar
Pastor, A. A., and Dobrosavljevic, V. 1999. Melting of the electron glass. Physical Review Letters, 83(22), 4642–4645.Google Scholar
Pasveer, W. F., and Michels, M. A. J. 2006. Understanding Mott's law from scaling of variable-range-hopping currents and intrinsic current fluctuations. Physical ReviewB, 74, 195129.Google Scholar
Pérez-Garrido, A., Ortuño, M., Díaz-Sánchez, A., and Cuevas, E. 1999. Numerical study of relaxation in electron glasses. Physical ReviewB, 59(8), 5328–5332.Google Scholar
Phillips, W. A. 1972. Tunneling states in amorphous solids. Journal of Low Temperature Physics, 7, 351–360.Google Scholar
Pike, G. E., and Seager, C. H. 1974. Percolation and conductivity: a computer study. I. Physical ReviewB, 10, 1421–1434.Google Scholar
Pike, G. E., and Stanley, H. E. 1981. Order propagation near the percolation-threshold. Journal of Physics A – Mathematical and General, 14, L169–L177.Google Scholar
Pikus, F. G., and Efros, A. L. 1994. Critical behavior of density of states in disordered systems with localized electrons. Physical Review Letters, 73(22), 3014–3017.Google Scholar
Pino, M., Somoza, A. M., and M., Ortuño, Pino, M. 2012. Quantum Coulomb gap. Journal of Physics: Conference Series, 376, 012006.Google Scholar
Pleimling, M., and Täuber, U. C. 2011. Relaxation and glassy dynamics in disordered type-II superconductors. Physical ReviewB, 84, 174509.Google Scholar
Pokrovskii, V. Y., Savchenko, A. K., Tribe, W. R., and Linfield, E. H. 2001. Modulation origin of 1/f noise in two-dimensional hopping. Physical ReviewB, 64(20), 201318.Google Scholar
Pollak, M. 1970. Effect of carrier-carrier interactions on some transport properties in disordered semiconductors. Discussions of the Faraday Society, 50, 13–19.Google Scholar
Pollak, M. 1971. Frequency dependence of conductivity in amorphous solids. Philosophical Magazine, 23(183), 519–542.Google Scholar
Pollak, M. 1972. A percolation treatment of dc hopping conduction. Journal of Non-Crystalline Solids, 11(1), 1–24.Google Scholar
Pollak, M. 1981. A theory for many-electron hopping rates. Journal of Physics C: Solid State Physics, 14(21), 2977–2993.Google Scholar
Pollak, M. 1982. A scaling theory for transport in Anderson-localised disordered systems. Journal of Physics C: Solid State Physics, 15(8), 1685–1692.Google Scholar
Pollak, M., and Hauser, J. J. 1973. Note on the anisotropy of the conductivity in thin amorphous films. Physical Review Letters, 31(21), 1304–1307.Google Scholar
Pollak, M., and Knotek, M. L. 1979. Correlation effects in hopping transport. Journal of Non-Crystalline Solids, 32(1–3), 141–159.Google Scholar
Pollak, M., and Ovadyahu, Z. 2006. A model for the electron glass. Physica Status SolidiC, 3(2), 283–287.Google Scholar
Pollak, M., and Pike, G. E. 1972. AC conductivity of glasses. Physical Review Letters, 28(22), 1449–1452.Google Scholar
Pollak, M., and Riess, I. 1976. Percolation treatment of high-field hopping transport. Journal of Physics C-Solid State Physics, 9(12), 2339–2352.Google Scholar
Pollak, M., Ruiz, J., Ortuño, M., and Cuevas, E. 1994. The activation energy of hopping conduction. Pages 309–313 of: Adkins, C. J., Long, A. R., and McInnes, J. A. (eds), Hopping and Related Phenomena 5. Singapore: World Scientific.
Punnoose, A., and Finkel'stein, A. M. 2001. Dilute electron gas near the metal-insulator transition: role of valleys in silicon inversion layers. Physical Review Letters, 88, 016802.Google Scholar
Raikh, M. E., and Efros, A. L. 1987. State density near the Fermi level in 1D systems with localized electrons. JETP Letters, 45(5), 280–283.Google Scholar
Raikh, M. E., and Ruzin, I. M. 1988. Mesoscopic behavior of transverse hopping conductivity of an amorphous film. Soviet Physics Semiconductors, 22, 799–805.Google Scholar
Raj, S., Matsui, H., Souma, S., Sato, T., Takahashi, T., Chakraborty, A., Sarma, D. D., Mahadevan, P., Oishi, S., McCarroll, W. H., and Greenblatt, M. 2007. Electronic structure of sodium tungsten bronzes NaxWO3 by high-resolution angle-resolved photoemission spectroscopy. Physical ReviewB, 75(15), 155116.Google Scholar
Rammer, J. 1998. Quantum Transport Theory. Reading: Perseus Books.
Reedijk, J. A., Adriaanse, L. J., Brom, H. B., de Jongh, L. J., and Schmid, G. 1998. Crossover from phonon- to photon-mediated charge transport observed in metal-cluster compounds. Physical ReviewB, 57, R15116–R15119.Google Scholar
Rentzsch, R., and Ionov, A. N. 2001. Electron correlation effects at variable-range hopping in doped GaAs, CdTe, Ge and Si. Philosophical Magazine, 81, 1065–1081.Google Scholar
Rodin, A. S., and Fogler, M. M. 2010. Apparent power-law behavior of conductance in disordered quasi-one-dimensional systems. Physical Review Letters, 105(10), 106801.Google Scholar
Rosenbaum, T. F., Andres, K., and Thomas, G. A. 1980. Non-ohmic conductivity of barely localized electrons in three dimensions. Solid State Communications, 35(9), 663–666.Google Scholar
Roy, A., Levy, M., Guo, X. M., Sarachik, M. P., Ledesma, R., and Isaacs, L. L. 1989. Hall coefficient of insulating n-type CdSe. Physical ReviewB, 39, 10185–10191.Google Scholar
Roy, A. S., A. Hoekstra, F. Th., Rosenbaum, T. F., and Griessen, R. 2002. Quantum fluctuations and the closing of the Coulomb gap in a correlated insulator. Physical Review Letters, 89(27), 276402.Google Scholar
Ruiz, J., Ortuño, M., and Cuevas, E. 1993. Correlations in two-dimensional Coulomb gaps. Physical ReviewB, 48(15), 10777–10782.Google Scholar
Saitoh, T., Dessau, D. S., Moritomo, Y., Kimura, T., Tokura, Y., and Hamada, N. 2000. Temperature-dependent pseudogaps in colossal magnetoresistive oxides. Physical ReviewB, 62(2), 1039–1043.Google Scholar
Salvino, D. J., Rogge, S., Tigner, B., and Osheroff, D. D. 1994. Low temperature ac dielectric response of glasses to high dc electric fields. Physical Review Letters, 73(Jul), 268–271.Google Scholar
Sandow, B., Gloos, K., Rentzsch, R., Ionov, A. N., and Schirmacher, W. 2001. Electronic correlation effects and the Coulomb gap at finite temperature. Physical Review Letters, 86(9), 1845–1848.Google Scholar
Sarvestani, M., Schreiber, M., and Vojta, T. 1995. Coulomb gap at finite temperatures. Physical ReviewB, 52(6), R3820–R3823.Google Scholar
Savateev, N. E., and Ovadyahu, Z. 1995. Slow relaxation in Fermi glass. Pages 44–49 of: Millo, O., and Ovadyahu, Z. (eds), Hopping and related phenomena. Jerusalem: Racah Institute of Physics, The Hebrew University.
Schreiber, M., Tenelsen, K., and Vojta, T. 1995. Density of states, relaxation dynamics, and hopping conductivity of disordered many-electron systems with long-range correlation. Journal of Luminescence, 66–67, 521–525. Proceedings of the Tenth International Conference on Dynamical Processes in Excited States of Solids.Google Scholar
Seager, C. H., and Pike, G. E. 1974. Percolation and conductivity: a computer study. II. Physical ReviewB, 10, 1435–1446.Google Scholar
Sefrioui, Z., Arias, D., Morales, F., Varela, M., Leon, C., Escudero, R., and Santamaria, J. 2001. Evidence for vortex tunnel dissipation in deoxygenated YBa2Cu306.4 thin films. Physical ReviewB, 63(5), 054509.Google Scholar
Seidler, G. T., and Solin, S. A. 1996. Non-Gaussian 1/f noise: experimental optimization and separation of high-order amplitude and phase correlations. Physical ReviewB, 53, 9753–9759.Google Scholar
Shahar, D., and Ovadyahu, Z. 1990. Dimensional crossover in the hopping regime induced by an electric-field. Physical Review Letters, 64(19), 2293–2296.Google Scholar
Shante, V. K. S. 1977. Hopping conduction in quasi-one-dimensional disordered compounds. Physical ReviewB, 16, 2597–2612.Google Scholar
Shante, V. K. S., and Kirkpatrick, S. 1971. An introduction to percolation theory. Advances in Physics, 20, 325–357.Google Scholar
Sheng, P., Abeles, B., and Arie, Y. 1973. Hopping conductivity in granular metals. Physical Review Letters, 31, 44–47.Google Scholar
Sherrington, D., and Kirkpatrick, S. 1975. Solvable Model of a Spin-Glass. Physical Review Letters, 35, 1792–1796.Google Scholar
Shklovskii, B. I. 1973. Hopping conduction in semiconductors subjected to a strong electric field. Soviet Physics Semiconductors, 6(12), 1964–1969.Google Scholar
Shklovskii, B. I. 1976. Non-ohmic hopping conduction. Soviet Physics Semiconductors, 10(8), 855–860.Google Scholar
Shklovskii, B. I. 1980. Theory of 1/f noise in hopping conduction. Solid State Communications, 33, 273–276.Google Scholar
Shklovskii, B. I. 2003. 1/f noise in variable range hopping conduction. Physical ReviewB, 67(4), 045201.Google Scholar
Shklovskii, B. I., and Efros, A. L. 1981. Phononless ac conductivity in disordered systems. Soviet Physics JETP, 54, 218.Google Scholar
Shklovskii, B. I., and Efros, A. L. 1984. Electronic Properties of Doped Semiconductors. Berlin: Springer.
Shklovsii, B. I., and Spivak, B. Z. 1991. Scattering and interference effects in variable range hopping conduction. In: Pollak, M., and Shklovskii, B.I. (eds), Hopping Transport in Solids. Amsterdam: North-Holland.
Shlimak, I., Kraftmakher, Y., Ussyshkin, R., and Zilberberg, K. 1995. 1/f hopping noise in crystalline germanium. Solid State Communications, 93, 829–832.Google Scholar
Shlimak, I., Friedland, K. J., and Baranovskii, S. D. 1999. Hopping conductivity in gated delta-doped GaAs: universality of prefactor. Solid State Communications, 112(1), 21–24.Google Scholar
Shtengel, K., and Yu, C. C. 2003. 1/f noise in electron glasses. Physical ReviewB, 67(16), 165106.Google Scholar
Sivan, U., Entin-Wohlman, O., and Imry, Y. 1988. Orbital magnetoconductance in the variable-range hopping regime. Physical Review Letters, 60, 1566–1569.Google Scholar
Skal, A. S., and Shklovskii, B. I. 1975. Topology of an infinite cluster in theory of percolation and its relationship to theory of hopping conduction. Soviet Physics Semiconductors, 8(8), 1029–1032.Google Scholar
Sladek, R. J. 1960. Magnetoresistance in pure InSb in the quantum limit. Journal of Physics Chemistry Solids, 16, 1–9.Google Scholar
Slevin, K., and Ohtsuki, T. 1999. Corrections to scaling at the Anderson transition. Physical Review Letters, 82, 382–385.Google Scholar
Somoza, A. M., and Ortuño, M. 2005. Monte Carlo method for relaxation in electron glasses. Physical ReviewB, 72(22), 224202.Google Scholar
Somoza, A. M., Ortuño, M., and Pollak, M. 2006. Collective variable-range hopping in the Coulomb gap: computer simulations. Physical ReviewB, 73(4), 045123.Google Scholar
Somoza, A. M., Ortuño, M., Caravaca, M., and Pollak, M. 2008. Effective temperature in relaxation of Coulomb glasses. Physical Review Letters, 101(5), 056601.Google Scholar
Sompolinsky, H., and Zippelius, A. 1982. Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses. Physical ReviewB, 25(11), 6860–6875.Google Scholar
Srinivasan, G. 1971. Statistical mechanics of charged traps in an amorphous semiconductor. Physical ReviewB, 4(8), 2581–2595.Google Scholar
Stauffer, D., and Aharony, A.A. 1992. An Introduction to Percolation Theory. 2nd edn. London: Taylor and Francis.
Stepina, N. P., Yakimov, A. I., Nenashev, A. V., Dvurechenskii, A. V., Sobolev, N. A., Leitao, J. P., Kirienko, V. V., Nikiforov, A. I., Koptev, E. S., Pereira, L., and Carmo, M. C. 2006. Photoconduction in tunnel-coupled Ge/Si quantum dot arrays. Soviet Physics JETP, 103(2), 269–277.Google Scholar
Stepina, N. P., Koptev, E. C., Nenashev, A. V., Dvurechenskii, A. V., and Nikiforov, A. I. 2008. Effect of screening on slow relaxation of excess conductance in two-dimensional array of tunnel-coupled quantum dots. Physica Status SolidiC, 5(3), 689–693.Google Scholar
Strelniker, Y. M., Havlin, S., Berkovits, R., and Frydman, A. 2005. Resistance distribution in the hopping percolation model. Physical ReviewE, 72, 016121.Google Scholar
Surer, B., Katzgraber, H. G., Zimanyi, G. T., Allgood, B. A., and Blatter, G. 2009. Density of states and critical behavior of the Coulomb glass. Physical Review Letters, 102(6), 067205.Google Scholar
Täuber, U. C., and Nelson, D. R. 1995. Interactions and pinning energies in the Bose glass phase of vortices in superconductors. Physical ReviewB, 52, 16106–16124.Google Scholar
Täuber, U. C., Dai, H., Nelson, D. R., and Lieber, C. M. 1995. Coulomb gap and correlated vortex pinning in superconductors. Physical Review Letters, 74(25), 2132–2135.Google Scholar
Teizer, W., Hellman, F., and Dynes, R. C. 2000. Density of states of amorphous GdxSi12x at the metal–insulator transition. Physical Review Letters, 85, 848–851.Google Scholar
Tenelsen, K., and Schreiber, M. 1994. Many localized-electrons in disordered-systems with Coulomb interaction – A simulation of the Coulomb glass. Physical ReviewB, 49(18), 12662–12675.Google Scholar
Tenelsen, K., and Schreiber, M. 1995. Low-temperature many-electron hopping conductivity in the Coulomb glass. Physical ReviewB, 52(18), 13287–13293.Google Scholar
Thorsmølle, V. K., and Armitage, N. P. 2010. Ultrafast (but many-body) relaxation in a low-density electron glass. Physical Review Letters, 105(8), 086601.Google Scholar
Thouless, D. J. 1974. Electrons in disordered systems and the theory of localization. Physics Reports, 13, 93–142.Google Scholar
Thouless, D. J., Anderson, P. W., and Palmer, R. G. 1977. Solution of solvable model of a spin glass. Philosophical Magazine, 35(303), 593–601.Google Scholar
Timchenko, I. N., Kasiyan, V. A., Nedeoglo, D. D., and Simashkevich, A. V. 1989. Variable-range hopping in n-type ZnSe crystals subjected to moderately strong electric fields. Soviet Physics Semiconductors, 23(2), 148–150.Google Scholar
Tremblay, F., Pepper, M., Newbury, R., Ritchie, D., Peacock, D. C., Frost, J. E. F., Jones, G. A. C., and Hill, G. 1989. Activationless hopping of correlated electrons in n-type GaAs. Physical ReviewB, 40, 3387–3389.Google Scholar
Triberis, G. P., and Friedman, L. R. 1981. The effect of correlations on the conductivity of the smallpolaron regime in disordered systems. Journal of Physics C: Solid State Physics, 18(11), 2281–2286.Google Scholar
Tsigankov, D. N., and Efros, A. L. 2002a. Computer Simulation of variable-range hopping in two-dimensional system. Physica Status SolidiB, 230(1), 157–162.Google Scholar
Tsigankov, D. N., and Efros, A. L. 2002b. Variable range hopping in two-dimensional systems of interacting electrons. Physical Review Letters, 88(17), 176602.Google Scholar
Tsigankov, D. N., Pazy, E., Laikhtman, B. D., and Efros, A. L. 2003. Long-time relaxation of interacting electrons in the regime of hopping conduction. Physical ReviewB, 68(13), 184205.Google Scholar
Tyc, S., and Halperin, B. I. 1989. Random resistance network with an exponentilly wide distribution of bond conductances. Physical ReviewB, 39(1), 877–880.Google Scholar
Umbach, C. P., Washburn, S., Laibowitz, R. B., and Webb, R. A. 1984. Magnetoresistance of small, quasi-one-dimensional, normal-metal rings and lines. Physical ReviewB, 30, 4048–4051.Google Scholar
Vaknin, A., and Ovadyahu, Z. 1998. Anomalies in tunneling through localized states. Physica Status SolidiB, 205(1), 413–416. 7th International Conference on Hopping and Related Phenomena (HRP7) Aug 19–22, 1997 Rackeve, Hungary.Google Scholar
Vaknin, A., Frydman, A., Ovadyahu, Z., and Pollak, M. 1996. High-field magnetoconductance in Anderson insulators. Physical ReviewB, 54(19), 13604–13610.Google Scholar
Vaknin, A., Ovadyahu, Z., and Pollak, M. 1998. Evidence for interactions in nonergodic electronic transport. Physical Review Letters, 81(3), 669–672.Google Scholar
Vaknin, A., Ovadyahu, Z., and Pollak, M. 2002. Nonequilibrium field effect and memory in the electron glass. Physical ReviewB, 65(13), 134208.Google Scholar
Van Keuls, F. W., Hu, X. L., Jiang, H. W., and Dahm, A. M. 1997. Screening of the Coulomb interaction in two-dimensional variable-range hopping. Physical ReviewB, 56, 1161–1169.Google Scholar
Vignale, G. 1987. Quantum electron glass. Physical ReviewB, 36(15), 8192–8195.Google Scholar
Vojta, T., and John, W. 1993. The one-dimensional Coulomb glass within the Bethe-Peierls-Weiss approximation. Journal of Physics-Condensed Matter, 5(1), 57–66.Google Scholar
Vojta, T., and Schreiber, M. 1994. Generalized Coulomb gap in the spherical version of a lattice model of disordered and correlated localized particles. Physical ReviewB, 49(12), 7861–7867.Google Scholar
Vojta, T., John, W., and Schreiber, M. 1993. Bethe-Peierls-Weiss approximation for the 2-dimensional and 3-dimensional Coulomb glass – Zero-temperature and finite-temperature results. Journal of Physics-Condensed Matter, 5(28), 4989–5000.Google Scholar
Vojta, T., Epperlein, F., and Schreiber, M. 1998. Quantum Coulomb glass: Anderson localization in an interacting system. Physica Status SolidiB, 205(1), 53–59.Google Scholar
Wang, N., Wellstood, F. C., Sadoulet, B., Haller, E. E., and Beeman, J. 1990. Electrical and thermal properties of neutron-transmutation-doped Ge at 20 mK. Physical ReviewB, 41(6), 3761–3768.Google Scholar
Wappler, T., Vojta, T., and Schreiber, M. 1997. Monte Carlo simulations of the dynamical behavior of the Coulomb glass. Physical ReviewB, 55(10), 6272–6277.Google Scholar
Webb, R. A., Hartstein, A., Wainer, J. J., and Fowler, A. B. 1985. Origin of the peaked structure in the conductance of one-dimensional silicon accumulation layers. Physical Review Letters, 54, 1577–1580.Google Scholar
Wegner, F. 1979. Nonlinear sigma model. Zeitschrift Für PhysikB, 35, 207–210.Google Scholar
Weissman, M. B. 1988. 1/f noise and other slow, nonexponential kinetics in condensed matter. Review of Modern Physics, 60, 537–571.Google Scholar
Weissman, M. B. 1993. What is a spin glass? A glimpse via mesoscopic noise. Review of Modern Physics, 65(3), 829–838.Google Scholar
Wen, B., Subedi, P., Bo, L., Yeshurun, Y., Sarachik, M. P., Kent, A. D., Millis, A. J., Lam-propoulos, C., and Christou, G. 2010. Realization of random-field Ising ferromagnetism in a molecular magnet. Physical ReviewB, 82, 014406.Google Scholar
White, A. E., Dynes, R. C., and Garno, J. P. 1986. Corrections to the one-dimensional density of states – Observation of a Coulomb gap. Physical Review Letters, 56(5), 532–535.Google Scholar
White, S. R. 1992. Density matrix formulation for quantum renormalization groups. Physical Review Letters, 69, 2863–2866.Google Scholar
Wigner, E. 1938. Effects of the electron interaction on the energy levels of electrons in metals. Transactions of the Faraday Society, 34(1), 678–685.Google Scholar
Yafet, Y., Keyes, R. W., and Adams, E. N. 1956. Hydrogen Atom in a strong magnetic field. Journal of Physics and Chemistry and Solids, 1, 137–142.Google Scholar
Yamaguchi, T., Yagi, R., Kobayashi, S., and Ootuka, Y. 1998. Two-dimensional arrays of small Josephson junctions with regular and random defects. Journal of the Physical Society of Japan, 67(3), 729–731.Google Scholar
Yoon, C. O., Reghu, M., Moses, D., Heeger, A. J., Cao, Y., Chen, T. A., Wu, X., and Riek, R. D. 1995. Hopping transport in doped conducting polymers in the insulating regime near the MI boundary: polypryrole, polyaniline and polyalkylthiophenes. Synthetic metals, 75(3), 229–239.Google Scholar
Young, A. P., and Katzgraber, H. G. 2004. Absence of an Almeida-Thouless line in three-dimensional spin glasses. Physical Review Letters, 93(20), 207203.Google Scholar
Yu, C. C. 1992. Phase transitions of interacting elastic defects. Physical Review Letters, 69, 2787–2790.Google Scholar
Yu, C. C. 1999. Time-dependent development of the Coulomb gap. Physical Review Letters, 82(20), 4074–4077.Google Scholar
Yu, C. C. 2004. Why study noise due to two-level systems: a suggestion for experimentalists. Journal of Low Temperature Physics, 137, 251–265.Google Scholar
Yu, D., Wang, C. J., Wehrenberg, B. L., and Guyot-Sionnest, P. 2004. Variable range hopping conduction in semiconductor nanocrystal solids. Physical Review Letters, 92(21), 216802.Google Scholar
Zeller, R. C., and Pohl, R. O. 1971. Thermal conductivity and specific heat of noncrystalline solids. Physical ReviewB, 4(Sep), 2029–2041.Google Scholar
Zhang, J., Cui, W., Juda, M., McCammon, D., Kelley, R. L., Moseley, S. H., Stahle, C. K., and Szymkowiak, A. E. 1993. Hopping conduction in partially compensated doped silicon. Physical ReviewB, 48(4), 2312–2319.Google Scholar
Zhang, J., Cui, W., Juda, M., McCammon, D., Kelley, R. L., Moseley, S. H., Stahle, C. K., and Szymkowiak, A. E. 1998. Non-Ohmic effects in hopping conduction in doped silicon and germanium between 0.05 and 1 K. Physical ReviewB, 57, 4472–4481.Google Scholar
Zhao, H. L., Spivak, B. Z., Gelfand, M. P., and Feng, S. 1991. Negative magnetoresistance in variable-range-hopping conduction. Physical ReviewB, 44, 10760–10767.Google Scholar
Zvyagin, I. P., and Ormont, M. A. 2008. Frequency dependence of low temperature phononless conductivity in disordered systems. Moscow Univ. Phys. Bulletin, 63, 272.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • M. Pollak, University of California, Riverside, M. Ortuño, Universidad de Murcia, Spain, A. Frydman, Bar-Ilan University, Israel
  • Book: The Electron Glass
  • Online publication: 05 January 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511978999.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • M. Pollak, University of California, Riverside, M. Ortuño, Universidad de Murcia, Spain, A. Frydman, Bar-Ilan University, Israel
  • Book: The Electron Glass
  • Online publication: 05 January 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511978999.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • M. Pollak, University of California, Riverside, M. Ortuño, Universidad de Murcia, Spain, A. Frydman, Bar-Ilan University, Israel
  • Book: The Electron Glass
  • Online publication: 05 January 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511978999.010
Available formats
×