Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T20:45:58.855Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

David M. Glover
Affiliation:
Woods Hole Oceanographic Institution, Massachusetts
William J. Jenkins
Affiliation:
Woods Hole Oceanographic Institution, Massachusetts
Scott C. Doney
Affiliation:
Woods Hole Oceanographic Institution, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiken, J., Y., Pradhan, R., Barlowet al., 2009, Phytoplankton pigments and functional types in the Atlantic Ocean: A decadal assessment, 1995–2005, Deep-Sea Res. II, 56(15), 899–917.CrossRefGoogle Scholar
Alvarez, A., V., Bertram, and L., Gualdesi, 2009, Hull hydrodynamic optimization of autonomous underwater vehicles operating at snorkeling depth, Ocean Eng., 36(1), 105–112.CrossRefGoogle Scholar
Anderson, L. A. and J. L., Sarmiento, 1994, Redfield ratios of remineralization determined by nutrient data-analysis, Glob. Biogeochem. Cycles, 8(1), 65–80.CrossRefGoogle Scholar
Arakawa, A., 1966, Computational design for long-term numerical integrations of the equations of fluid motion: Two-dimensional incompressible flow, Part 1, J. Comput. Phys., 1, 119–143.CrossRefGoogle Scholar
Armi, L. and D., Haidvogel, 1982, Effects of variable and anisotropic diffusivities in a steady state diffusion model, J. Phys. Oceanogr. 12, 785–794.2.0.CO;2>CrossRefGoogle Scholar
Athias, V., P., Mazzega, and C., Jeandel, 2000, Selecting a global optimization method to estimate the oceanic particle cycling rate constants, J. Mar. Res., 58(5), 675–707.CrossRefGoogle Scholar
Beckmann, A. and R., Doscher, 1997. A method for improved representation of dense water spreading over topography in geopotential-coordinate models, J. Phys. Oceanogr., 27, 581–591.2.0.CO;2>CrossRefGoogle Scholar
Bennett, A. F., 2002, Inverse Modeling of the Ocean and Atmosphere, New York: Cambridge University Press.CrossRefGoogle Scholar
Berner, R. A., 1980, Early Diagenesis, Princeton, NJ: Princeton University Press.Google Scholar
Bevington, P. R. and D. K., Robinson, 2003, Data Reduction and Error Analysis for the Physical Sciences, 3rd edn, New York, NY: McGraw-Hill Inc.Google Scholar
Bishop, C. M., 1995, Neural Networks for Pattern Recognition, Oxford, UK: Oxford University Press.Google Scholar
Boas, M. L., 2005, Mathematical Methods in the Physical Sciences, 3rd edn, New York, NY: John Wiley & Sons.Google Scholar
Boyer Montégut, C., G., Madec, A. S., Fischer, A., Lazar, and D., Iudicone, 2004, Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology, J. Geophys. Res., 109, C12003.CrossRefGoogle Scholar
Briegleb, B. P., C. M., Bitz, E. C., Hunkeet al., 2004, Scientific description of the sea ice component in the Community Climate System Model, Version Three, Tech. Rep. NCAR-TN-463STR, Boulder, CO: National Center for Atmospheric Research.
Bretherton, F. P., R. E., Davis, and C. B., Fandry, 1976, A technique for objective analysis and design of oceanographic experiments applied to MODE-73, Deep-Sea Res., 23, 559–582.Google Scholar
Bretherton, C. S., Smith, C., and Wallace, J. M., 1992. An intercomparison of methods for finding coupled patterns in climate data. J. Clim., 5, 541–560.2.0.CO;2>CrossRefGoogle Scholar
Broecker, W.S. and T.-H., Peng, 1982, Tracers in the Sea. Palisades, NY: ELDIGIO Press.Google Scholar
Bryan, K., 1969, A numerical method for the study of the circulation of the world ocean, J. Comput. Phys., 4, 347–376.CrossRefGoogle Scholar
Bryan, F., 1987, Parameter sensitivity of primitive equation ocean general circulation models, J. Phys. Oceanogr., 17, 970–985.2.0.CO;2>CrossRefGoogle Scholar
Canellas, B., S., Balle, J., Tintore, and A., Orfila, 2010, Wave height prediction in the Western Mediterranean using genetic algorithms, Ocean Eng., 37(8–9), 742–748.CrossRefGoogle Scholar
Carton, J. A. and B. S., Giese, 2008, A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA), Mon. Wea. Rev., 136, 2999–3017.CrossRefGoogle Scholar
Case, T. J., 1999, An Illustrated Guide to Theoretical Ecology, Oxford, UK: Oxford University Press.Google Scholar
Chatfield, C., 2004, The Analysis of Time Series: An Introduction, 6th edn, Boca Raton, FL: Chapman & Hall/CRC Press Texts in Statistical Science.Google Scholar
Chilés, J.-P. and P., Delfiner, 1999, Geostatistics, Modeling Spatial Uncertainty, New York: John Wiley & Sons.Google Scholar
Collins, W. D., M., Blackmon, C. M., Bitzet al., 2006, The Community Climate System Model: CCSM3, J. Clim., 19, 2122–2143.CrossRefGoogle Scholar
Cox, M. D., 1984, A primitive equation, 3-dimensional model of the ocean. GFDL Ocean Group Technical Report No. 1. Available from Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, 08542.
Craig, H., 1969, Abyssal carbon and radiocarbon in the Pacific, J. Geophys. Res., 74, 5491–5506.CrossRefGoogle Scholar
Cressie, N. A. C., 1993, Statistics for Spatial Data, New York: Wiley-Interscience.Google Scholar
Cressie, N. A. C. and D. M., Hawkins, 1980, Robust estimation of the variogram, I, J. Int. Assoc. Math. Geol., 12, 115–125.CrossRefGoogle Scholar
Dai, A., T. T., Qian, K. E., Trenberth, and J. D., Milliman, 2009, Changes in continental freshwater discharge from 1948 to 2004, J. Clim., 22, 2773–2792.CrossRefGoogle Scholar
Danabasoglu, G., J. C., McWilliams, and P. R., Gent, 2004, The role of mesoscale tracer transports in the global ocean circulation, Science, 264, 1123–1126.CrossRefGoogle Scholar
Davis, J. C., 2002, Statistics and Data Analysis in Geology, 3rd edn, New York: John Wiley and Sons.Google Scholar
Davis, R. E., 1998, Preliminary results from directly measuring middepth circulation in the tropical and South Pacific, J. Geophys. Res. Oceans, 103, 24619–24639.CrossRefGoogle Scholar
Davis, T. A. and K., Sigmon, 2004, MATLAB Primer, 7th edn, Boca Raton, FL: Chapman and Hall/CRC.Google Scholar
deBoor, C., 1978, A Practical Guide to Splines, New York: Springer-Verlag.CrossRefGoogle Scholar
Derbyshire, J., 2003, Prime Obsession, Bernhard Riemann and the Greatest Unsolved Problem in Mathematics, New York: Plume Book, member of Penguin Group (USA).Google Scholar
Deuser, W. G., 1986, Seasonal and interannual variations in deep-water particle fluxes in the Sargasso Sea and their relation to surface hydrography, Deep-Sea Res., 33(2), 225–246.CrossRefGoogle Scholar
Doney, S. C., 1996. A synoptic atmospheric surface forcing data set and physical upper ocean model for the U.S. JGOFS Bermuda Atlantic Time-series Study Site. J. Geophys. Res., 101(C10), 25615–25634.CrossRefGoogle Scholar
Doney, S. C., 1999, Major challenges confronting marine biogeochemical modeling, Glob. Biogeochem. Cycles, 13, 705–714.CrossRefGoogle Scholar
Doney, S. C., R. G., Najjar, and S., Stewart, 1995, Photochemistry, mixing, and diurnal cycles in the upper ocean, J. Mar. Res., 53, 341–369.CrossRefGoogle Scholar
Doney, S. C., W. G., Large, and F. O., Bryan, 1998, Surface ocean fluxes and watermass transformation rates in the coupled NCAR Climate System Model, J. Clim., 11, 1420–1441.2.0.CO;2>CrossRefGoogle Scholar
Doney, S. C., K., Lindsay, and J. K., Moore, 2003, Global ocean carbon cycle modeling in Ocean Biogeochemistry, ed. M., Fasham, Springer, 217–238.CrossRefGoogle Scholar
Doney, S. C., K., Lindsay, K., Caldeiraet al., 2004, Evaluating global ocean carbon models: the importance of realistic physics, Glob. Biogeochem. Cycles, 18, GB3017, doi:10.1029/2003GB002150.CrossRefGoogle Scholar
Doney, S. C., S., Yeager, G., Danabasoglu, W. G., Large, and J. C., McWilliams, 2007, Mechanisms governing interannual variability of upper ocean temperature in a global hindcast simulation, J. Phys. Oceanogr., 37, 1918–1938.CrossRefGoogle Scholar
Doney, S. C., I., Lima, J. K., Mooreet al., 2009, Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data, J. Mar. Sys., 76, 95–112, doi:10.1016/j.jmarsys.2008.05.015.CrossRefGoogle Scholar
Ducet, N., P. Y., Le Traon, and G., Reverdin, 2000, Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2, J. Geophys. Res. Oceans, 105, 19477–19498.CrossRefGoogle Scholar
Dutay, J.-C., J. L., Bullister, S. C., Doneyet al., 2002, Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models, Ocean Modelling, 4, 89–120.CrossRefGoogle Scholar
Eckart, C. and G., Young, 1936, The approximation of one matrix by another of lower rank, Psychometrika, 1, 3, 211–218.CrossRefGoogle Scholar
Emerson, S. R. and J. I., Hedges, 2008, Chemical Oceanography and the Marine Carbon Cycle. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Emery, W. J. and R. E., Thompson, 1998, Data Analysis Methods in Physical Oceanography, New York: Pergamon Press, Elsevier Science Inc.Google Scholar
Errico, R. M., 1997, What is an adjoint model?Bull. Am. Met. Soc., 78, 2577–2591.2.0.CO;2>CrossRefGoogle Scholar
Fallat, M. R., S. E., Dosso, and P. L., Nielsen, 2004, An investigation of algorithm-induced variability in geoacoustic inversion, IEEE J. Ocean. Eng., 29(1), 78–87.CrossRefGoogle Scholar
Fasham, M. (ed.), 2003, Ocean Biogeochemistry, New York: Springer.CrossRefGoogle Scholar
Fasham, M. J. R., B. M., Balino, M. C., Bowleset al., 2001, A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS), AMBIO, Spec. Iss. 10, 4–31.Google Scholar
Fennel, W. and T., Neumann, 2004, Introduction to the Modelling of Marine Ecosystems, Elsevier Oceanography Series, 72, San Diego, CA: Elsevier, Inc.Google Scholar
Fennel, K., J., Wilkin, J., Levinet al., 2006, Nitrogen cycling in the Middle Atlantic Bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget, Glob. Biogeochem. Cycles, 20, GB3007.CrossRefGoogle Scholar
Fratantoni, D. M., 2001, North Atlantic surface circulation during the 1990's observed with satellite-tracked drifters, J. Geophys. Res. Oceans, 106, 22067–22093.CrossRefGoogle Scholar
Friedrichs, M. A. M., J. A., Dusenberry, L. A., Andersonet al., 2007, Assessment of skill and portability in regional marine biogeochemical models: the role of multiple planktonic groups, J. Geophys. Res. Oceans, 112, C08001, doi: 10.1029/2006 JC003852.CrossRefGoogle Scholar
Ganachaud, A. and C., Wunsch, 2002, Oceanic nutrient and oxygen transports and bounds on export production during the World Ocean Circulation Experiment, Global Biogeochem. Cycles, 16(4), 1057, doi: 10.1029/2000GB001333.CrossRefGoogle Scholar
Ganachaud, A. and C., Wunsch, 2003, Large-scale ocean heat and freshwater transport during the World Ocean Circulation Experiment, J. Clim., 16, 696–705.2.0.CO;2>CrossRefGoogle Scholar
Garcia, H. E., R. A., LocarniniT. P., Boyer, and J. I., Antonov, 2006, NOAA Atlas NESDIS 64, World Ocean Atlas 2005, Volume 4, Nutrients (Phosphate, Nitrate, Silicate), ed. S., Levitus, Washington, DC: US Government Printing Office.Google Scholar
Gargett, A. E. 1984, Vertical eddy diffusivity in the ocean interior, J. Mar. Res., 42, 359–393.CrossRefGoogle Scholar
Garrett, C., 1983. On the initial streakiness of a dispersing tracer in two- and three-dimensional turbulence, Dyn. Atmos. Oceans, 7, 265–277.CrossRefGoogle Scholar
Garrett, C., 1989, A mixing length interpretation of fluctuations in passive scalar concentration in homogeneous turbulence, J. Geophys. Res., 94, 9710–9712.CrossRefGoogle Scholar
Garrett, C., 2006, Turbulent dispersion in the ocean, Prog. Oceanogr., 70, 113–125.CrossRefGoogle Scholar
Gent, P. R. and J. C., McWilliams, 1990: Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr., 20, 150–155.2.0.CO;2>CrossRefGoogle Scholar
Gent, P. R., J., Willebrand, T., McDougall, and J. C., McWilliams, 1995, Parameterizing eddy-induced tracer transports in ocean circulation models, J. Phys. Oceanogr., 25, 463–474.2.0.CO;2>CrossRefGoogle Scholar
Gent, P. R., F. O., Bryan, G., Danabasogluet al., 2006, Ocean chlorofluorocarbon and heat uptake during the twentieth century in the CCSM3, J. Clim., 19, 2366–2381.CrossRefGoogle Scholar
Giering, R. and T., Kaminski, 1998, Recipes for adjoint code construction, ACM Trans. Math. Software, 24(4), 437–474.CrossRefGoogle Scholar
Gill, A. E., 1982, Atmosphere–Ocean Dynamics, New York: Academic Press.Google Scholar
Gill, P. E., W., Murray, and M. H., Wright, 1981, Practical Optimization, New York, NY: Academic Press, Inc.Google Scholar
Glover, D. M., S. C., Doney, A. J., Mariano, R. H., Evans, and S. J., McCue, 2002, Mesoscale variability in time-series data: Satellite-based estimates for the U.S. JGOFS Bermuda Atlantic Time-Series Study (BATS) site, J. Geophys. Res. Oceans, 107(C8), 3092, doi:10.1029/2000JC000589.CrossRefGoogle Scholar
Gnanadesikan, A., 1999, A simple predictive model for the structure of the oceanic pycnocline, Science, 283, 2077–2079.CrossRefGoogle ScholarPubMed
Gordon, A. D., 1999, Classification, 2nd edn. Boca Raton, FL: Chapman and Hall.Google Scholar
Gradshteyn, I. S. and I. M., Ryzhik, 2000, Table of Integrals, Series, and Products, 6th edn, San Diego, CA: Academic Press.Google Scholar
,Gregg, 1987, Diapycnal mixing in the thermocline: A review, J. Geophys. Res., 92, 5249–5286.CrossRefGoogle Scholar
Gregg, W. W., M. A. M., FriedrichsA. R., Robinsonet al., 2009, Skill assessment in ocean biological data assimilation, J. Mar. Syst., 76, 16–33.CrossRefGoogle Scholar
Griffies, S., 2004, Fundamentals of Ocean Climate Models, Princeton NJ: Princeton University Press.Google Scholar
Griffies, S. M., 1998, The Gent–McWilliams skew-flux, J. Phys. Oceanogr., 28, 831–841.2.0.CO;2>CrossRefGoogle Scholar
Griffies, S. M., C., Böning, F. O., Bryanet al., 2000, Developments in ocean climate modelling, Ocean Modelling, 2, 123–192.CrossRefGoogle Scholar
Gruber, N., H., Frenzel, S. C., Doneyet al., 2006: Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System, Deep-Sea Res. I, 53, 1483–1516.CrossRefGoogle Scholar
Gruber, N., M., Gloor, S. E., Mikaloff Fletcheret al., 2009, Oceanic sources, sinks, and transport of atmospheric CO2, Glob. Biogeochem. Cycles, 23, GB1005, doi:10.1029/2008GB003349.CrossRefGoogle Scholar
Haidvogel, D. B. and A., Beckmann, 1999, Numerical Ocean Circulation Modeling, London, UK: Imperial College Press.CrossRefGoogle Scholar
Hall, T. M. and T. W. N., Haine, 2002, On ocean transport diagnostics: the idealized age tracer and the age spectrum, J. Phys. Oceanogr., 32(6), 1987–1991.2.0.CO;2>CrossRefGoogle Scholar
Hasselmann, K., 1976, Stochastic climate models, Part I. Theory, Tellus, 28(6), 473–485.CrossRefGoogle Scholar
Hastings, A., 1997, Population Biology, Concepts and Models, New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Hecht, M. W., W. R., Holland, and P. J., Rasch, 1995, Upwind-weighted advection schemes for ocean tracer transport: an evaluation in a passive tracer context, J. Geophys. Res., 100 (C10), 20763–20778.CrossRefGoogle Scholar
Hecht, M. W., F. O., Bryan, and W. R., Holland, 1998, A consideration of tracer advection schemes in a primitive equation ocean model, J. Geophys. Res. Oceans, 103(C2), 3301–3321.CrossRefGoogle Scholar
Hollander, M. and D. A., Wolfe, 1999, Nonparametric Statistical Methods, 2nd edn, New York: John Wiley and Sons.Google Scholar
Holloway, G., 1992, Representing topographic stress for large-scale ocean models, J. Phys. Oceanogr., 22, 1033–1046.2.0.CO;2>CrossRefGoogle Scholar
Hood, R. R., E. A., Laws, R. A., Armstronget al., 2006, Pelagic functional group modeling: progress, challenges and prospects, Deep-Sea Res. II, 53(5–7), 459–512.CrossRefGoogle Scholar
Huse, G. and O., Fiksen, 2010, Modelling encounter rates and distribution of mobile predators and prey, Progr. Oceanogr., 84(1–2), Spec. Iss. SI, 93–104.CrossRefGoogle Scholar
Jayne, S. R., 2006, Circulation of the North Atlantic Ocean from altimetry and the Gravity Recovery and Climate Experiment geoid, J. Geophys. Res., 111, C03005, doi:10.1029/2005JC003128.CrossRefGoogle Scholar
Jayne, S. R., 2009, The impact of abyssal mixing parameterizations in an ocean general circulation model, J. Phys. Oceanogr., 39, 1756–1775.CrossRefGoogle Scholar
Jayne, S. R. and J., Marotzke, 2001, The dynamics of ocean heat transport variability, Rev. Geophys., 39, 385–411.CrossRefGoogle Scholar
Jenkins, W. J., 1980, Tritium and 3He in the Sargasso Sea, J. Mar. Res. 38, 533–569.Google Scholar
Jenkins, W. J., 1998, Studying thermocline ventilation and circulation using tritium and 3He. J. Geophys. Res., 103(C8): 15817–15831.CrossRefGoogle Scholar
Jenkins, W. J., 2004, Tracers of ocean mixing. In Treatise on Geochemistry, Volume 6, The Oceans and Marine Geochemistry, ed. H. D., Holland and K. K., Turekian. Amsterdam: Elsevier, pp. 223–246.Google Scholar
Jenkins, W. J. and J. C., Goldman, 1985, Seasonal oxygen cycling and primary production in the Sargasso Sea. J. Mar. Res., 43, 465–491.CrossRefGoogle Scholar
Jenkins, W. J. and D. W. R., Wallace, 1992, Tracer based inferences of new primary production in the sea. In Primary Production and Biogeochemical Cycles in the Sea, ed. P. G., Falkowski and A. D., Woodhead. New York: Plenum, pp. 299–316.CrossRefGoogle Scholar
Jenkins, G. M. and D. G., Watts, 1968, Spectral Analysis and its Applications, Oakland, CA: Holden-Day.
Jerlov, N. G., 1968, Optical Oceanography, Amsterdam, Elsevier Publishing Co.Google Scholar
Jumars, P. A., J. H., Trowbridge, E., Boss, and L., Karp-Boss, 2009, Turbulence–plankton interactions: a new cartoon. Mar. Ecol. 30, 133–150.CrossRefGoogle Scholar
Kalnay, E.Kanamitsu, M. and Kistler, R., 1996, The NCEP/NCAR 40-year reanalysis project. Bull. Am. Met. Soc., 77, p437–471.2.0.CO;2>CrossRefGoogle Scholar
Kalnay, E., 2003, Atmospheric Modeling, Data Assimilation, and Predictability, New York: Cambridge University Press.
Karstensen, J. and Tomczak, M., 1998, Age determination of mixed water masses using CFC and oxygen data, J. Geophys. Res. 103, 18599–18609.CrossRefGoogle Scholar
Kasibhatla, P., Heimann, M. and Rayner, P., eds., 2000, Inverse Methods in Global Biogeochemical Cycles, Washington, DC: American Geophysical Union.CrossRefGoogle Scholar
Keeling, R. F., 1993, On the role of large bubbles in air-sea gas exchange and supersaturation in the ocean. J. Mar. Res., 51, 237–271.CrossRefGoogle Scholar
Kent, J. T., G. S., Watson, and T. C., Onstott, 1990, Fitting straight lines and planes with an application to radiometric dating, Earth Planet. Sci. Lett., 97, 1–17.CrossRefGoogle Scholar
Key, R. M., A., Kozyr, C. L., Sabineet al., 2004, A global ocean carbon climatology: results from GLODAP, Glob. Biogeochem. Cycles, 18, GB4031.CrossRefGoogle Scholar
Khatiwala, S., F., Primeau, and T., Hall, 2009, Reconstruction of the history of anthropogenic CO2 concentrations in the ocean, Nature, 462, 346–349.CrossRefGoogle Scholar
Kraus, E. B. and J. S., Turner, 1967, A one-dimensional model of the seasonal thermocline II. The general theory and its consequences, Tellus, 19, 98–106.CrossRefGoogle Scholar
Large, W. G. and S. G., Yeager, 2009, The global climatology of an interannually varying air–sea flux data set, Clim. Dynam., 33, 341–364.CrossRefGoogle Scholar
Large, W. G., J. C., McWilliams, and S. C., Doney, 1994, Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403.CrossRefGoogle Scholar
Large, W. G., G., Danabasoglu, S. C., Doney, and J. C., McWilliams, 1997, Sensitivity to surface forcing and boundary layer mixing in a global ocean model: annual-mean climatology, J. Phys. Oceanogr., 27, 2418–2447.2.0.CO;2>CrossRefGoogle Scholar
Large, W. G., G., Danabasoglu, J. C., McWilliams, P. R., Gent, and F. O., Bryan, 2001, Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity, J. Phys. Oceanogr., 31, 518–536.2.0.CO;2>CrossRefGoogle Scholar
Lavender, K. L., W. B., Owens, and R. E., Davis, 2005, The mid-depth circulation of the subpolar North Atlantic Ocean as measured by subsurface floats, Deep-Sea Res. I, 52, 767–785.CrossRefGoogle Scholar
Ledwell, J. R., A. J., Watson, and C. S., Law, 1998, Mixing of a tracer in the pycnocline, J. Geophys. Res., 103, 21499–21529.CrossRefGoogle Scholar
Le Quéré, C., S. P., Harrison, I. C., Prenticeet al., 2005, Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models, Glob. Change Biol., 11, 2016–2040.Google Scholar
Levitus, S., T. P., Boyer, M. E., Conkrightet al., 1998, NOAA Atlas NESDIS 18, World Ocean Database 1998, Volume 1, Introduction, Washington, DC: US Government Printing Office.Google Scholar
Levitus, S., J., Antonov, and T., Boyer, 2005, Warming of the world ocean, 1955–2003, Geophys. Res. Lett., 32, L02604, doi:10.1029/2004GL021592.CrossRefGoogle Scholar
Levy, M., P., Klein, and A.-M., Treguier, 2001, Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Mar. Res. 59, 535–565.CrossRefGoogle Scholar
Li, X. W. and F. W., Primeau, 2008, A fast Newton–Krylov solver for seasonally varying global ocean biogeochemistry models, Ocean Modelling, 23, 13–20.CrossRefGoogle Scholar
Light, A., and P. J., Bartlein, 2004, The end of the rainbow? Color schemes for improved data graphics, EOS Trans. AGU, 40, 385, 391.Google Scholar
Lomb, N. R., 1976, Least-squares frequency analysis of unequally spaced data, Astrophys. Space Sci., 39, 447–462.CrossRefGoogle Scholar
Lotka, A. J., 1920, Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc., 42, 1595–1599.CrossRefGoogle Scholar
Lotka, A. J. 1925, Elements of Physical Biology, Baltimore, MD: Williams and Wilkins Co.Google Scholar
MacMahon, D., 2006, Half-life evaluations for 3H, 90Sr, and 90Y. Appl. Rad. Isotopes, 64, 1417–1419.CrossRefGoogle ScholarPubMed
Mallat, S., 1999, A Wavelet Tour of Signal Processing, San Diego, CA: Academic Press.Google Scholar
Marcotte, D., 1991, Cokriging with MATLAB, Comp. Geosci., 17(9), 1265–1280.CrossRefGoogle Scholar
Marcotte, D., 1996, Fast variogram computation with FFT, Comp. Geosci., 22(10), 1175–1186.CrossRefGoogle Scholar
Martens, C. and Berner, R., 1977, Interstitial water chemistry of anoxic Long Island Sound sediments. 1. Dissolved gases, Limnol. Oceanogr., 22(1), 10–25.CrossRefGoogle Scholar
Maslowski, W. and W. H., Lipscomb, 2003, High resolution simulations of Arctic sea ice, 1979–1993, Polar Res., 22, 67–74.Google Scholar
Matear, R. J., 1995, Parameter optimization and analysis of ecosystem models using simulated annealing — a case-study at station-P, J. Mar. Res., 53(4), 571–607.CrossRefGoogle Scholar
,MathWorks, The, 2009, MATLAB 7 Function Reference, Natick, MA: The Mathworks, Inc.Google Scholar
,MathWorks, The, 2010, Optimization Toolbox 5, Users Guide, Natick, MA: The Mathworks, Inc.Google Scholar
Matsumoto, K., J. L., Sarmiento, R. M., Key 2004, Evaluation of ocean carbon cycle models with data-based metrics, Geophys. Res. Lett., 31, L07303, doi:10.1029/2003GL018970.CrossRefGoogle Scholar
Mayorga, E., S. P., Seitzinger, J. A., Harrisonet al., 2010, Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation, Environ. Modelling Software, 25, 837–853.CrossRefGoogle Scholar
McClain, C. R., G. C., Feldman, and S. B., Hooker, 2004, An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series, Deep Sea Res. II, 51, 5–42.CrossRefGoogle Scholar
McGillicuddy, D. J. Jr., L. A., Anderson, S. C., Doney, and M. E., Maltrud, 2003, Eddy-driven sources and sinks of nutrients in the upper ocean: Results from a 0.1 resolution model of the North Atlantic, Glob. Biogeochem. Cycles, 17(2), 1035, doi:10.1029/2002GB001987.CrossRefGoogle Scholar
McPhaden, M. J., A. J., Busalacchi, R., Cheneyet al., 1998, The tropical ocean global atmosphere observing system: A decade of progress, J. Geophys. Res. Oceans, 103, 14169–14240.CrossRefGoogle Scholar
McWilliams, J. C., 2006, Fundamentals of Geophysical Fluid Dynamics, Cambridge, UK: Cambridge University Press.Google Scholar
Mellor, G. L. and T., Yamada, 1974, A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., 31, 1791–1806.2.0.CO;2>CrossRefGoogle Scholar
Mellor, G. L. and T., Yamada, 1982, Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys. Space Phys., 20, 851–875.CrossRefGoogle Scholar
Menke, W., 1984, Geophysical Data Analysis: Discrete Inverse Theory, New York: Academic Press, Inc.Google Scholar
Metropolis, N., A., Rosenbluth, M., Rosenbluth, A., Teller, and E., Teller, 1953, Equations of state calculations by fast computing machines, J. Chem. Phys., 21, 1087–1092.CrossRefGoogle Scholar
Mikaloff Fletcher, S. E., N., Gruber, A. R., Jacobsonet al., 2006, Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean, Glob. Biogeochem. Cycles, 20, GB2002.CrossRefGoogle Scholar
Mikaloff Fletcher, S. E., N., Gruber, A. R., Jacobsonet al., 2007: Inverse estimates of the oceanic sources and sinks of natural CO2 and their implied oceanic transport, Glob. Biogeochem. Cycles, 21, GB1010.CrossRefGoogle Scholar
Monahan, E. C. and T., Torgersen, 1991. Enhancement of air–sea gas exchange by oceanic whitecapping. In Air–Water Mass Transfer, Second International Symposium on Gas Transfer at Water Surfaces, New York: ASCE, pp. 608–617.Google Scholar
Moore, J. K., S. C., Doney, and K., Lindsay, 2004, Upper ocean ecosystem dynamics and iron cycling in a global 3-D model, Glob. Biogeochem. Cycles, 18, GB4028, 10.1029/2004GB002220.CrossRefGoogle Scholar
Munk, W., 1966, Abyssal recipes, Deep-Sea Res. 13, 707–730.Google Scholar
Munk, M., 2006, Ocean acoustic tomography from a stormy start to an uncertain future In Physical Oceanography Developments Since 1950, ed. M., Jochum and R., Murtugudde. New York, NY: Springer, pp. 119–138.Google Scholar
Munk, W., and C., Wunsch, 1979, Ocean acoustic tomography: a scheme for large scale monitoring, Deep-Sea Res. A, 26, 123–161.CrossRefGoogle Scholar
Murray, J. D., 1993, Mathematical Biology, 2nd Corrected edn Berlin: Springer-Verlag.Google Scholar
Nabney, I. T., 2002, NETLAB: Algorithms for Pattern Recognition, Advances in Pattern Recognition, London, UK: Springer.Google Scholar
Najjar, R. G., X., Jin, F., Louanchiet al., 2007, Impact of circulation on export production, dissolved organic matter and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2), Glob. Biogeochem. Cycles, 21, GB3007, doi:10.1029/2006GB002857.CrossRefGoogle Scholar
Nelder, J. A. and R., Mead, 1965, A simplex method for function minimization, Comput. J., 7, 308–313.CrossRefGoogle Scholar
Nightingale, P. D., P. S., Liss, and P., Schlosser, 2000, Measurements of air–sea gas transfer during an open ocean algal bloom, Geophys. Res. Lett., 27(14), 2117–2120.CrossRefGoogle Scholar
Nocedal, J. and S. J., Wright, 1999, Numerical Optimization, Springer Series in Operations Research, New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Okubo, A., 1971, Oceanic diffusion diagrams, Deep-Sea Res., 18, 789–802.Google Scholar
Oschlies, A., W., Koeve and V., Garcon, 2000, An eddy-permitting coupled physical–biological model of the North Atlantic 2. Ecosystem dynamics and comparison with satellite and JGOFS local studies data, Glob. Biogeochem. Cycles, 14, 499–523.CrossRefGoogle Scholar
Pacanowski, R. C. and S. G. H., Philander, 1981, Parameterization of vertical mixing in numerical models of tropical oceans, J. Phys. Oceanogr., 11, 1443–1451.2.0.CO;2>CrossRefGoogle Scholar
Paulson, C. A. and J. J., Simpson, 1977, Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952–956.2.0.CO;2>CrossRefGoogle Scholar
Pavia, E. G. and J. J., O'Brien, 1986, Weibull statistics of wind speed over the ocean, J. Clim. Appl. Oceanogr. 25, 324–332.Google Scholar
Peacock, S. and M. E., Maltrud, 2006, Transit-time distributions in a global ocean model, J. Phys. Oceanogr., 36, 474–495.CrossRefGoogle Scholar
Pedlosky, J. C., 1992, Geophysical Fluid Dynamics, 2nd edn, Berlin: Springer-Verlag.Google Scholar
Preisendorfer, R. W., 1988, Principal Component Analyses in Meteorology and Oceanography, Amsterdam: Elsevier.Google Scholar
Press, W. H., S. A., Teukolsky, W. T., Vetterling, and B. P., Flannery, 2007, Numerical Recipes, 3rd edn, New York: Cambridge University Press.Google Scholar
Price, J. F., 2003, Dimensional analysis of models and data set, Am. J. Phys. 71, 437–447.CrossRefGoogle Scholar
Price, J. F. and M., Baringer, 1994, Outflows and deep water production by marginal seas, Prog. Oceanogr., 33, 161–200.CrossRefGoogle Scholar
Price, J. F., R. A., Weller and R., Pinkel, 1986, Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling and wind mixing, J. Geophys. Res., 91, 8411–8427.CrossRefGoogle Scholar
Priestley, M. B., 1981, Spectral Analysis and Time Series, New York: Academic Press.Google Scholar
Primeau, F., 2005, Characterizing transport between the surface mixed layer and the ocean interior with a forward and adjoint global ocean transport model, J. Phys. Oceanogr., 35(4), 545–564.CrossRefGoogle Scholar
Qiu, B. and R. X., Huang, 1995, Ventilation of the North Atlantic and North Pacific: subduction versus obduction, J. Phys. Oceanogr., 25, 2374–2390.2.0.CO;2>CrossRefGoogle Scholar
Ralph, E. A. and P. P., Niiler, 1999, Wind-driven currents in the tropical Pacific, J. Phys. Oceanogr., 29, 2121–2129.2.0.CO;2>CrossRefGoogle Scholar
Record, N. R., A. J., Pershing, J. A., Rungeet al., 2010, Improving ecological forecasts of copepod community dynamics using genetic algorithms, J. Mar. Syst., 82(3), 96–110.CrossRefGoogle Scholar
Redi, M. H., 1982, Oceanic isopycnal mixing by coordinate rotation, J. Phys. Oceanogr., 12, 1154–1158.2.0.CO;2>CrossRefGoogle Scholar
Reed, B. C., 1992, Linear least-squares fits with errors in both coordinates. II: Comments on parameter variances, Am. J. Phys., 60, 59–62.CrossRefGoogle Scholar
Reynolds, R. W., T. M., Smith, C., Liuet al., 2007, Daily high-resolution-blended analyses for sea surface temperature, J. Clim., 20, 5473–5496.CrossRefGoogle Scholar
Richman, M. B., 1985, Rotation of principal components. J. Climatol., 6, 293–335.CrossRefGoogle Scholar
Roache, P. J., 1972, On artificial viscosity, J. Comput. Phys., 10 (2), 169–184.CrossRefGoogle Scholar
Roache, P. J., 1998, Fundamentals of Computational Fluid Dynamics, Albuquerque, NM: Hermosa Publishers.Google Scholar
Rood, R. B., 1987, Numerical algorithms and their role in atmospheric transport and chemistry problems, Rev. Geophys., 25 (1) 71–100.CrossRefGoogle Scholar
Roughgarden, J., 1998, Primer of Ecological Theory, Upper Saddle River, NJ: Prentice Hall.Google Scholar
Ruth, C., Well, R. and Roether, W., 2000. Primordial 3He in South Atlantic deep waters from souces on the Mid-Atlantic Ridge. Deep-Sea Res. I, 47, 1059–1075.CrossRefGoogle Scholar
Sarmiento, J. L. and N., Gruber, 2006, Ocean Biogeochemical Dynamics, Princeton, NJ: Princeton University Press.Google Scholar
Sarmiento, J. L., H. W., Feely, W. S., Moore, A. E., Bainbridge, and W. S., Broecker, 1976, The relationship between vertical eddy diffusion and buoyancy gradient in the deep sea, Earth Planet. Sci. Lett., 32, 357–370.CrossRefGoogle Scholar
Schey, H. M., 2005, Div, Grad, Curl, and All That: An Informal Text on Vector Calculus, 4th edn, New York: W. W. Norton.Google Scholar
Schlitzer, R., 2002, Carbon export fluxes in the Southern Ocean: Results from inverse modeling and comparison with satellite based estimates, Deep-Sea Res. II, 49, 1623–1644.CrossRefGoogle Scholar
Schöter, J. and C., Wunsch, 1986, Solution of nonlinear finite difference ocean models by optimization methods with sensitivity and observational strategy analysis, J. Phys. Oceanogr., 16(11), 1855–1874.2.0.CO;2>CrossRefGoogle Scholar
Shampine, L. F. and M. W., Reichelt, 1997, The MATLAB ODE Suite, SIAM J. Sci. Comput., 18, 1–22.CrossRefGoogle Scholar
Shulenberger, E. and J. L., Reid 1981, Deep-Sea Res. A, 28, 901–920.CrossRef
Simmons, H. L., S. R., Jayne, L. C., St Laurent, and A. J., Weaver, 2004, Tidally driven mixing in a numerical model of the ocean general circulation, Ocean Modelling, 6, 245–263.CrossRefGoogle Scholar
Skiena, S. S., 2008, The Algorithm Design Manual, 2nd edn, London: Springer-Verlag.CrossRefGoogle Scholar
Smagorinsky, J., 1963, General circulation experiments with the primitive equations: I. The basic experiment, Mon. Wea. Rev., 91, 99–164.2.3.CO;2>CrossRefGoogle Scholar
Smagorinsky, J., 1993, Some historical remarks on the use of nonlinear viscosities. In Large Eddy Simulation of Complex Engineering and Geophysical Flows, ed. B., Galperin and S. A., Orszag. Cambridge: Cambridge University Press.Google Scholar
Smith, R. D., M. E., MaltrudF. O., Bryan, and M. W., Hecht, 2000, Numerical simulation of the North Atlantic Ocean at 1/10°, J. Phys. Oceanogr., 30, 1532–1561.2.0.CO;2>CrossRefGoogle Scholar
Smith, W. H. F. and P., Wessel, 1990: Gridding with continuous curvature splines, Geophysics, 55, 293–305.CrossRefGoogle Scholar
Spall, J. C., 2003, Introduction to Stochastic Search and Optimization, Wiley Inter-Science Series in Discrete Mathematics and Optimization, Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Speer, K. and E., Tziperman, 1992, Rates of water mass formation in the North Atlantic Ocean, J. Phys. Oceanogr., 22, 93–104.2.0.CO;2>CrossRefGoogle Scholar
Stammer, D., 1997, Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements, J. Phys. Oceanogr., 27, 1743–1769.2.0.CO;2>CrossRefGoogle Scholar
Stammer, D., K., Ueyoshi, A., Kohlet al., 2004, Estimating air-sea fluxes of heat, freshwater, and momentum through global ocean data assimilation, J. Geophys. Res. Oceans, 109, C05023.CrossRefGoogle Scholar
Stanley, R. H. R., 2007, A determination of air-sea gas exchange processes and upper ocean biological production from five noble gases and tritiugenic helium-3. Unpublished Ph. D. thesis, MIT–WHOI Joint Program in Chemical Oceanography, Woods Hole, MA.
Stanley, R. H. R., W. J., Jenkins, and S., Doney, 2006, Quantifying seasonal air-sea gas exchange processes using a noble gas time-series: a design experiment, J. Mar. Res., 64, 267–295.CrossRefGoogle Scholar
Stanley, R. H. R., W. J., Jenkins, D. E., Lott III, and S. C., Doney, 2009, Noble gas constraints on air-sea gas exchange and bubble fluxes, J. Geophys. Res. Ocean, 114, C11020, doi:10.1029/2009JC005396.CrossRefGoogle Scholar
Stoer, J. and R., Bulirsch, 2002, Introduction to Numerical Analysis, 3rd edn, New York: Springer.CrossRefGoogle Scholar
Stokes, G. G., 1922, On the effect of the internal friction of fluids on the motion of pendulums. In Mathematical and Physical Papers, reprinted from the Transactions of the Cambridge Philosophical Society, 1850, Vol. IX. p. [8], Cambridge University Press, pp. 1–141.Google Scholar
Stommel, H., 1948, The westward intensification of wind-driven ocean currents. EOS Trans. AGU, 29, 202–206.CrossRefGoogle Scholar
Storkey, D., E. W., Blockley, R., Furneret al., 2010, Forecasting the ocean state using NEMO: The new FOAM system, J. Operational Oceanogr., 3, 3–15.CrossRefGoogle Scholar
Stow, C. A., J., JolliffD. J., McGillicuddy Jr.et al., 2009, Skill assessment for coupled biological/physical models of marine systems, J. Mar. Syst., 76, 4–15, doi:10.1016/j.jmarsys.2008.03.011.CrossRefGoogle ScholarPubMed
Strang, G., 1986, Introduction to Applied Mathematics, Wellesley, MA: Wellesley-Cambridge Press.Google Scholar
Strang, G., 2005, Linear Algebra and its Applications, 4th edn, Pacific Grove, CA: Brooks Cole.Google Scholar
Strang, G. and T., Nguyen, 1997, Wavelets and Filter Banks, Wellesley, MA: Wellesley-Cambridge Press.Google Scholar
Stull, R. B., 1988, An Introduction to Boundary Layer Meteorology, Boston, MA: Kluwer: Academic.CrossRefGoogle Scholar
Stumm, W. and J. J., Morgan, 1996, Aquatic Chemistry, 3rd edn, New York: Wiley-Interscience.Google Scholar
Sundermeyer, M. A. and J. F., Price, 1998, Lateral mixing in the North Atlantic Tracer Release Experiment: observations and numerical simulations of Lagrangian particles and a passive tracer, J. Geophys. Res., 103, 21481–21497.CrossRefGoogle Scholar
Taylor, B., 1715, Methodus incrementorum directa et inversa (Direct and Indirect Methods of Incrementation), reprinted by Gale ECCO (2010), (Latin Edition).
Taylor, K. E., 2001, Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 7183–7192.CrossRefGoogle Scholar
Tennekes, H. and J. L., Lumley, 1972, A First Course in Turbulence. Cambridge, MA: MIT Press.Google Scholar
Thomas, G. B. Jr., M. D., Weir, and J. R., Hass, 2009, Thomas' Calculus, 12th edn, Reading, MA: Addison-Wesley.Google Scholar
Thurstone, L. L., 1935, The Vectors of the Mind, Chicago, IL: University of Chicago Press.Google Scholar
Tomczak, M. and D. G. B., Large, 1989, Optimum multiparameter analysis of mixing in the thermocline of the Eastern Indian Ocean. J. Geophys. Res., 94, 16141–16149.CrossRefGoogle Scholar
Torrence, C. and G. P., Compo, 1998, A practical guide to wavelet analysis, Bull. Am. Met. Soc., 79(1), 61–78.2.0.CO;2>CrossRefGoogle Scholar
Tufte, E. R., 1990, Envisioning Information, Cheshire, CT: Graphics Press.Google Scholar
Tufte, E. R., 1997, Visual Explanations, Cheshire, CT: Graphics Press.Google Scholar
Tufte, E. R., 2001, The Visual Display of Quantitative Information, 2nd edn, Cheshire, CT: Graphics Press.Google Scholar
Tufte, E. R., 2006, Beautiful Evidence, Cheshire CT: Graphics Press.Google Scholar
Uttal, T., J. A., CurryM. G., McPheeet al., 2002, Surface heat budget of the Arctic Ocean, Bull. Am. Met. Soc., 83, 255–275.2.3.CO;2>CrossRefGoogle Scholar
van der Pol, B. and J., van der Mark, 1927, Frequency demultiplication, Nature, 120, 363–364.CrossRefGoogle Scholar
Venkataraman, P., 2002, Applied Optimization with MATLAB Programming, New York: Wiley Interscience.Google Scholar
Veronis, G., 1975, The role of models in tracer studies. In Numerical Models of Ocean Circulation, Washington, DC: National Academy of Sciences, pp. 133–146.Google Scholar
Veronis, G., 1977, Use of tracers in circulation studies. In The Sea, Volume 6, Marine Modeling, ed. E. D., GoldbergI. N., McCave, J. J., O'Brien, and J. H., Steele. New York: Wiley-Interscience, pp. 169–188.Google Scholar
Vinogradov, S. V., R. M., Ponte, P., Heimbach, and C., Wunsch, 2008, The mean seasonal cycle in sea level estimated from a data-constrained general circulation model, J. Geophys. Res., 113, C03032, doi:10.1029/2007JC004496.CrossRefGoogle Scholar
Volterra, V., 1926, Variazionie fluttuazioni del numero d'individui in specie animali conviventi. Mem. Acad. Lincei., 2, 31–113. (Variations and fluctuations of a number of individuals in animal species living together. Translation in: R. N. Chapman, 1931, Animal Ecology, New York: McGraw Hill, pp. 409–448.)Google Scholar
Wanninkhof, R., 1992, Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97, 7373–7382.CrossRefGoogle Scholar
Wanninkhof, R. and S. C., Doney, 2005, Cruise Report CLIVAR A16S 2005, http://www.aoml.noaa.gov/ocd/gcc/a16s/
Wanninkhof, R. and W. R., McGillis, 1999, A cubic relationship between air-sea CO2 exchange and wind speed, Geophys. Res. Lett., 26(13), 1889–1892.CrossRefGoogle Scholar
Ward, B. A., M. A. M., Friedrichs, T. R., Anderson and A., Oschlies, 2010, Parameter optimisation techniques and the problem of underdetermination in marine biogeochemical models, J. Mar. Syst., 81(1–2), 34–43.CrossRefGoogle Scholar
Waugh, D. W., T. M., Hall, and T. W. N., Haine, 2003, Relationships among tracer ages, J. Geophys. Res., 108(C5), 3138, doi:10.1029/2002JC001325.CrossRefGoogle Scholar
Waugh, D. W., T. W. N., Haine, and T. M., Hall, 2004, Transport times and anthropogenic carbon in the subpolar North Atlantic Ocean, Deep-Sea Res. I, 51, 1475–1491.CrossRefGoogle Scholar
Weatherly, J. W., B. P., Briegleb, W. G., Large, and J. A., Maslanik, 1998, Sea ice and polar climate in the NCAR CSM, J. Clim, 11, 1472–1486.2.0.CO;2>CrossRefGoogle Scholar
Welty, J. R., C. E., Wicks, R. E., Wilson, and G. L., Rorrer, 2007, Fundamentals of Momentum, Heat and Mass Transfer, 5th edn, Hoboken, NJ: Wiley.Google Scholar
Wijffels, S. E., R. W., SchmittH. L., Bryden, and A., Stigebrandt, 1992, Transport of freshwater by the oceans, J. Phys. Oceanogr., 22, 155–162.2.0.CO;2>CrossRefGoogle Scholar
Willis, J. K. and L. L., Fu, 2008, Combining altimeter and subsurface float data to estimate the time-averaged circulation in the upper ocean, J. Geophys. Res. Oceans, 113, C12017.CrossRefGoogle Scholar
Willis, J. K., D., Roemmich, and B., Cornuelle, 2004, Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales, J. Geophys. Res. Oceans, 109, C12036.CrossRefGoogle Scholar
Wunsch, C., 1996, The Ocean Circulation Inverse Problem, New York: Cambridge University Press.CrossRefGoogle Scholar
Wunsch, C., P., Heimbach, R., Ponte, and I., Fukumori, 2009, The global general circulation of the ocean estimated by the ECCO-consortium, Oceanography, 22, 88–103.CrossRefGoogle Scholar
York, D., 1966, Least-squares fitting of straight lines, Canad. J. Phys., 44, 1079–1086.CrossRefGoogle Scholar
York, D., 1969, Least squares fitting of a straight line with correlated errors, Earth Planet. Sci. Lett., 5, 320–324.CrossRefGoogle Scholar
York, D., N. M., EvensenM. L., Martinez, and J. D. B., Delgado, 2004, Unified equations for the slope, intercept, and standard errors of the best straight line, Am. J. Phys., 72, 367–375.CrossRefGoogle Scholar
Young, W. R., P. B., Rhines, and C. J. R., Garrett, 1982, Shear-flow dispersion, internal waves and horizontal mixing in the ocean, J. Phys. Oceanogr., 12, 515–527.2.0.CO;2>CrossRefGoogle Scholar
Zwillinger, D., 2002, CRC Standard Mathematical Tables and Formulae, 31st edn, Boca Raton, FL: Chapman & Hall/CRC.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×