Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-25T14:27:02.317Z Has data issue: false hasContentIssue false

11 - Cooperative communications for reliability

from Part II - Selected topics for improved reliability

Published online by Cambridge University Press:  01 June 2011

Andreas F. Molisch
Affiliation:
University of Southern California, California, USA
Stark C. Draper
Affiliation:
University of Wisconsin-Madison, Wisconsin, USA
Neelesh B. Mehta
Affiliation:
Indian Institute of Science (IISc), Bangalore, India
Ismail Guvenc
Affiliation:
DoCoMo Communications Laboratories USA, Inc.
Sinan Gezici
Affiliation:
Bilkent University, Ankara
Zafer Sahinoglu
Affiliation:
Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts
Ulas C. Kozat
Affiliation:
DoCoMo Communications Laboratories USA, Inc.
Get access

Summary

Chapter 11 describes how teams of wireless nodes can work together to improve the reliability of signaling. Due to the inherent uncertain, time-varying, and shared nature of the wireless environment (reflected in shadowing, small-scale fading, and interference), it is difficult to achieve extremely high reliability over a single wireless link even when advanced signal-processing techniques such as diversity and multiuser detection are employed. However, since wireless transmissions are inherently broadcast – overheard by all nodes within range – a natural approach to reliability is to develop cooperative techniques. Cooperative techniques exploit in parallel many helper nodes, called relays, to increase the diversity of the available wireless links. These techniques can yield large improvements in reliability and throughput as well as large decreases in energy consumption.

The chapter starts with an overview of various cooperative communications methods that can be employed depending on the level of channel state information (CSI) and device synchronization. The chapter then considers two techniques in more detail: relaying using virtual beamforming and rateless codes. In both cases, we start out with an analysis of a “fundamental building block” that consists of one source, a number of parallel relays, and one destination. In the virtual beamforming technique, the relays rebroadcast the source signal that they have decoded. Relays adjust their transmission amplitudes and phases to ensure that their transmissions interfere constructively, maximizing the destination's signal-to-noise ratio (SNR). In the rateless coding approach, the relays individually decode the source message.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×