Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T23:56:59.164Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  01 June 2011

Clive Oppenheimer
Affiliation:
University of Cambridge
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Scrope, G. P. (1862) Volcanos, London: Longman, Green, Longmans & Roberts.Google Scholar
Courtillot, V., Davaille, A., Besse, J. & Stock, J. (2003) Three distinct types of hotspots in the Earth's mantle, Earth Planet. Sci. Lett., 205, 295–308.CrossRefGoogle Scholar
Lowenstern, J. B. & Hurwitz, S. (2008) Monitoring a supervolcano in repose: heat and volatile flux at the Yellowstone caldera, Elements, 4, 35–40.CrossRefGoogle Scholar
Bas, M. J., Maitre, R. W., Streckeisen, A. & Zanettin, B. (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram, J. Petrol., 27, 745–750.CrossRefGoogle Scholar
Mason, B. G., Pyle, D. M. & Oppenheimer, C. (2004) The size and frequency of the largest explosive eruptions on Earth, Bull.Volcanol., 66, 735–748.CrossRefGoogle Scholar
Witham, C. S. (2005) Volcanic disasters and incidents: a new database, J. Volcanol. Geotherm. Res., 148, 191–233.CrossRefGoogle Scholar
Simkin, T., Siebert, L. & Blong, R. (2001) Volcano fatalities – lessons from the historical record, Science, 291, 255.CrossRefGoogle ScholarPubMed
Cronin, S. J., Hedley, M. J., Neall, V. E. & Smith, R. G. (1998) Agronomic impact of ash fallout from the 1995 and 1996 Ruapehu Volcano eruptions, New Zealand, Environ. Geol., 34, 21–30.CrossRefGoogle Scholar
Horwell, C. J., Sparks, R. S. J., Brewer, T. S., Llewellin, E. W. & Williamson, B. J. (2003) Characterization of respirable volcanic ash from the Soufrière Hills volcano, Montserrat, with implications for human health hazards, Bull.Volcanol., 65, 346–362.CrossRefGoogle Scholar
Cook, R. J., Barron, J. C., Papendick, R. I. & Williams, G. J. (1981) Impacts on agriculture of Mount St Helens eruption, Science, 211, 16–22.CrossRefGoogle Scholar
Rolett, B. & Diamond, J. (2004) Environmental predictors of pre-European deforestation on Pacific islands, Nature, 431, 443–446.CrossRefGoogle ScholarPubMed
Langmann, B., Zakšek, K., Hort, M. & Duggen, S. (2010) Volcanic ash as fertiliser for the surface ocean, Atmos. Chem. Phys., 10, 711–734.CrossRefGoogle Scholar
Manville, V., Németh, K. & Kano, K. (2009) Source to sink: A review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards, Sed. Geol., 220, 136–161.CrossRefGoogle Scholar
Maeno, F. & Taniguchi, H. (2009) Sedimentation and welding processes of dilute pyroclastic density currents and fallout during a large-scale silicic eruption, Kikai caldera, Japan, Sed. Geol., 220, 227–242.CrossRefGoogle Scholar
Delmelle, P., Delfosse, T. & Delvaux, B. (2003) Sulfate, chloride and fluoride retention in Andosols exposed to volcanic acid emissions, Environ. Pollution, 126, 445–457.CrossRefGoogle ScholarPubMed
Allibone, R. J., Cronin, S. J., Charley, D. T.et al. (2010) Dental fluorosis linked to degassing of Ambrym volcano, Vanuatu: a novel exposure pathway, Environ. Geochem. Health, doi: 10.1007/s10653–010– 9338–2.
Longo, B. M., Rossignol, A. & Green, J. B. (2008) Cardiorespiratory health effects associated with sulphurous volcanic air pollution, Public Health, 122, 809–820.CrossRefGoogle ScholarPubMed
Tanguy, J.-C., Ribière, C., Scarth, A. & Tjetjep, W. S. (1998) Victims from volcanic eruptions: a revised database, Bull.Volcanol., 60, 137–144.CrossRefGoogle Scholar
McCormick, M. P., Thomason, L. W. & Trepte, C. R. (1995) Atmospheric effects of the Mt Pinatubo eruption, Nature, 373, 399–404.CrossRefGoogle Scholar
Read, W. G., Froidevaux, L. & Waters, J. W. (1993) Microwave Limb Sounder measurements of stratospheric SO2 from the Mt. Pinatubo eruption, Geophys. Res. Lett., 20, 1299–1302.CrossRefGoogle Scholar
Minnis, P., Harrison, E. F., Stowe, L. L.et al. (1993) Radiative climate forcing by the Mount Pinatubo eruption, Science, 259, 1411–1415.CrossRefGoogle ScholarPubMed
Parker, D. E., Wilson, H., Jones, P. D., Christy, J. R. & Folland, C. K. (1996) The impact of Mount Pinatubo on world-wide temperatures, Int. J. Climatol., 16, 487–497.3.0.CO;2-J>CrossRefGoogle Scholar
Trenberth, K. E. & Dai, A. (2007) Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering, Geophys. Res. Lett., 34, L15702, doi:10.1029/2007GL030524.CrossRefGoogle Scholar
Stenchikov, G., Robock, A., Ramaswamy, V.et al. (2002) Arctic Oscillation response to the 1991 Mount Pinatubo eruption: effects of volcanic aerosols and ozone depletion, J. Geophys. Res., 107(D24), 4803, 10.1029/2002JD002090.CrossRefGoogle Scholar
Stenchikov, G., Delworth, T. L., Ramaswamy, V.et al. (2009) Volcanic signals in oceans, J. Geophys. Res., 114, D16104, doi:10.1029/2008JD011673.CrossRefGoogle Scholar
Gleckler, P. J., Wigley, T. M., Santer, B. D.et al. (2006) Volcanoes and climate: Krakatoa's signature persists in the ocean, Nature, 439, 675.CrossRefGoogle ScholarPubMed
Mercado, L. M., Bellouin, N., Sitch, S.et al. (2009) Impact of changes in diffuse radiation on the global land carbon sink, Nature, 458, 1014–1017.CrossRefGoogle ScholarPubMed
Gu, L., Baldocchi, D., Verma, S. B.et al. (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity, J. Geophys. Res., 107(D6), 4050, doi:10.1029/2001JD001242.CrossRefGoogle Scholar
Timmreck, C., Lorenz, S. J., Crowley, T. J.et al. (2009) Limited temperature response to the very large AD 1258 volcanic eruption, Geophys. Res. Lett., 36, L21708, doi:10.1029/2009GL040083.CrossRefGoogle Scholar
Kravitz, B., Robock, A. & Bourassa, A. (2010) Negligible climatic effects from the 2008 Okmok and Kasatochi volcanic eruptions, J. Geophys. Res., 115, D00L05, doi:10.1029/2009JD013525.CrossRefGoogle Scholar
Oman, L., Robock, A., Stenchikov, G., Schmidt, G. A. & Ruedy, R. (2005) Climatic response to high-latitude volcanic eruptions, J. Geophys. Res., 110, D13103, doi:10.1029/2004JD005487.CrossRefGoogle Scholar
Graf, H.-F. & Timmreck, C. (2001) A general climate model simulation of the aerosol radiative effects of the Laacher See eruption, J. Geophys. Res., 106, 14,747–14,756.CrossRefGoogle Scholar
Kravitz, B. & Robock, A. (2011) The climate effects of high latitude volcanic eruptions: role of time of year, J. Geophys. Res., 116, doi:10.1029/2010JD014448.CrossRefGoogle Scholar
Schmidt, A., Carslaw, K. S., Mann, G. W.et al. (2010) The impact of the 1783–1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei, Atmos. Chem. Phys., 10, 6025–6041.CrossRefGoogle Scholar
Timmreck, C. & Graf, H.-F. (2006) The initial dispersal and radiative forcing of a northern hemisphere mid-latitude super volcano: a model study, Atmos. Chem. Phys., 6, 35–49, doi:10.5194/acp-6-35-2006.CrossRefGoogle Scholar
Crowley, T. J. (2000) Causes of climate change over the past 1000 years, Science, 289, 270–277.CrossRefGoogle ScholarPubMed
Carey, S. & Sigurdsson, H. (1989) The intensity of plinian eruptions, Bull.Volcanol., 51, 28–40.CrossRefGoogle Scholar
Pyle, D. M. (1989) The thickness, volume and grainsize of tephra fall deposits, Bull.Volcanol., 51, 1–15.CrossRefGoogle Scholar
Walker, G. P. L. (1980) The Taupo pumice: product of the most powerful known (ultraplinian) eruption? J.Volcanol. Geotherm. Res., 8, 69–94.CrossRefGoogle Scholar
Carey, S. N. & Sparks, R. S. J. (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns, Bull.Volcanol., 48, 109–125.CrossRefGoogle Scholar
Turney, C. S. M., Harkness, D. D. & Lowe, J. J. (1997) The use of microtephra to correlate Late-glacial lake sediment successions in Scotland, J. Quat. Sci., 12, 525–531.3.0.CO;2-M>CrossRefGoogle Scholar
Blockley, S. P. E., Lane, C. S., Lotter, A. F. & Pollard, A. M. (2007) Evidence for the presence of the Vedde Ash in central Europe, Quat. Sci. Rev., 26, 3030–3036.CrossRefGoogle Scholar
Pearce, N. J. G., Bendall, C. A. & Westgate, J. A. (2008) Comment on “Some numerical considerations in the geochemical analysis of distal microtephra” by Pollard, A. M., Blockley, S. P. E. & Lane, C. S., Appl. Geochem., 23, 1353–1364.CrossRefGoogle Scholar
Wulf, S., Kraml, M., Brauer, A., Keller, J. & Negendank, J. F. W. (2004) Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy), Quat. Int., 122, 7–30.CrossRefGoogle Scholar
Devine, J. D., Sigurdsson, H., Davis, A. N. & Self, S. (1984) Estimates of sulfur and chlorine yield to the atmosphere from volcanic eruptions and potential climatic effects, J. Geophys. Res., 89(B7), 6309–6325, doi:10.1029/JB089iB07p06309.CrossRefGoogle Scholar
Scaillet, B. & Pichavant, M. (2003) Experimental constraints on volatile abundance in arc magmas and their implications for degassing processes, Geol. Soc., London, Spec. Publ., 213, 23–52.CrossRefGoogle Scholar
Wolff, E. W., Barbante, C., Becagli, S.et al. (2010) Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core, Quat. Sci. Rev., 29, 285–295.CrossRefGoogle Scholar
Hammer, C. U., Clausen, H. B. & Dansgaard, W. (1980) Greenland ice sheet evidence of postglacial volcanism and its climatic impact, Nature, 288, 230–235.CrossRefGoogle Scholar
Steffensen, J. P., Andersen, K. K., Bigler, M.et al. (2008) High-resolution Greenland ice core data show abrupt climate change happens in a few years, Science, 321, 680–684.CrossRefGoogle Scholar
Zielinski, G. A., Mayewski, P. A., Meeker, L. D.et al. (1994) Record of volcanism since 7000 B.C. from the GISP2 Greenland ice core and implications for the volcano–climate system, Science, 264, 948–952.CrossRefGoogle ScholarPubMed
Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S. & Twickler, M. S. (1996) A 110,000-yr record of explosive volcanism from the GISP2 (Greenland) ice core, Quat. Res., 45, 109–118.CrossRefGoogle Scholar
Traversi, R., Becagli, S., Castellano, E.et al. (2009) Sulfate spikes in the deep layers of EPICA-Dome C ice core: evidence of glaciological artifacts. Env. Sci.Technol., 43, 8737–8743.CrossRefGoogle ScholarPubMed
Dai, J., Mosley-Thompson, E. & Thompson, L. G. (1991) Ice core evidence for an explosive tropical volcanic eruption 6 years preceding Tambora, J. Geophys. Res., 96, 17,361–17,366.CrossRefGoogle Scholar
Silva, S. L. & Zielinski, G. A. (1998) Global influence of the AD 1600 eruption of Huaynaputina, Peru, Nature, 393, 455–458.CrossRefGoogle Scholar
Abbott, P. M., Davies, S. M., Steffensen, J.-P.et al. A detailed framework of Marine Isotope Stage 4 and 5 volcanic events recorded in two Greenland ice-cores, Quat. Sci. Rev., in review.
Gao, C., Robock, A. & Ammann, C. (2008) Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models, J. Geophys. Res., 113, D23111, doi:10.1029/2008JD010239.CrossRefGoogle Scholar
LaMarche, V. C., Jr. & Hirschboeck, K. K. (1984) Frost rings in trees as records of major volcanic eruptions, Nature, 307, 121–126.CrossRefGoogle Scholar
Baillie, M. G. L. & Munro, M. A. R. (1988) Irish tree rings, Santorini and volcanic dust veils, Nature, 332, 344–346.CrossRefGoogle Scholar
Salzer, M. W. & Hughes, M. K. (2007) Bristlecone pine tree rings and volcanic eruptions over the last 5000 years, Quat. Res., 67, 57–68.CrossRefGoogle Scholar
Briffa, K. R., Jones, P. D., Schweingruber, F. H. & Osborn, T. J. (1998) Influence of volcanic eruptions on northern hemisphere summer temperatures over 600 years, Nature, 393, 450–455.CrossRefGoogle Scholar
Briffa, K. R., Osborn, T. J. & Schweingruber, F. H. (2004) Large-scale temperature inferences from tree rings: a review, Global Planet. Change, 40, 11–26.CrossRefGoogle Scholar
Allison, P. M. (2002) Recurring tremors: the continuing impact of the AD 79 eruption of Mt Vesuvius, in Torrence, R. and Grattan, J. (eds.), Natural Disasters and Cultural Change, London: Routledge, pp. 107–125.Google Scholar
Khalidi, L., Oppenheimer, C., Gratuze, B.et al. (2010) Obsidian sources in highland Yemen and their relevance to archaeological research in the Red Sea region, J. Archaeol. Sci., 37, 2332–2345.CrossRefGoogle Scholar
Sheets, P. (2008) Armageddon to the Garden of Eden: explosive volcanic eruptions and societal resilience in ancient Middle America, in Sandweiss, D. & Quilter, J. (eds.), El Niño: Catastrophism, and Culture Change in Ancient America, Washington, DC: Harvard University Press, pp. 167–186.Google Scholar
Specht, J. & Torrence, R. (2007) Lapita all over: land-use on the Willaumez Peninsula, Papua New Guinea, Terra Australis, 26, 71–96.Google Scholar
Torrence, R., Neall, V. & Boyd, W. E. (2009) Volcanism and historical ecology on the Willaumez Peninsula, Papua New Guinea, Pacific Sci., 63, 507–535.CrossRefGoogle Scholar
Parr, J. F., Boyd, W. E., Harriott, V. & Torrence, R. (2009) Human adaptive responses to catastrophic landscape disruptions during the Holocene, Numundo, PNG, Geogr. Res., 47, 155–174.CrossRefGoogle Scholar
Neall, V. E., Wallace, R. C. & Torrence, R. (2008) The volcanic environment for 40,000 years of human occupation on the Willaumez Isthmus, West New Britain, Papua New Guinea, J. Volcanol. Geotherm. Res., 176, 330–343.CrossRefGoogle Scholar
Lentfer, C. & Torrence, R. (2007) Holocene volcanic activity, vegetation succession, and ancient human land use: unraveling the interactions on Garua Island, Papua New Guinea, Rev. Palaeobotany Palynol., 143, 83–105.CrossRefGoogle Scholar
McKee, C. O., Neall, V. E. & Torrence, R. (2011) A remarkable pulse of large-scale volcanism on New Britain Island, Papua New Guinea, Bull.Volcanol., 73, 27–37.CrossRefGoogle Scholar
Rodolfo, K. S. & Umbal, J. V. (2008) A prehistoric lahar-dammed lake and eruption of Mount Pinatubo described in a Philippine aborigine legend, J. Volcanol. Geotherm. Res., 176, 432–437.CrossRefGoogle Scholar
Frierson, P. (1991) The Burning Island: A Journey Through Myth and History in Volcano Country, Hawai'i, San Francisco: Sierra Club Books.Google Scholar
Swanson, D. A. (2008) Hawaiian oral tradition describes 400 years of volcanic activity at Kīlauea, J. Volcanol. Geotherm. Res., 176, 427–431.CrossRefGoogle Scholar
Mandeville, C. W., Webster, J. D., Tappen, C.et al. (2009) Stable isotope and petrologic evidence for open-system degassing, Geochim. Cosmochim. Acta, 73, 2978–3012.CrossRefGoogle Scholar
Clark, E. E. (1953) Indian Legends of the Pacific Northwest, Berkeley, CA: University of California Press.Google Scholar
Symons, G. J. (ed.) (1888) The Eruption of Krakatoa and Subsequent Phenomena, London: Harrison & Sons.
Helmholtz, R. (1883) The remarkable sunsets, Nature, 29, 130.CrossRefGoogle Scholar
Lamb, H. H. (1970) Volcanic dust in the atmosphere with a chronology and assessment of its meteorological significance, Philos. Trans. R. Soc. London A, 266, 425–533.CrossRefGoogle Scholar
Stothers, R. B. & Rampino, M. R. (1983) Volcanic eruptions in the Mediterranean before AD 630 from written and archaeological sources, J. Geophys. Res., 88, 6357–6371.CrossRefGoogle Scholar
Stothers, R. B. (2002) Cloudy and clear stratospheres before A.D. 1000 inferred from written sources, J. Geophys. Res., 107, 4718, 10.1029/2002JD002105.CrossRefGoogle Scholar
Mellaart, J. (1967) Catal Huyuk, a Neolithic Town in Anatolia, New York, NY: McGraw Hill.Google Scholar
Meece, S. (2006) A bird's eye view – of a leopard's spots: the Çatalhöyük ‘map’ and the development of cartographic representation in prehistory, Anatolian Stud., 56, 1–16.CrossRefGoogle Scholar
Zerefos, C. S., Gerogiannis, V. T., Balis, D., Zerefos, S. C. & Kazantzidis, A. (2007) Atmospheric effects of volcanic eruptions as seen by famous artists and depicted in their paintings, Atmosph. Chem. Phys., 7, 4027–4042.CrossRefGoogle Scholar
Wiart, P. A. M. & Oppenheimer, C. (2000) Largest known historic eruption in Africa: Dubbi volcano, Eritrea, 1861, Geology, 28, 291–294.2.0.CO;2>CrossRefGoogle Scholar
Schmincke, H.-U., Kutterolf, S., Perez, W.et al. (2009) Walking through volcanic mud: the 2,100-year-old Acahualinca footprints (Nicaragua), Bull. Volcanol., 71, 479–493.CrossRefGoogle Scholar
Rampino, M. R. (2010) Mass extinctions of life and catastrophic flood basalt volcanism, Proc. Natl. Acad. Sci. USA, 107, 6555–6556.CrossRefGoogle ScholarPubMed
Campbell, I. H. (2005) Large igneous provinces and the mantle plume hypothesis, Elements, 1, 265–269.CrossRefGoogle Scholar
Bryan, S. E. & Ernst, R. E. (2008) Revised definition of large igneous provinces (LIPs), Earth Sci. Rev., 86, 175–202.CrossRefGoogle Scholar
Self, S., Blake, S., Sharma, K., Widdowson, M. & Sephton, S. (2008) Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release, Science, 319, 1654–1657.CrossRefGoogle ScholarPubMed
Stothers, R. B. (1993) Flood basalts and extinction events, Geophys. Res. Lett., 20, 1399–1402.CrossRefGoogle Scholar
Christenson, G. L., Collins, G. S., Morgan, J. V.et al. (2009) Mantle deformation beneath the Chicxulub impact crater, Earth Planet. Sci. Lett., 284, 249–257.CrossRefGoogle Scholar
Schulte, P., Alegret, L., Arenillas, I.et al. (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary, Science, 327, 1214–1218.CrossRefGoogle ScholarPubMed
Kring, D. A. (2007) The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary, Palaeogeogr. Palaeoclimatol. Palaeoecol., 255, 4–21.CrossRefGoogle Scholar
Keller, G., Adatte, T., Berner, Z.et al. (2007) Chicxulub impact predates K–T boundary: new evidence from Brazos, Texas, Earth Planet. Sci. Lett., 255, 339–356.CrossRefGoogle Scholar
Chenet, A.-L., Quidelleur, X., Fluteau, F., Courtillot, V. & Bajpai, S. (2007) 40K–40Ar dating of the Main Deccan large igneous province: further evidence of KTB age and short duration, Earth Planet. Sci. Lett., 263, 1–15.CrossRefGoogle Scholar
Schulte, P., Speijer, R. P., Brinkuis, H.et al. (2008) Comment on the paper ‘Chicxulub impact predates K–T boundary: new evidence from Brazos, Texas’ by Keller, et al. (2007), Earth Planet. Sci. Lett., 269, 614–620.CrossRefGoogle Scholar
Keller, G., Adatte, T., Baum, G. & Berner, Z. (2008) Reply to ‘Chicxulub impact predates K–T boundary: new evidence from Brazos, Texas’ Comment by Schulte et al., Earth Planet. Sci. Lett., 269, 621–629.CrossRefGoogle Scholar
Sills, J. (ed.) (2010) Letters, Science, 328, 973–976.
Jones, A. P., Price, G. D., Price, N. J., DiCarli, P. S. & Clegg, R. A. (2002) Impact induced melting and the development of large igneous provinces, Earth Planet. Sci. Lett., 202, 551–561.CrossRefGoogle Scholar
Courtillot, V. and Olsen, P. (2007) Mantle plumes link magnetic superchrons to Phanerozoic mass depletion events, Earth Planet. Sci. Lett., 260, 495–504.CrossRefGoogle Scholar
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. (2007) Paleophysiology and end-Permian mass extinction, Earth Planet. Sci. Lett., 256, 295–313.CrossRefGoogle Scholar
Ries, J. B., Cohen, A. L. & McCorkle, D. C. (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification, Geology, 37, 1131–1134.CrossRefGoogle Scholar
Wille, M., Nägler, T. F., Lehmann, B., Schröder, S. & Kramers, J. D. (2008) Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary, Nature, 453, 767–769.CrossRefGoogle Scholar
Whiteside, J. H., Olsen, P. E., Eglington, T., Brookfield, M. E. & Sambrotto, R. N. (2010) Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction, Proc. Nat. Acad. Sci., 107, 6721–6725.CrossRefGoogle ScholarPubMed
Cockell, C. S. (1999) Crises and extinction in the fossil record; a role for ultraviolet radiation, Paleobiology, 25, 212–225.CrossRefGoogle Scholar
Vogelmann, A. M., Ackerman, T. P. & Turco, R. P. (1992) Enhancements in biologically effective ultraviolet radiation following volcanic eruptions, Nature, 359, 47–49.CrossRefGoogle ScholarPubMed
Cather, S. M., Dunbar, N., McDowell, F. W., McIntosh, W. C. & Schole, P. A. (2009) Climate forcing by iron fertilization from repeated ignimbrite eruptions: the icehouse–silicic large igneous province (SLIP) hypothesis, Geosphere, 5, 315–324.CrossRefGoogle Scholar
Stern, R. J., Avigad, D., Miller, N. & Beyth, M. (2008) From volcanic winter to snowball Earth: an alternative explanation for Neoproterozoic biosphere stress, in Dilek, Y., Furnes, H. & Muehlenbachs, K. (eds.), Links Between Geological Processes, Microbial Activities & Evolution of Life, Berlin: Springer, pp. 313–337.CrossRefGoogle Scholar
King, G. & Bailey, G. (2006) Tectonics and human evolution, Antiquity, 80, 265–286.CrossRefGoogle Scholar
UkstinsPeate, I. Peate, I., Baker, J. A., Kent, A. J. R.et al. (2003) Correlation of Indian Ocean tephra to individual Oligocene silicic eruptions from Afro–Arabian flood volcanism, Earth Planet. Sci. Lett., 211, 311–327.CrossRefGoogle Scholar
Pik, R., Marty, B., Carignan, J., Yirgu, G. & Ayalew, T. (2009) Timing of East African Rift development in southern Ethiopia: implication for mantle plume activity and evolution of topography, Geology, 36, 167–170.CrossRefGoogle Scholar
Biggs, J., Anthony, E. Y. & Ebinger, C. J. (2009) Multiple inflation and deflation events at Kenyan volcanoes, East African Rift, Geology, 37, 979–982.CrossRefGoogle Scholar
Raichlen, D. A., Gordon, A. D., Harcourt-Smith, W. E. H., Foster, A. D. & Haas, W. R. (2010) Laetoli footprints preserve earliest direct evidence of human-like bipedal biomechanics, PLoS ONE, 5(3): e9769. doi:10.1371/journal.pone.0009769.CrossRefGoogle ScholarPubMed
Sauer, C. O. (1962) Seashore – primitive home of man? Proc. Am. Philos. Soc., 106, 41–47.Google Scholar
King, G., Bailey, G. & Sturdy, D. (1994) Active tectonics and human survival strategies, J. Geophys. Res., 99(B10), 20,063–20,078, doi:10.1029/94JB00280.CrossRefGoogle Scholar
McDougall, I., Brown, F. H. & Fleagle, J. G. (2005) Stratigraphic placement and age of modern humans from Kibish, Ethiopia, Nature, 433, 733–736.CrossRefGoogle ScholarPubMed
Basell, L. S. (2008) Middle Stone Age (MSA) site distributions in eastern Africa and their relationship to Quaternary environmental change, refugia and the evolution of Homo sapiens, Quat. Sci. Rev., 27, 2484–2498.CrossRefGoogle Scholar
Mohr, P., Mitchell, J. G. & Raynolds, R. G. H. (1980) Quaternary volcanism and faulting at O'a caldera, Central Ethiopian Rift, Bull. Volcanol., 43, 173–189.CrossRefGoogle Scholar
Grün, R., Stringer, C., McDermott, F.et al. (2005) U-series and ESR analyses of bones and teeth relating to the human burials from Skhul, J. Human Evolution, 49, 316–334.CrossRefGoogle ScholarPubMed
Oppenheimer, S. (2009) The great arc of dispersal of modern humans: Africa to Australia, Quat. Int., 202, 2–13.CrossRefGoogle Scholar
Endicott, P., Ho, S. Y. W., Metspalu, M. & Stringer, C. (2009) Evaluating the mitochondrial timescale of human evolution, Trends Ecol. Evol., 24, 515–521.CrossRefGoogle ScholarPubMed
Soares, P., Ermini, L., Thomson, N.et al. (2009) Correcting for purifying selection: an improved human mitochondrial molecular clock, Am. J. Hum. Gen., 84, 740–759.CrossRefGoogle ScholarPubMed
Green, R. E., Krause, J., Briggs, A. W.et al. (2010) A draft sequence of the Neandertal genome, Science, 328, 710–722.CrossRefGoogle ScholarPubMed
Ambrose, S. H. (1998) Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans, J. Hum. Evol., 34, 623–651.CrossRefGoogle Scholar
Rose, W. I. & Chesner, C. A. (1987) Dispersal of ash in the great Toba eruption, 75 kyr, Geology, 15, 913–917.2.0.CO;2>CrossRefGoogle Scholar
Vazquez, J. A. & Reid, M. R. (2004) Probing the accumulation history of the voluminous Toba magma, Science, 305, 991–994.CrossRefGoogle ScholarPubMed
Chesner, C. A. & Rose, W. I. (1991) Stratigraphy of the Toba Tuffs and the evolution of the Toba Caldera Complex, Sumatra, Indonesia, Bull. Volcanol., 53, 343–356.CrossRefGoogle Scholar
Rose, W. I. & Chesner, C. A. (1990) Worldwide dispersal of ash and gases from Earth's largest known eruption: Toba, Sumatra, 75 kyr, Palaeogeogr. Palaeoclimatol. Palaeoecol., 89, 269–275.CrossRefGoogle Scholar
Baines, P. G. & Sparks, R. S. J. (2005) Dynamics of giant volcanic ash clouds from supervolcanic eruptions, Geophys. Res. Lett., 32, L24808, doi:10.1029/2005GL024597.CrossRefGoogle Scholar
Herzog, M. & Graf, H.-F. (2010) Applying the three-dimensional model ATHAM to volcanic plumes: dynamic of large co-ignimbrite eruptions and associated injection heights for volcanic gases, Geophys. Res. Lett., 37, L19807, doi:10.1029/2010GL044986.CrossRefGoogle Scholar
Ledbetter, M. & Sparks, R. S. J. (1979) Duration of large-magnitude explosive eruptions deduced from graded bedding in deep-sea ash layers, Geology, 7, 240–244.2.0.CO;2>CrossRefGoogle Scholar
Carey, S. (1997) Influence of convective sedimentation on the formation of widespread tephra fall layers in the deep sea, Geology, 25, 839–842.2.3.CO;2>CrossRefGoogle Scholar
Weisner, M., Wang, Y. & Zheng, L. (1995) Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo, Philippines, Geology, 23, 885–888.2.3.CO;2>CrossRefGoogle Scholar
Zielinski, G. A., Mayewski, P. A., Meeker, L. D.et al. (1996) Potential atmospheric impact of the Toba mega-eruption ~71,000 years ago, Geophys. Res. Lett., 23(8), 837–840.CrossRefGoogle Scholar
Scaillet, B., Clemente, B., Evans, B. W. & Pichavant, M. (1998) Redox control of sulphur degassing in silicic magmas, J. Geophys. Res., 103, 23,937–23,949.CrossRefGoogle Scholar
Chesner, C. A. & Luhr, J. F. (2010) A melt inclusion study of the Toba Tuffs, Sumatra, Indonesia, J. Volcanol. Geotherm. Res., 197, 259–278.CrossRefGoogle Scholar
Niemeier, U., Timmreck, C., Graf, H.-F.et al. (2009) Initial fate of fine ash and sulfur from large volcanic eruptions, Atmos. Chem. Phys., 9, 9043–9057, doi:10.5194/acp-9–9043–2009.CrossRefGoogle Scholar
Rampino, M. R. & Self, S. (1992) Volcanic winter and accelerated glaciation following the Toba super-eruption, Nature, 359, 50–52.CrossRefGoogle Scholar
Rampino, M. R. & Ambrose, S. H. (2000) Volcanic winter in the Garden of Eden: the Toba super-eruption and the Late Pleistocene human population crash, Geol. Soc. Am. Spec. Paper, 345, 71–82.Google Scholar
Rampino, M. R. & Self, S. (1993) Climate–volcanism feedback and the Toba eruption of ~74,000 years ago, Quat. Res., 40, 269–280.CrossRefGoogle Scholar
Jones, G. S., Gregory, J. M., Stott, P. A., Tett, S. F. & Thorpe, R. B. (2005) An AOGCM simulation of the climate response to a volcanic super-eruption, Clim. Dyn., 25, 725–738.CrossRefGoogle Scholar
Robock, A., Ammann, C. M., Oman, L.et al. (2009) Did the Toba volcanic eruption of ~74 ka B.P. produce widespread glaciation? J. Geophys. Res., 114, D10107, doi:10.1029/2008JD011652.CrossRefGoogle Scholar
Timmreck, C., Graf, H.-F., Lorenz, S. J.et al. (2010) Aerosol size confines climate response to volcanic super-eruptions, Geophys. Res. Lett., 37, L24705, doi:10.1029/2010GL045464.CrossRefGoogle Scholar
Williams, M. A. J., Ambrose, S. H., Kaars, S.et al. (2009) Environmental impact of the 73 ka Toba super-eruption in South Asia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 284, 295–314.CrossRefGoogle Scholar
Ambrose, S. H. (2003) Did the super-eruption of Toba cause a human population bottleneck? Reply to Gathorne-Hardy and Harcourt-Smith, J. Hum. Evol., 45, 231–237.CrossRefGoogle Scholar
Rossano, M. J. (2009) Ritual behaviour and the origins of modern cognition, Cambridge Archaeol. J., 19, 243–256.CrossRefGoogle Scholar
Gagneux, P., Wills, C., Gerloff, U.et al. (1999) Mitochondrial sequences show diverse evolutionary histories of African hominoids, Proc. Natl. Acad. Sci., 96, 5077–5082.CrossRefGoogle ScholarPubMed
Louys, J. (2007) Limited effect of the Quaternary's largest super-eruption (Toba) on land mammals from Southeast Asia, Quat. Sci. Rev., 26, 3108–3117.CrossRefGoogle Scholar
Brumm, A., Jensen, G. M., Bergh, G. D.et al. (2010) Hominins on Flores, Indonesia, by one million years ago, Nature, 464, 748–752.CrossRefGoogle ScholarPubMed
Jones, S. C. (2010) Palaeoenvironmental response to the ~74 ka Toba ash-fall in the Jurreru and Middle Son valleys in southern and north-central India, Quat. Res., 73, 336–350.CrossRefGoogle Scholar
Haslam, M., Clarkson, C., Petraglia, M.et al. (2010) The 74 ka Toba super-eruption and southern Indian hominins: archaeology, lithic technology and environments at Jwalapuram Locality 3, J. Archaeol. Sci. 37, 3370–3384.CrossRefGoogle Scholar
Riede, F. (2008) The Laacher See eruption (12,920 BP) and material culture change at the end of the Allerød in Northern Europe, J. Archaeol. Sci., 35, 591–599.CrossRefGoogle Scholar
Banks, W. E., d'Errico, F., Peterson, A. T.et al. (2008) Neanderthal extinction by competitive exclusion, PLoS ONE, 3(12), e3972, doi:10.1371/journal.pone.0003972.CrossRefGoogle ScholarPubMed
Chazan, M. (2010) Technological perspectives on the Upper Paleolithic, Evol. Anthropol., 19, 57–65.CrossRefGoogle Scholar
Sinitsyn, A. A. (2003) A Palaeolithic ‘Pompeii’ at Kostenki, Russia, Antiquity, 77, 9–14.CrossRefGoogle Scholar
Hoffecker, J. F., Holliday, V. T., Anikovich, M. V.et al. (2008) From the Bay of Naples to the River Don: the Campanian Ignimbrite eruption and the Middle to Upper Paleolithic transition in Eastern Europe, J. Hum. Evol., 55, 858–870.CrossRefGoogle Scholar
Fedele, F. G., Giaccio, B. & Hajdas, I. (2008) Timescales and cultural process at 40,000 BP in the light of the Campanian Ignimbrite eruption, western Eurasia, J. Hum. Evol., 55, 834–857.CrossRefGoogle ScholarPubMed
Fedele, F. G., Giaccio, B., Isaia, R. & Orsi, G. (2002) Ecosystem impact of the Campanian Ignimbrite eruption in Late Pleistocene Europe, Quat. Res., 57, 420–424.CrossRefGoogle Scholar
Golovanova, L. V., Doronichev, V. B., Cleghorn, N. E.et al. (2010) Significance of ecological factors in the Middle to Upper Paleolithic Transition, Curr. Anthropol., 51, 655–691.CrossRefGoogle Scholar
Schmincke, H.-U., Park, C. & Harms, E. (2009) Evolution and environmental impacts of the eruption of Laacher See volcano (Germany) 12 900 a BP, Quat. Int., 61, 61–72.CrossRefGoogle Scholar
Baales, M. (2006) Final Palaeolithic environment and archaeology in the central Rhineland (Rhineland-Palatinat, western Germany): conclusions of the last 15 years of research, L'Anthropologie, 110, 418–444.CrossRefGoogle Scholar
Graf, H.-F. & Timmreck, C. (2001) A general climate model simulation of the aerosol radiative effects of the Laacher See eruption (10,900 B.C.), J. Geophys. Res., 106, 14,747–14,756, doi:10.1029/2001JD900152.CrossRefGoogle Scholar
Klerk, P., Janke, W., Kühn, P. & Theuerkauf, M. (2008) Environmental impact of the Laacher See eruption at a large distance from the volcano: integrated palaeoecological studies from Vorpommern (NE Germany), Palaeogeogr. Palaeoclimatol. Palaeoecol., 270, 196–214.CrossRefGoogle Scholar
Henrich, J. (2004) Demography and cultural evolution: how adaptive cultural processes can produce maladaptive losses: the Tasmanian case, Am. Antiquity, 69, 197–214.CrossRefGoogle Scholar
Powell, A., Shennan, S. & Thomas, M. G. (2009) Late Pleistocene demography and the appearance of modern human behaviour, Science, 324, 1298–1301.CrossRefGoogle Scholar
Sigurdsson, H., Carey, S., Alexandri, M.et al. (2006) Marine investigations of Greece's Santorini volcanic field, EOS Trans. Am. Geophys. Union, 87, 337–342.CrossRefGoogle Scholar
Bietak, M. (2004) Review of Manning's ‘A test of time’, Bibliotheca Orientalis 61, 200–222.Google Scholar
Ramsey, C. B., Manning, S. W. & Galimberti, M. (2004) Dating the volcanic eruption at Thera, Radiocarbon, 46, 325–344.CrossRefGoogle Scholar
Friedrich, W. L., Kromer, B., Friedrich, M.et al. (2006) Santorini eruption radiocarbon dated to 1627–1600 B.C., Science, 312, 548.CrossRefGoogle ScholarPubMed
Bronk Ramsey, C., Dee, M. W., Rowland, J. M.et al. (2010) Radiocarbon-based chronology for Dynastic Egypt, Science, 328, 1554–1557.CrossRefGoogle ScholarPubMed
Pearson, C. L., Dale, D. S., Brewer, P. W.et al. (2009) Dendrochemical analysis of a tree-ring growth anomaly associated with the Late Bronze Age eruption of Thera, J. Archaeol. Sci., 36, 1206–1214.CrossRefGoogle Scholar
Wiener, M. H. & Allen, J. P. (1998) Separate lives: the Ahmose Tempest Stela and the Theran eruption, J. Near Eastern Stud., 57, 1–28.CrossRefGoogle Scholar
McCoy, F. W. & Heiken, G. (2000) Tsunami generated by the Late Bronze Age eruption of Thera (Santorini), Greece, Pure Appl. Geophys., 157, 1227–1256.CrossRefGoogle Scholar
Bruins, H. J., MacGillivray, J. A., Synolakis, C. E.et al. (2008) Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini, J. Archaeol. Sci., 35, 191–212.CrossRefGoogle Scholar
Driessen, J. (2002) Towards an archaeology of crisis: defining the long-term impact of the Bronze Age Santorini eruption, in Torrence, R. and Grattan, J. (eds.) Natural Disasters and Cultural Change, London: Routledge, pp. 250–263.Google Scholar
Bicknell, P. (2000) Late Minoan IB marine ware, the marine environment of the Aegean and the Bronze Age eruption of Thera volcano, Geol. Soc. London Spec. Publ., 171, 95–103.CrossRefGoogle Scholar
Plunket, P. & Uruñuela, G. (1998) Preclassic household patterns preserved under volcanic ash at Tetimpa, Puebla, Latin Am. Antiquity, 9, 287–309.CrossRefGoogle Scholar
Plunket, P. & Uruñuela, G. (2000) The quick and the dead: decision making in the abandonment of Tetimpa, Mayab, 13, 78–87.Google Scholar
Plunket, P. & Uruñuela, G. (2008) Mountain of sustenance, mountain of destruction: the prehispanic experience with Popocatépetl volcano, J. Volcanol. Geotherm. Res., 170, 111–120.CrossRefGoogle Scholar
Plunket, P. & Uruñuela, G. (2006) Social and cultural consequences of a late Holocene eruption in central Mexico, Quat. Int., 151, 19–28.CrossRefGoogle Scholar
Plunket, P. and Uruñuela, G. (1998) Appeasing the volcano gods, Archaeology, 54, 36–42.Google Scholar
Panfil, M. S., Gardner, T. W. & Hirth, K. G. (1999) Late Holocene stratigraphy of the Tetimpa archaeological sites, northeast flank of Popocatépetl Volcano, central Mexico, Geol. Soc. Am. Bull., 111, 204–218.2.3.CO;2>CrossRefGoogle Scholar
Kutterolf, S., Freundt, A. & Peréz, W. (2008) Pacific offshore record of Plinian arc volcanism in central America: 2. Tephra volumes and erupted masses, Geochem. Geophys. Geosystems, 9, Q02S02, doi:10.1029/2007GC001791.Google Scholar
Mehringer, P. J., Sarna-Wojcicki, A. M., Wollwage, L. K. & Sheets, P. (2005) Age and extent of the Ilopango TBJ tephra inferred from a Holocene chronostratigraphic reference section, Lago de Yojoa, Honduras, Quat. Res. 63, 199–205.CrossRefGoogle Scholar
Dull, R. A. (2004) An 8000-year record of vegetation, climate, and human disturbance from the Sierra de Apaneca, El Salvador, Quat. Res., 61, 159–167.CrossRefGoogle Scholar
Price, T. D., Burton, J. H., Sharer, R. J.et al. (2010) Kings and commoners at Copán: isotopic evidence for origins and movement in the Classic Maya period, J. Anthropol. Archaeol., 29, 15–32.CrossRefGoogle Scholar
Dull, R. A., Southon, J. R. & Sheets, P. (2001) Volcanism, ecology and culture: a reassessment of the Volcán Ilopango TBJ eruption in the southern Maya realm, Latin Am. Antiquity, 12, 25–44.CrossRefGoogle Scholar
Pfister, C. (2010) The vulnerability of past societies to climatic variation: a new focus for historical climatology in the twenty-first century, Climatic Change, 200, 25–31.CrossRefGoogle Scholar
Stothers, R. B. (1984) Mystery cloud of AD 536, Nature, 307, 344–345.CrossRefGoogle Scholar
Larsen, L. B., Vinther, B. M., Briffa, K. R.et al. (2008) New ice core evidence for a volcanic cause of the A.D. 536 dust veil, Geophys. Res. Lett., 35, L04708, doi:10.1029/2007GL032450.CrossRefGoogle Scholar
Dull, R., Southon, J. R., Kutterolf, S.et al. (2010) Did the TBJ Ilopango eruption cause the AD 536 event? American Geophysical Union Fall Meeting, Abstract #V13C-2370.
Drancourt, M., Roux, V., Dang, L. V.et al. (2004) Genotyping, Orientalis-like Yersinia pestis, and plague pandemics, Emerging Infectious Diseases, 10, 1585–1592.CrossRefGoogle ScholarPubMed
Heather, P. (1995) The Huns and the end of the Roman Empire in Western Europe, English Historical Rev., 110, 4–41.CrossRefGoogle Scholar
Dijkstra, J. H. F. (2004) A cult of Isis at Philae after Justinian? Reconsidering P. Cair. Masp. I 67004, Zeit. Papyrologie Epigraphik, 146, 137–154.Google Scholar
Sarris, P. (2002) The Justinianic plague: origins and effects, Continuity Change, 17, 169–182.CrossRefGoogle Scholar
Baillie, M. G. L. (1994) Dendrochronology raises questions about the nature of the AD 536 dust-veil event, The Holocene, 4, 212–217.CrossRefGoogle Scholar
Fei, J., Zhou, J. & Hou, Y. (2007) Circa A.D. 626 volcanic eruption, climatic cooling, and the collapse of the Eastern Turkic Empire, Climatic Change, 81, 469–475.CrossRefGoogle Scholar
Palais, J. M., Germani, M. S. & Zielinski, G. A. (1992) Interhemispheric transport of volcanic ash from a 1259 A.D. volcanic eruption to the Greenland and Antarctic ice sheets, Geophys. Res. Lett., 19, 801–804.CrossRefGoogle Scholar
Kellerhals, T., Tobler, L., Brütsch, S.et al. (2010) Thallium as a tracer for preindustrial volcanic eruptions in an ice core record from Illimani, Bolivia, Environ. Sci. Technol., 44, 888–893.CrossRefGoogle Scholar
Mothes, P. A. & Hall, M. L. (2008) The Plinian fallout associated with Quilotoa's 800 yr BP eruption, Ecuadorian Andes, J. Volcanol. Geotherm. Res., 176, 56–69.CrossRefGoogle Scholar
Stothers, R. B. (2000) Climatic and demographic consequences of the massive volcanic eruption of 1258, Climatic Change, 45, 361–374.CrossRefGoogle Scholar
Jones, P. D., Briffa, K. R., Barnett, T. P. & Tett, S. F. B. (1998) High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures, The Holocene, 8, 455–471.CrossRefGoogle Scholar
Emile-Geay, J., Seager, R., Cane, M. A., Cook, E. R. & Haug, G. H. (2008) Volcanoes and ENSO over the past millennium, J. Climate, 21, 3134–3148.CrossRefGoogle Scholar
Crowley, T. J., Zielinski, G., Vinther, B.et al. (2008) Volcanism and the Little Ice Age, PAGES News, 16, 22–23.CrossRefGoogle Scholar
Schneider, D. P., Ammann, C. M., Otto-Bliesner, B. L. & Kaufman, S. S. (2009) Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model, J. Geophys. Res., 114, D15101, doi:10.1029/2008JD011222.CrossRefGoogle Scholar
Jackson, P. (1978) The dissolution of the Mongol empire, Central Asiatic J., 22, 186–244. Also published in Jackson, P. (2009) Studies on the Mongol Empire and Early Muslim India, Burlington, VT: Ashgate.Google Scholar
Morgan, D. (2009) The decline and fall of the Mongol Empire, J. R. Asiatic Soc., 19, 427–437.CrossRefGoogle Scholar
D'Arrigo, R., Jacoby, G., Frank, D. & Pederson, N. (2001) Spatial response to major volcanic events in or about AD 536, 934 and 1258: frost rings and other dendrochronological evidence from Mongolia, Climatic Change, 49, 239–246.CrossRefGoogle Scholar
Fletcher, J. (1986) The Mongols: ecological and social perspectives, Harvard J. Asiatic Stud., 46, 11–50.CrossRefGoogle Scholar
Thordarson, Th. & Larsen, G. (2007) Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history, J. Geodynamics, 43, 118–152.CrossRefGoogle Scholar
Thordarson, Th., Larsen, G., Steinþórsson, S. & Self, S. (2003) The 1783–1785 A. D. Laki-Grímsvötn eruptions II: Appraisal based on contemporary accounts, Jökull, 53, 11–48.Google Scholar
Thordarson, Th. & Self, S. (1993) The Laki (Skaftár Fires) and Grímsvötn eruptions in 1783–1785, Bull.Volcanol., 55, 233–263.CrossRefGoogle Scholar
Guilbaurd, M.-N., Self, S., Thordarson, Th. & Blake, S. (2005) Morphology, surface structures, and emplacement of lavas produced by Laki, A.D. 1783–1784, Geol. Soc. Am. Spec. Paper, 396, 81–102.Google Scholar
Hamilton, C. W., Thordarson, Th. & Fagents, S. A. (2010) Explosive lava–water interactions I: architecture and emplacement chronology of volcanic rootless cone groups in the 1783–1784 Laki lava flow, Iceland, Bull. Volcanol., 72, 449–467.CrossRefGoogle Scholar
Thordarson, Th. & Self, S. (2003) Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment, J. Geophys. Res., 108(D1), 4011, doi:10.1029/2001JD002042.CrossRefGoogle Scholar
Franklin, B. (1785) Meteorological imaginations and conjectures, Memoirs of the Literary and Philosophical Society of Manchester, 2, 373–377.Google Scholar
Swinden, J. H. (1785) Observationes nebulam, quae mense Junio 1783 Apparuit, specantes in Ephemerides Societatis Meteorologicae Palatinae, translated by Linteman, S. & Thordarson, T., Jökull, 50, 73–80.Google Scholar
Met Office Hadley Centre Temperature (HadCET) datasets. See http://hadobs.metoffice.com/hadcet/
D'Arrigo, R., Mashig, E., Frank, D., Jacoby, G. & Wilson, R. (2004) Reconstructed warm season temperatures for Nome, Seward Peninsula, Alaska, Geophys. Res. Lett., 31, L09202, doi:10.1029/2004GL019756.CrossRefGoogle Scholar
Grattan, J., Brayshay, M. & Sadler, J. (1998) Modelling the distal impacts of past volcanic gas emissions, Quaternaire, 9, 25–35.CrossRefGoogle Scholar
Brázdil, R., Demarée, G. R., Deutsch, M.et al. (2010) European floods during the winter 1783/1784: scenarios of an extreme event during the ‘Little Ice Age’, Theor. Appl. Climatol., 100, 163–189.CrossRefGoogle Scholar
Elleder, L. (2010) Reconstruction of the 1784 flood hydrograph for the Vltava River in Prague, Czech Republic, Global Planet. Change, 70, 117–124.CrossRefGoogle Scholar
Oman, L., Robock, A., Stenchikov, G. L.et al. (2006) Modeling the distribution of the volcanic aerosol cloud from the 1783–1784 Laki eruption, J.Geophys. Res., 111, D12209, doi:10.1029/2005JD006899.CrossRefGoogle Scholar
Oman, L., Robock, A., Stenchikov, G. L. & Thordarson, Th. (2006) High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile, Geophys. Res. Lett., 33, L18711, doi:10.1029/2006GL027665.CrossRefGoogle Scholar
Eggertsson, T. (1998) Sources of risk, institutions for survival, and a game against nature in premodern Iceland, Explor. Econ. Hist., 35, 1–30.CrossRefGoogle Scholar
Eggertsson, T. (1996) No experiments, monumental disasters: Why it took a thousand years to develop a specialized fishing industry in Iceland, J. Econ. Behavior Organisation, 30, 1–23.CrossRefGoogle Scholar
Thorarinsson, S. (1979) On the damage caused by volcanic eruptions with special reference to tephra and gases, in Sheets, P. D & Grayson, D. K. (eds.), Volcanic Activity and Human Ecology, New York, NY: Academic Press, pp. 125–160.CrossRefGoogle Scholar
Vasey, D. E. (1991) Population, agriculture, and famine – Iceland, 1784–1785, Hum. Ecol., 19, 323–350.CrossRefGoogle Scholar
Wrigley, E. A. & Schofield, R. S. (1989) The Population History of England 1541–1871: A Reconstruction, Cambridge: Cambridge University Press.Google Scholar
Whitam, C. S. & Oppenheimer, C. (2005) Mortality in England during the 1783–4 Laki Craters eruption, Bull. Volcanol., 67, 15–26.Google Scholar
Grattan, J., Rabartin, R., Self, S. & Thordarson, Th. (2005) Volcanic air pollution and mortality in France 1783–1784, C. R. Geosci., 337, 641–651.CrossRefGoogle Scholar
Carus, W. (1847) Memoirs of the Life of the Rev. Charles Simeon, London: Hatchard and Son.Google Scholar
Volney, M. C. -F. (1787) Travels Through Syria and Egypt in the Years 1783, 1784, and 1785, London: G. G. J. & J. Robinson.Google Scholar
Grove, R. H. (2007) The great El Niño of 1789–93 and its global consequences: reconstructing an extreme climate event in world environmental history, Mediev. Hist. J., 10, 75–98.CrossRefGoogle Scholar
Yasui, M. & Koyaguchi, T. (2004) Sequence and eruptive style of the 1783 eruption of Asama Volcano, central Japan: a case study of an andesitic explosive eruption generating fountain-fed lava flow, pumice fall, scoria flow and forming a cone, Bull. Volcanol., 66, 243–262.CrossRefGoogle Scholar
Roy Ladurie, E. & Daux, V. (2008) The climate in Burgundy and elsewhere, from the fourteenth to the twentieth century, Interdiscipl. Sci. Rev., 33, 10–24.CrossRefGoogle Scholar
Kington, J. A. (1980) Daily weather mapping from 1781: a detailed synoptic examination of weather and climate during the decade leading up to the French Revolution, Climatic Change, 3, 7–36.CrossRefGoogle Scholar
Thordarson, Th., Miller, D. J., Larsen, G., Self, S. & Sigurdsson, H. (2001) New estimates of sulfur degassing and atmospheric mass-loading by the 934 AD Eldgjá eruption, Iceland, J. Volcanol. Geotherm. Res., 108, 33–54.CrossRefGoogle Scholar
Stanza from an epic poem (syair) from Sumbawa compiled in Malay around 1830. Chambert-Loir, H. (ed.) (1982) Syair kerajaan Bima, Jakarta and Bandung: Ecole Francaise d'Extrême-Orient.
Jong Boers, B. (1995) Mount Tambora in 1815: a volcanic eruption in Indonesia and its aftermath, Indonesia, 60, 37–60.CrossRefGoogle Scholar
Radermacher, Korte beschrijving van het eiland Celebes ende eilanden Floris, Lombok en Bali, Sumbauwa, 1786, p. 186. Translated in Jong Boers, B. (1995) Mount Tambora in 1815: a volcanic eruption in Indonesia and its aftermath, Indonesia, 60, 37–60.Google Scholar
Raffles, T. S. (1817) The History of Java, London: Black, Parbury & Allen.Google Scholar
Raffles, T. S. (1830) Memoir of the life and public services of Sir Thomas Stamford Raffles, F. R. S. &c., particularly in the government of Java, 1811–1816, and of Bencoolen and its dependencies, 1817–1824: with details of the commerce and resources of the eastern archipelago, and selections from his correspondence, London: John Murray.
Crawfurd, J. (1856) A Descriptive Dictionary of the Indian Islands and Adjacent Countries, London, Bradbury and Evans.Google Scholar
Sigurdsson, H. & Carey, S. (1989) Plinian and co-ignimbrite tephra fall from the 1815 eruption of Tambora volcano, Bull. Volcanol., 51, 243–270.CrossRefGoogle Scholar
Self, S., Rampino, M. R., Newton, M. S. & Wolff, J. A (1984) Volcanological study of the great Tambora eruption of 1815, Geology, 12, 659–663.2.0.CO;2>CrossRefGoogle Scholar
Self, S., Gertisser, R., Thordarson, Th., Rampino, M. R. & Wolff, J. A. (2004) Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption of Tambora, Geophys. Res. Lett., 31, L20608, doi:10.1029/2004GL020925.CrossRefGoogle Scholar
Baron, W. R. (1992) 1816 in perspective: the view from the northeastern United States, in Harington, C. R. (ed.), The Year Without a Summer? World Climate in 1816, Ottawa: Canadian Museum of Nature, pp. 124–144.Google Scholar
Stommel, H. M. & Stommel, E. (1983) Volcano Weather: The Story of 1816, the Year Without a Summer, Newport, RI: Seven Seas Press.
Dewey, (1821) Results of meteorological observations made at Williamstown, Massachusetts, Mem. Am. Acad. Arts Sci., 4, 387–392.Google Scholar
Surmieda, M. R., Lopez, J. M., Abad-Viola, G.et al. (1992) Surveillance in evacuation camps after the eruption of Mt. Pinatubo, Philippines, CDC Surveillance Summaries, CDC Morbidity Mortality Weekly Rep., 41, 9–12.Google ScholarPubMed
Petroeschevsky, W. A. (1949) A contribution to the knowledge of the unung Tambora (Sumbawa), Tijdschrift van het Koninklijk Nederlands Aardrijkskundig Genootschap, 66, 688–703.Google Scholar
Goethals, P. R. (1961) Aspects of Local Government in a Sumbawan Village (Eastern Indonesia), Ithaca, NY: Southeast Asia Programme, Department of Southeastern Studies, Cornell University.Google Scholar
Fries, A. L. (1947) Records of the Moravians in North Carolina 1752–1879, Raleigh, NC: Edwards & Broughton, vol. 7, pp. 3294–3313.Google Scholar
Clausewitz, C. (1922) Politische Schriften und Briefe, Rothfels, H. (ed.), Munich, Drei Masken Verlag, pp. 189–191.Google Scholar
Pant, G. B., Parthasarathy, B. & Sontakke, N. A. (1992) Climate over India during the first quarter of the nineteenth century, in Harington, C. R. (ed.), The Year Without a Summer? World Climate in 1816, Ottawa: Canadian Museum of Nature, pp. 429–435.Google Scholar
Harty, W. (1820) An Historic Sketch of the Causes, Progress, Extent, and Mortality of the Contagious Fever Epidemic in Ireland During the Years 1817, 1818 and 1819, London: Royal Geographical Society, Manuscripts Collection, pp. 113–115.Google Scholar
Webb, P. (2002) Emergency relief during Europe's famine of 1817 anticipated crisis-response mechanisms of today, J. Nutr., 132, 2092S–2095S.CrossRefGoogle ScholarPubMed
Beck, U. (2009) World Risk Society, Cambridge: Polity Press.CrossRefGoogle Scholar
Adger, W. N., Hughes, T. P., Folke, C., Carpenter, S. R. &Rockström, J. (2005) Social–ecological resilience to coastal disasters, Science, 309, 1036–1039.CrossRefGoogle ScholarPubMed
Self, S. & Blake, S. (2008) Consequences of explosive supereruptions, Elements, 4, 41–46.CrossRefGoogle Scholar
Chu, R., Helmberger, D. V., Sun, D., Jackson, J. M. & Zhu, L. (2010) Mushy magma beneath Yellowstone, Geophys. Res. Lett., 37, L01306, doi:10.1029/2009GL041656.CrossRefGoogle Scholar
Wilson, C. J. N. & Hildreth, W. (1997) The Bishop Tuff: new insights from eruptive stratigraphy, J. Geol., 105, 407–440.CrossRefGoogle Scholar
Jones, M. T., Sparks, R. S. J. & Valdes, P. J. (2007) The climatic impact of supervolcanic ash blankets, Clim. Dynam., 29, 553–564.CrossRefGoogle Scholar
Rampino, M. R. (2002) Supereruptions as a threat to civilizations on Earth-like planets, Icarus, 156, 562–569.CrossRefGoogle Scholar
White, G. F. & Haas, J. E. (1975) Assessment of Research on Natural Hazards, Cambridge, MA: MIT Press.Google Scholar
Button, G. (2010) Disaster Culture: Knowledge and Uncertainty in the Wake of Human and Environmental Catastrophe, Walnut Creek, CA: Left Coast Press, Inc.Google Scholar
Aspinall, W. P., Woo, G., Voight, B. V. & Baxter, P. J. (2003) Evidence-based volcanology: application to eruption crises, J. Volcanol. Geotherm. Res., 128, 273–285.CrossRefGoogle Scholar
Sornette, D. (2009) Dragon kings, black swans and the prediction of crises, Int. J. Terraspace Sci. Eng., 2, 1–18.Google Scholar
Deligne, N. I., Coles, S. G. & Sparks, R. S. J. (2010) Recurrence rates of large explosive volcanic eruptions, J. Geophys. Res., 115, B06203, doi:10.1029/2009JB006554.CrossRefGoogle Scholar
Pappalardo, L., Ottolini, L. & Mastrolorenzo, G. (2008) The Campanian Ignimbrite (southern Italy) geochemical zoning: insight on the generation of a super-eruption from catastrophic differentiation and fast withdrawal, Contrib. Mineral. Petrol., 156, 1–26.CrossRefGoogle Scholar
Woo, G. (2008) Probabilistic criteria for volcano evacuation decisions, Nat. Hazards, 45, 87–97.CrossRefGoogle Scholar
Wigley, T. M. L. (2006) A combined mitigation/geoengineering approach to climate stabilization, Science, 314, 452–454.CrossRefGoogle ScholarPubMed
Robock, A. (2008) 20 reasons why geoengineering may be a bad idea, Bull. Atomic Scientists, 64, 14–18.CrossRefGoogle Scholar
Has the time come for geoengineering? See http://www.thebulletin.org/web-edition/roundtables/has-the-time-come-geoengineering
Robock, A., Bunzl, M., Kravitz, B. & Stenchiko, G. L. (2010) A test for geoengineering? Science, 327, 530–531.CrossRefGoogle ScholarPubMed
Rampino, M. R., Self, S. & Fairbridge, R. W. (1979) Can rapid climate change cause volcanic eruptions? Science, 206, 826–829.CrossRefGoogle ScholarPubMed
Huybers, P. & Langmuir, C. (2009) Feedback between deglaciation, volcanism, and atmospheric CO2, Earth Planet. Sci. Lett., 286, 479–491.CrossRefGoogle Scholar
Maclennan, J., Jull, M., McKenzie, D., Slater, L. & Grönvold, K. (2002) The link between volcanism and deglaciation in Iceland, Geochem. Geophys.Geosystems, 3(11), 1062, doi:10.1029/2001GC000282.CrossRefGoogle Scholar
Nakada, M. & Yokose, H. (1992) Ice age as a trigger of active Quaternary volcanism and tectonism, Tectonophysics, 212, 321–329.CrossRefGoogle Scholar
Tuffen, H. (2010) How will melting of ice affect volcanic hazards in the twenty-first century? Philos. Trans. R. Soc. A, 368, 2535–2558.CrossRefGoogle ScholarPubMed
Stelling, P., Gardner, J. E. & Begét, J. (2005) Eruptive history of Fisher Caldera, Alaska, USA, J. Volcanol. Geotherm. Res., 139, 163–183.CrossRefGoogle Scholar
Ponomareva, V. V., Kyle, P. R., Melekestsev, I.et al. (2004) The 7600 (14C) year BP Kurile Lake caldera-forming eruption, Kamchatka, Russia: stratigraphy and field relationships, J. Volcanol. Geotherm. Res., 136, 199–222.CrossRefGoogle Scholar
Maeno, F. & Taniguchi, H. (2007) Spatiotemporal evolution of a marine caldera-forming eruption, generating a low-aspect ratio pyroclastic flow, 7.3 ka, Kikai caldera, Japan: implication from near-vent eruptive deposits, J. Volcanol. Geotherm. Res., 167, 212–238.CrossRefGoogle Scholar
Bacon, C. R. & Lanphere, M. A. (2006) Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon, Geol. Soc. Am. Bull., 118, 1131–1159.CrossRefGoogle Scholar
Witter, J. B. & Self, S. (2006) The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release, Bull. Volcanol., 69, 301–318.CrossRefGoogle Scholar
Druitt, T. H., Edwards, L., Mellors, R. M.et al. (1999) Santorini Volcano, Geol. Soc. London, Memoir, 19.Google Scholar
Macdonald, R. & Scaillet, B. (2006) The central Kenya peralkaline province: insights into the evolution of peralkaline salic magmas, Lithos, 91, 59–73.CrossRefGoogle Scholar
Burgisser, A. (2005) Physical volcanology of the 2,050 BP caldera-forming eruption of Okmok caldera, Alaska, Bull. Volcanol., 67, 497–525.CrossRefGoogle Scholar
Robin, C., Eissen, J.-P. & Monzier, M. (1993) Giant tuff cone and 12-km-wide associated caldera at Ambrym volcano (Vanuatu, New Hebrides arc), J.Volcanol. Geotherm. Res., 55, 225–238CrossRefGoogle Scholar
Horn, S. & Schmincke, H.-U. (2000) Volatile emissions during the eruption of Baitoushan volcano (China/North Korea) ca. 969 AD, Bull. Volcanol., 61, 537–555.CrossRefGoogle Scholar
Walker, G. P. L. (1980) The Taupo pumice: product of the most powerful known (ultraplinian) eruption, J. Volcanol. Geotherm. Res., 8, 69–94.CrossRefGoogle Scholar
Begét, J. E., Mason, O. K. & Andersen, P. M. (1992) Age, extent and climatic significance of the c. 3400 BP Aniakchak tephra, western Alaska, USA, Holocene, 2, 51–56.CrossRefGoogle Scholar
Miller, T. P. & Smith, R. L. (1997) Late Quaternary caldera-forming eruptions in the eastern Aleutian arc, Alaska, Geology, 15, 434–438.2.0.CO;2>CrossRefGoogle Scholar
Hildreth, W. (1983) The compositionally zoned eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska, J. Volcanol. Geotherm. Res., 18, 1–56.CrossRefGoogle Scholar
Self, S. & Rampino, M. R. (1981) The 1883 eruption of Krakatau, Nature, 294, 699–704.CrossRefGoogle Scholar
Pain, C. F., Blong, R. J. & McKee, C. O (1981) Pyroclastic deposits and eruptive sequences on Long Island, Papua New Guinea. 1. Lithology, stratigraphy, and volcanology, Geol. Survey Papua New Guinea, Memoirs, 10, 101–107.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Clive Oppenheimer, University of Cambridge
  • Book: Eruptions that Shook the World
  • Online publication: 01 June 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511978012.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Clive Oppenheimer, University of Cambridge
  • Book: Eruptions that Shook the World
  • Online publication: 01 June 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511978012.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Clive Oppenheimer, University of Cambridge
  • Book: Eruptions that Shook the World
  • Online publication: 01 June 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511978012.018
Available formats
×