Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T05:21:16.999Z Has data issue: false hasContentIssue false

2 - Genetic damage and male reproduction

Published online by Cambridge University Press:  16 May 2011

Michael Joffe
Affiliation:
Imperial College London, UK
C. G. Nicholas Mascie-Taylor
Affiliation:
University of Cambridge
Lyliane Rosetta
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

What has happened to the male reproductive system?

The health of the male reproductive system deteriorated sharply during the twentieth century. Testicular cancer increased four-fold or more in the space of several decades, throughout the world in populations of European ancestry, and in certain others, e.g. Maoris in New Zealand (Adami et al., 1994; Joffe, 2001; Parkin, 2005). There is pathological evidence that the disease process starts in early life (Skakkebaek et al., 1987), and in accordance with this the time trends show the clearest patterns if looked at by birth cohort, e.g. the incidence stopped increasing for ten years around 1940 in Denmark, Norway and Sweden (but not Finland, East Germany or Poland), then resumed its rapid rise (Figure 2.1)(Bergström et al., 1996). The increase started in men born in the late nineteenth century in England and Wales (Davies, 1981), and in the first decade of the twentieth century in the Nordic countries, Germany and Poland (Bergström et al., 1996). Many features of the epidemiological data are consistent with risk being associated with increasing prosperity.

Paradoxically, although testis biology is extremely well conserved through evolution, there is no satisfactory animal model for this disease, so the evidence is limited to epidemiological studies, genetic studies and clinical research (Skakkebaek, 2007). These are complicated by the existence of two main types of testicular cancer: seminoma and non-seminoma (divided into embryonal cell carcinoma, teratoma, choriocarcinoma and mixed-cell type).

Type
Chapter
Information
Reproduction and Adaptation
Topics in Human Reproductive Ecology
, pp. 17 - 49
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adami, H. O., Bergström, R., Möhner, M.et al. (1994). Testicular cancer in nine northern European countries. International Journal of Cancer, 59, 33–8.CrossRefGoogle ScholarPubMed
Adler, I. D., Baumgartner, A., Gonda, H., Friedman, M. A. & Skerhut, M. (2000). 1-aminobenzotriazole inhibits acrylamide-induced dominant lethal effects in spermatids of male mice. Mutagenesis, 15, 133–6.CrossRefGoogle ScholarPubMed
Aitken, R. J. (2004). Founders' Lecture. Human spermatozoa: fruits of creation, seeds of doubt. Reproduction, Fertility, and Development, 16, 655–64.CrossRefGoogle Scholar
Aitken, R. J., Koopman, P. & Lewis, S. E. M. (2004). Seeds of concern. Nature, 432, 48–52.CrossRefGoogle ScholarPubMed
Aitken, R. J., Wingate, J. K., Iuliis, G. N., Koppers, A. J. & McLaughlin, E. A. (2006). Cis-unsaturated fatty acids stimulate reactive oxygen species generation and lipid peroxidation in human spermatozoa. Journal of Clinical Endocrinology and Metabolism, 91, 4154–63.CrossRefGoogle ScholarPubMed
Almstrup, K., Brask Sonne, S., Høi-Hansen, C.et al. (2006). From embryonic stem cells to testicular germ cell cancer – should we be concerned? International Journal of Andrology, 29, 211–18.CrossRefGoogle ScholarPubMed
Andersson, M., Peltoniemi, Oat, Makinen, A., Sukura, A. & Rodriguez-Martinez, H. (2000). The hereditary “short tail” sperm defect – a new reproductive problem in Yorkshire boars. Reproduction in Domestic Animals, 35, 59–63.CrossRefGoogle Scholar
Anway, M. D., Cupp, A. S., Uzumcu, M. & Skinner, M. K. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 308, 1466–9.CrossRefGoogle ScholarPubMed
Anway, M. D. & Skinner, M. K. (2008). Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reproductive Biomedicine Online, 16, 23–5.CrossRefGoogle ScholarPubMed
Aschim, E. L., Haugen, T. B., Tretli, S. & Grotmol, T. (2008). Subfertility among parents of men diagnosed with testicular cancer. International Journal of Andrology, 31, 588–94.CrossRefGoogle ScholarPubMed
Asklund, C., Jørgensen, N., Skakkebaek, N. E. & Jensen, T. K. (2007). Increased frequency of reproductive health problems among fathers of boys with hypospadias. Human Reproduction, 22, 2639–46.CrossRefGoogle ScholarPubMed
Auger, J., Kunstmann, J. M., Czyglik, F.et al. (1995). Decline in semen quality among fertile men in Paris during the past 20 years. New England Journal of Medicine, 332, 281–5.CrossRefGoogle ScholarPubMed
Baccetti, B., Capitani, S., Collodel, G.et al. (2001). Genetic sperm defects and consanguinity. Human Reproduction, 16, 1365–71.CrossRefGoogle ScholarPubMed
Banks, S., King, S. A., Irvine, D. S. & Saunders, P. T. K. (2005). Impact of a mild scrotal heat stress on DNA integrity in murine spermatozoa. Reproduction, 129, 505–14.CrossRefGoogle ScholarPubMed
Bartkova, J., Horejsí, Z., Koed, K.et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature, 434, 864–70.CrossRefGoogle ScholarPubMed
Bartkova, J., Rajpert-De Meyts, E., Skakkebaek, N. E., Lukas, J. & Bartek, J. (2003). Deregulation of the G1/S-phase control in human testicular germ cell tumours. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 111, 252–66.CrossRefGoogle ScholarPubMed
Bergström, R., Adami, H. O., Möhner, M.et al. (1996) Increase in testicular cancer incidence in six European countries: a birth cohort phenomenon. Journal of the National Cancer Institute, 88, 727–33.CrossRefGoogle ScholarPubMed
Berkovitz, A., Eltes, F., Lederman, H.et al. (2006). How to improve IVF-ICSI outcome by sperm selection. Reproductive Biomedicine Online, 12, 634–8.CrossRefGoogle ScholarPubMed
Berkowitz, G. S., Lapinski, R. H., Dolgin, S. E.et al. (1993). Prevalence and natural history of cryptorchidism. Pediatrics, 92, 44–9.Google ScholarPubMed
Boisen, K. A., Chellakooty, M., Schmidt, I.et al. (2005). Hypospadias in a cohort of 1072 Danish newborn boys: prevalence and relationship to placental weight, anthropometrical measurements at birth, and reproductive hormone levels at 3 months of age. Journal of Clinical Endocrinology and Metabolism, 90, 4041–6.CrossRefGoogle Scholar
Boisen, K. A., Kaleva, M., Main, K. M.et al. (2004). Difference in prevalence of congenital cryptorchidism in infants between two Nordic countries. Lancet, 363, 1264–9.CrossRefGoogle ScholarPubMed
Borini, A., Tarozzi, N., Bizzaro, D.et al. (2006). Sperm DNA fragmentation: paternal effect on early post-implantation embryo development to ART. Human Reproduction, 21, 2876–81.CrossRefGoogle Scholar
Brinkworth, M. H. (2000). Paternal transmission of genetic damage: findings in animals and humans. International Journal of Andrology, 23, 123–35.CrossRefGoogle ScholarPubMed
Brinkworth, M. H. & Schmid, T. E. (2003). Effect of age on testicular germ cell apoptosis and sperm aneuploidy in MF-1 mice. Teratogenesis, Carcinogenesis, and Mutagenesis Supplement, 2, 103–9.CrossRefGoogle ScholarPubMed
Bujan, L., Daudin, M., Charlet, J. P., Thonneau, P. & Mieusset, R. (2000). Increase in scrotal temperature in car drivers. Human Reproduction, 15, 1355–7.CrossRefGoogle ScholarPubMed
Carlsen, E., Giwercman, A., Keiding, N., & Skakkebaek, N. E. (1992). Evidence for decreasing quality of semen during past 50 years. BMJ (Clinical research ed.), 305, 609–13.CrossRefGoogle ScholarPubMed
Carrell, D. T., Wilcox, A. L., Lowy, L.et al. (2003). Elevated sperm chromosome aneuploidy and apoptosis in patients with unexplained recurrent pregnancy loss. Obstetrics and Gynaecology, 101, 1229–35.Google ScholarPubMed
Chandley, A. C. (1991).On the parental origin of de novo mutations in man. Journal of Medical Genetics, 28, 217–23.CrossRefGoogle ScholarPubMed
Chatzimeletiou, K., Morrison, E. E., Prapas, N., Prapas, Y. & Handyside, A. H. (2005). Spindle abnormalities in normally developing and arrested human implantation embryos in vitro identified by confocal laser scanning microscopy. Human Reproduction, 20, 672–82.CrossRefGoogle Scholar
Chatzimeletiou, K., Rutherford, A. J., Griffin, D. K. & Handyside, A. H. (2007). Is the sperm centrosome to blame for the complex polyploidy chromosome patterns observed in cleavage-stage embryos from an oligoasthenoteratozoospermia (OAT) patient? Zygote, 15, 81–90.CrossRefGoogle ScholarPubMed
Choi, S.-K., Yoon, S.-R., Calabrese, P. & Arnheim, N. (2008). A germ-line-selective advantage rather than an increased mutation rate can explain some unexpectedly common human disease mutations. Proceedings of the National Academy of Sciences of the United States of America, 105, 10143–8.CrossRefGoogle ScholarPubMed
Christensen, K., Kohler, H.-P., Basso, O.et al. (2003). The correlation of fecundability among twins: evidence of a genetic effect on fertility? Epidemiology, 14, 60–4.CrossRefGoogle ScholarPubMed
Codina-Pascual, M., Navarro, J., Oliver-Bonet, M.et al. (2006). Behaviour of human heterochromatic regions during the synapsis of homologous chromosomes. Human Reproduction, 21, 1490–7.CrossRefGoogle ScholarPubMed
,Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (2003). Phytoestrogens and Health. London: Food Standards Agency.Google Scholar
Coonen, E., Derhaag, J. G., Dumoulin, J. C. M.et al. (2004). Anaphase lagging mainly explains chromosomal mosaicism in human preimplantation embryos. Human Reproduction, 19, 316–24.CrossRefGoogle ScholarPubMed
Crockford, G. P., Linker, R., Hockley, S.et al. (2006). Genome-wide linkage screen for testicular germ cell tumour susceptibility loci. Human Molecular Genetics, 15, 443–51.CrossRefGoogle ScholarPubMed
Crow, J. F. (2003). There's something curious about paternal-age effects. Science, 301, 606–67.CrossRefGoogle ScholarPubMed
Czeizel, A. & Tóth, J. (1990). Correlation between the birth prevalence of isolated hypospadias and parental subfertility. Teratology, 41, 167–72.CrossRefGoogle ScholarPubMed
Czeizel, A. E. & Rothman, K. J. (2002). Does relaxed reproductive selection explain the decline in male reproductive health? A new hypothesis. Epidemiology, 13, 113–14.CrossRefGoogle ScholarPubMed
Czyglik, F., Mayaux, M.-J., Guihard-Moscato, M.-L., David, G. & Schwartz, D. (1986). Lower sperm characteristics in 36 brothers of infertile men, compared with 545 controls. Fertility and Sterility, 45, 255–8.CrossRefGoogle ScholarPubMed
Daphnis, D. D., Delhanty, J. D. A., Jerkovic, S.et al. (2005). Detailed FISH analysis of day 5 human embryos reveals the mechanisms leading to mosaic aneuploidy. Human Reproduction, 20, 129–37.CrossRefGoogle ScholarPubMed
Davies, J. M. (1981). Testicular cancer in England and Wales: some epidemiological aspects. Lancet, 1, 928–32.CrossRefGoogle ScholarPubMed
Davies, T. W., Palmer, C. R., Ruja, E. & Lipscombe, J. M. (1996). Adolescent milk, dairy product and fruit consumption and testicular cancer. British Journal of Cancer, 74, 657–60.CrossRefGoogle ScholarPubMed
Palma, A., Burrello, N., Barone, N.et al. (2005). Patients with abnormal sperm parameters have an increased sex chromosome aneuploidy rate in peripheral leukocytes. Human Reproduction, 20, 2153–6.CrossRefGoogle ScholarPubMed
Ståhl, T. D., Sandgren, T., Piotrowski, A.et al. (2008). Profiling of copy number variations (CNVs) in healthy individuals from three ethnic groups using a human genome 32K BAC-clone-based array. Human Mutation, 29, 398–408.CrossRefGoogle Scholar
Delhanty, J. D. A. (2001). Preimplantation genetics: an explanation for poor human fertility? Annals of Human Genetics, 65, 331–8.CrossRefGoogle ScholarPubMed
Derijck, A. A. H. A., Heijden, G. W., Ramos, L.et al. (2007). Motile human normozoospermic and oligospermic semen samples show a difference in double-stranded DNA break incidence. Human Reproduction, 22, 2368–76.CrossRefGoogle Scholar
Erenpreiss, J., Bungum, M., Spanó, M.et al. (2006). Intra-individual variation in sperm chromatin structure assay parameters in men from infertile couples: clinical implications. Human Reproduction, 21, 2061–4.CrossRefGoogle ScholarPubMed
Eskenazi, B., Kidd, S. A., Marks, A. R.et al. (2005). Antioxidant intake is associated with semen quality in healthy men. Human Reproduction, 20, 1006–12.CrossRefGoogle ScholarPubMed
Ferrara, D., Hallmark, N., Scott, H.et al. (2006). Acute and long-term effects of in utero exposure of rats to di(n-butyl) phthalate on testicular germ cell development and proliferation. Endocrinology, 147, 5352–62.CrossRefGoogle ScholarPubMed
Fisch, H. & Goluboff, E. T. (1996). Geographic variations in sperm counts: a potential cause of bias in studies of semen quality. Fertility and Sterility, 65, 1044–6.CrossRefGoogle ScholarPubMed
Fisch, H., Goluboff, E. T., Olson, J. H.et al. (1996). Semen analyses in 1,283 men from the United States over a 25-year period: no decline in quality. Fertility and Sterility, 65, 1009–14.CrossRefGoogle Scholar
Fisher, J. S. (2004). Environmental anti-androgens and male reproductive health: focus on phthalates and testicular dysgenesis syndrome. Reproduction, 127, 305–15.CrossRefGoogle ScholarPubMed
Forman, D., Oliver, R. T., Brett, A. R.et al. (1992). Familial testicular cancer: a report of the UK family register, estimation of risk and an HLA class 1 sib-pair analysis. British Journal of Cancer, 65, 255–62.CrossRefGoogle ScholarPubMed
Foster, P. M. D. (2006). Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. International Journal of Andrology, 29, 140–7.CrossRefGoogle ScholarPubMed
França, L. R., Avelar, G. F. & Almeida, F. F. L. (2005). Spermatogenesis and sperm transit through the epididymis in mammals with emphasis on pigs. Theriogenology, 63, 300–18.CrossRefGoogle ScholarPubMed
Fredell, L., Iselius, L., Collins, A.et al. (2002). Complex segregation analysis of hypospadias. Human Genetics, 111, 231–4.CrossRefGoogle ScholarPubMed
Frigyesi, A., Gisselsson, D., Hansen, G. B.et al. (2004). A model for karyotypic evolution in testicular germ cell tumors. Genes Chromosomes Cancer, 40, 172–8.CrossRefGoogle ScholarPubMed
Fritz, G. & Czeizel, A. E. (1996). Abnormal sperm morphology and function in the fathers of hypospadiacs. Journal of Reproduction and Fertility, 106, 63–6.CrossRefGoogle ScholarPubMed
Frydelund-Larsen, L., Vogt, P. H., Leffers, H.et al. (2003). No AZF deletion in 160 patients with testicular germ cell neoplasia. Molecular Human Reproduction, 9, 517–21.CrossRefGoogle ScholarPubMed
Gazvani, M. R., Wilson, E. D. A., Richmond, D. H.et al. (2000). Role of mitotic control in spermatogenesis. Fertility and Sterility, 74, 251–6.CrossRefGoogle ScholarPubMed
Ghanayem, B. I., Witt, K. L., El-Hadri, L.et al. (2005). Comparison of germ cell mutagenicity in male CYP2E1-null and wild-type mice treated with acrylamide: evidence supporting a glycidamide-mediated effect. Biology of Reproduction, 72, 157–63.CrossRefGoogle ScholarPubMed
Gianaroli, L., Magli, M. C., Cavallini, G.et al. (2005). Frequency of aneuploidy in sperm from patients with extremely severe male factor infertility. Human Reproduction, 20, 2140–52.CrossRefGoogle ScholarPubMed
Gianotten, J., Westerveld, G. H., Leschot, N. J.et al. (2004). Familial clustering of impaired spermatogenesis: no evidence for a common genetic inheritance pattern. Human Reproduction, 19, 71–6.CrossRefGoogle ScholarPubMed
Gibbs, W. W. (2003). Roots of cancer. Scientific American, July, 56–65.CrossRef
Goldgar, D. E., Easton, D. F., Cannon-Albright, L. A. & Skolnick, M. H. (1994). Systematic population-based assessment of cancer risk in first-degree relatives of cancer patients. Journal of the National Cancer Institute, 86, 1600–8.CrossRefGoogle Scholar
Gonzalez-Diego, P., Lopez-Abente, G., Pollan, M. & Ruiz, M. (2000). Time trends in ovarian cancer mortality in Europe (1955–1993) – effect of age, birth cohort and period of death. European Journal of Cancer, 36, 1816–24.CrossRefGoogle ScholarPubMed
Goriely, A., McVean, G. A. T., Röjmyr, M., Ingemarsson, B. & Wilkie, A. O. M. (2003). Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science, 301, 643–6.CrossRefGoogle ScholarPubMed
Gray, L. E., Wilson, V. S., Stoker, T.et al. (2006). Adverse effects of environmental antiandrogens and androgens on reproductive development in mammals. International Journal of Andrology, 29, 96–104.CrossRefGoogle ScholarPubMed
Guichaoua, M. R., Perrin, J., Metzler-Guillemain, C.et al. (2005). Meiotic anomalies in infertile men with severe spermatogenic defects. Human Reproduction, 20, 1897–902.CrossRefGoogle ScholarPubMed
Hardell, L., Bavel, B., Lindstrom, G.et al. (2003). Increased concentrations of polychlorinated biphenyls, hexachlorobenzene, and chlordanes in mothers of men with testicular cancer. Environmental Health Perspectives, 111, 930–4.CrossRefGoogle ScholarPubMed
Harland, S. J. (2000). Conundrum of the hereditary component of testicular cancer. Lancet, 356, 1455–6.CrossRefGoogle ScholarPubMed
Hassold, T. & Hunt, P. (2001). To err (meiotically) is human: the genesis of human aneuploidy. Genetics (Nature reviews), 2, 280–91.CrossRefGoogle Scholar
Hemminki, K. & Li, X. (2004). Familial risk in testicular cancer as a clue to a heritable and environmental aetiology. British Journal of Cancer, 90, 1765–70.CrossRefGoogle ScholarPubMed
Henderson, B. E., Ross, R. K., Yu, M. C. & Bernstein, L. (1997). An explanation for the increasing incidence of testis cancer: decreasing age at first full-term pregnancy. Journal of the National Cancer Institute, 89, 818–19.CrossRefGoogle ScholarPubMed
Høi-Hansen, C. E., Almstrup, K., Nielsen, J. E.et al. (2005). Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours. Histopathology, 47, 48–56.CrossRefGoogle Scholar
Høi-Hansen, C. E., Nielsen, J. E., Almstrup, K.et al. (2004). Identification of genes differentially expressed in testes containing carcinoma in situ. Molecular Human Reproduction, 10, 423–31.CrossRefGoogle Scholar
Høi-Hansen, C. E., Olesen, I. A., Jørgensen, N.et al. (2007). Current approaches for detection of carcinoma in situ testis. International Journal of Andrology, 30, 398–405.CrossRefGoogle Scholar
Irvine, S., Cawood, E., Richardson, D., MacDonald, E. & Aitken, J. (1996). Evidence of deteriorating semen quality in the United Kingdom: birth cohort study in 577 men in Scotland over 11 years. BMJ (Clinical research ed.), 312, 467–71.CrossRefGoogle ScholarPubMed
Jack, R. H., Davies, E. A. & Møller, H. (2007). Testis and prostate cancer incidence in ethnic groups in South East England. International Journal of Andrology, 30, 215–22.CrossRefGoogle ScholarPubMed
Jensen, T. K., Andersson, A.-M., Jørgensen, N.et al. (2004a). Body mass index in relation to semen quality and reproductive hormones among 1,558 Danish men. Fertility and Sterility, 82, 863–70.CrossRefGoogle ScholarPubMed
Jensen, T. K., Jørgensen, N., Punab, M.et al. (2004b). Association of in utero exposure to maternal smoking with reduced semen quality and testis size in adulthood: a cross-sectional study of 1,770 young men from the general population in five European countries. American Journal of Epidemiology, 159, 49–58.CrossRefGoogle ScholarPubMed
Joffe, M. (2001). Are problems with male reproductive health caused by endocrine disruption?Occupational and Environmental Medicine, 58, 281–8.CrossRefGoogle ScholarPubMed
Joffe, M. (2003). Infertility and environmental pollutants. British Medical Bulletin, 68, 47–70.CrossRefGoogle ScholarPubMed
Joffe, M. (2007). What harms the developing male reproductive system? In Malemediated Developmental Toxicology, ed. Anderson, D. and Brinkworth, M. H.. RSC.Google Scholar
,John Radcliffe Hospital Cryptorchidism Study Group. (1992). Cryptorchidism: a prospective study of 7500 consecutive male births, 1984–8. Archives of Disease in Childhood, 67, 892–9.CrossRefGoogle Scholar
Jørgensen, N., Carlsen, E., Nermoen, I.et al. (2002). East–West gradient in semen quality in the Nordic–Baltic area: a study of men from the general population in Denmark, Norway, Estonia and Finland. Human Reproduction, 17, 2199–208.CrossRefGoogle Scholar
Kelce, W. R., Stone, C. R., Laws, S. C.et al. (1995). Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature, 15, 581–5.CrossRefGoogle Scholar
Khoury, M. J., Beaty, T. H. & Liang, K. Y. (1988). Can familial aggregation of disease be explained by familial aggregation of environmental risk factors?American Journal of Epidemiology, 127, 674–83.CrossRefGoogle ScholarPubMed
Knight, J. A. & Marrett, L. D. (1997). Parental occupational exposure and the risk of testicular cancer in Ontario. Journal of Occupational and Environmental Medicine, 39, 333–8.CrossRefGoogle ScholarPubMed
Kops, G. J. P. L., Weaver, B. A. A. & Cleveland, D. W. (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nature reviews. Cancer, 5, 773–85.CrossRefGoogle ScholarPubMed
Korbel, J. O., Urban, A. E., Affourtit, J. P.et al. (2007). Paired-end mapping reveals extensive structural variation in the human genome. Science, 318, 420–6.CrossRefGoogle ScholarPubMed
Lanfranco, F., Kamischke, A., Zitzmann, M. & Nieschlag, E. (2004). Klinefelter's syndrome. Lancet, 364, 273–83.CrossRefGoogle ScholarPubMed
Levy, S., Sutton, G., Ng, P. C.et al. (2007). The diploid genome sequence of an individual human. PLoS Biology, 5, 0001–32.CrossRefGoogle ScholarPubMed
Li, F. P. (1993). Molecular epidemiology studies of families. British Journal of Cancer, 68, 217–19.CrossRefGoogle ScholarPubMed
Lilford, R., Jones, A. M., Bishop, D. T., Thornton, J. & Mueller, R. (1994). Case-control study of whether subfertility in men is familial. BMJ (Clinical research ed.), 309, 570–3.CrossRefGoogle ScholarPubMed
Lin, Y. M., Teng, Y. N., Chung, C. L.et al. (2006). Decreased mRNA transcripts of M-phase promoting factor and its regulators in the testes of infertile men. Human Reproduction, 21, 138–44.CrossRefGoogle ScholarPubMed
Looijenga, L. H. J., Gillis, A. J. M., Stoop, H. J., Hersmus, R. & Oosterhuis, J. W. (2007). Chromosomes and expression in human testicular germ-cell tumors. Insight into their cell of origin and pathogenesis. Annals of the New York Academy of Sciences, 1120, 187–214.CrossRefGoogle ScholarPubMed
Lutke Holzik, M. F., Rapley, E. A., Hoekstra, H. J.et al. (2004). The Lancet Oncology, 5, 363–71.CrossRef
Main, K. M., Toppari, J., Suomi, A. M.et al. (2006). Larger testes and higher inhibin B levels in Finnish than in Danish newborn boys. Journal of Clinical Endocrinology and Metabolism, 91, 2732–7.CrossRefGoogle ScholarPubMed
Marchetti, F. & Wyrobek, A. J. (2005). Mechanisms and consequences of paternally-transmitted chromosomal abnormalities. Birth Defects Research (Part C), 75, 112–29.CrossRefGoogle ScholarPubMed
Marsee, K., Woodruff, T. J., Axelrad, D. A., Calafat, A. M. & Swan, S. H. (2006). Estimated daily phthalate exposures in a population of mothers of male infants exhibiting reduced anogenital distance. Environmental Health Perspectives, 114, 805–9.CrossRefGoogle Scholar
Mayer, F., Stoop, H., Sen, S.et al. (2003). Aneuploidy of human testicular germ cell tumors is associated with amplification of centrosomes. Oncogene, 22, 3859–66.CrossRefGoogle ScholarPubMed
Meschede, D., Lemke, B., Behre, H. M.et al. (2000). Clustering of male infertility in the families of couples treated with intracytoplasmic sperm injection. Human Reproduction, 15, 1604–08.CrossRefGoogle ScholarPubMed
Mieusset, R., Bengoudifa, B. & Bujan, L. (2007). Effect of posture and clothing on scrotal temperature in fertile men. Journal of Andrology, 28, 170–5.CrossRefGoogle ScholarPubMed
Møller Jensen, O., Carstensen, B., Glattre, E.et al. (1988). Atlas of Cancer Incidence in the Nordic Countries. Helsinki: Nordic Cancer Union.Google Scholar
Montgomery, S. M., Granath, F., Ehlin, A., Sparen, P. & Ekbom, A. (2005). Germ-cell testicular cancer in offspring of Finnish immigrants to Sweden. Cancer Epidemiology, Biomarkers & Prevention, 14, 280–2.Google ScholarPubMed
Morris, I. D., Ilott, S., Dixon, L. & Brison, D. R. (2002). The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Human Reproduction, 17, 990–8.CrossRefGoogle ScholarPubMed
Moses, M. J. & Poorman, P. A. (1981). Synaptosomal complex analysis of mouse chromosomal rearrangements. II. Synaptic adjustment in a tandem duplication. Chromosoma, 81, 519–35.CrossRefGoogle Scholar
Moses, M. J., Poorman, P. A., Roderick, T. H. & Davisson, M. T. (1982). Synaptonemal complex analysis of mouse chromosomal rearrangements. IV. Synapsis and synaptic adjustment in two paracentric inversions. Chromosoma, 84, 457–74.CrossRefGoogle ScholarPubMed
Nigg, E. A. (2002). Centrosome aberrations: cause or consequence of cancer progression?Nature reviews. Cancer, 2, 1–11.CrossRefGoogle ScholarPubMed
Ober, C., Hyslop, T. & Hauck, W. W. (1999). Inbreeding effects on fertility in humans: evidence for reproductive compensation. American Journal of Human Genetics, 64, 225–31.CrossRefGoogle ScholarPubMed
Oosterhuis, J. W. & Looijenga, L. H. J. (2005). Testicular germ-cell tumours in a broader perspective. Nature reviews. Cancer, 5, 210–22.CrossRefGoogle Scholar
Ottesen, A. M., Larsen, J., Gerdes, T.et al. (2004). Cytogenetic investigation of testicular carcinoma in situ and early seminoma by high-resolution comparative genomic hybridization analysis of subpopulations flow sorted according to DNA content. Cancer Genetics and Cytogenetics, 149, 89–97.CrossRefGoogle ScholarPubMed
Parkin, D. M. (2005). Cancer Incidence in Five Continents. Lyon, France: IARC Press.Google Scholar
Parkin, D. M. & Iscovich, J. (1997). Risk of cancer in migrants and their descendants in Israel. II. Carcinomas and germ-cell tumours. International Journal of Cancer, 70, 654–60.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Paulsen, C. A., Berman, N. G. & Wang, C. (1996). Data from men in greater Seattle area reveals no downward trend in semen quality: further evidence that deterioration of semen quality is not geographically uniform. Fertility and Sterility, 65, 1015–20.Google Scholar
Petronczki, M., Siomos, M. F. & Nasmyth, K. (2003). Un ménage à quatre: the molecular biology of chromosome segregation in meiosis. Science, 112, 423–40.Google Scholar
Pettersson, A., Akre, O., Richiardi, L., Ekbom, A. & Kaijser, M. (2007). Maternal smoking and the epidemic of testicular cancer – a nested case-control study. International Journal of Cancer, 120, 2044–6.CrossRefGoogle ScholarPubMed
Pihan, G. A., Wallace, J., Zhou, Y. & Doxsey, S. J. (2003). Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Research, 63, 1398–404.Google ScholarPubMed
Pukazhenthi, B. S., Neubauer, K., Jewgenow, K., Howard, J. & Wildt, D. E. (2006). The impact and potential etiology of teratospermia in the domestic cat and its wild relatives. Theriogenology, 66, 112–21.CrossRefGoogle ScholarPubMed
Rajpert-De Meyts, E. (2006). Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Human Reproduction Update, 12, 303–23.CrossRefGoogle ScholarPubMed
Rajpert-De Meyts, E., Leffers, H., Petersen, J. H.et al. (2002). CAG repeat length in androgen-receptor gene and reproductive variables in fertile and infertile men. Lancet, 359, 44–6.CrossRefGoogle ScholarPubMed
Rapley, E. A. (2007). Susceptibility alleles for testicular germ cell tumour: a review. International Journal of Andrology, 30, 242–50.CrossRefGoogle ScholarPubMed
Rapley, E. A., Crockford, G. P., Easton, D. F., Stratton, M. R. & Bishop, D. T. (2003). Localisation of susceptibility genes for familial testicular germ cell tumour. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 111, 128–35.CrossRefGoogle ScholarPubMed
Redon, R., Ishikawa, S., Fitch, K. R.et al. (2006). Global variation in copy number in the human genome. Nature, 444, 444–54.CrossRefGoogle ScholarPubMed
Richiardi, L. & Akre, O. (2005). Fertility among brothers of patients with testicular cancer. Cancer Epidemiology Biomarkers & Prevention, 14, 2557–62.CrossRefGoogle ScholarPubMed
Richiardi, L., Akre, O., Lambe, M.et al. (2004). Birth order, sibship size, and risk for germ-cell testicular cancer. Epidemiology, 15, 323–9.CrossRefGoogle ScholarPubMed
Richtoff, J., Elzanaty, S., Rylander, L., Hagmar, L. & Giwercman, A. (2007). Association between tobacco exposure and reproductive parameters in adolescent males. International Journal of Andrology, 31, 31–9.Google Scholar
Rolland, A. D., Chalmel, F., Cavel, P., Coiffec-Dorval, I. & Jégou, B. (2008). Residual bodies are regulators of Sertoli cell function. Presented at: 15th European Testis Workshop, Naantali, Finland, 2–6 May 2008. Miniposter IV.98.
Rubes, J., Vozdova, M., Robbins, W. A.et al. (2002). American Journal of Human Genetics, 70, 1507–19.CrossRef
Safe, S. H. (1995). Environmental and dietary estrogens and human health: is there a problem?Environmental Health Perspectives, 103, 346–51.CrossRefGoogle ScholarPubMed
Sakkas, D. (1999). The need to detect DNA damage in human spermatozoa: possible consequences on embryo development. In The Male Gamete, ed. Gagnon, C.. Vienna, Illinois: Cache River Press.Google Scholar
Schmid, T. E., Brinkworth, M. H., Hill, F.et al. (2004). Detection of structural and numerical chromosomal abnormalities by ACM-FISH analysis in sperm of oligozoospermic infertility patients. Human Reproduction, 19, 1395–400.CrossRefGoogle ScholarPubMed
Schmid, T. E., Eskenazi, B., Baumgartner, A.et al. (2007). The effects of male age on sperm DNA damage in healthy non-smokers. Human Reproduction, 22, 180–7.CrossRefGoogle ScholarPubMed
Schmid, T. E., Kamischke, A., Bollwein, H., Nieschlag, E. & Brinkworth, M. H. (2003). Genetic damage in oligospermic patients detected by fluorescence in-situ hybridization, inverse restriction site mutation assay, sperm chromatin structure assay and the Comet assay. Human Reproduction, 18, 1474–80.CrossRefGoogle Scholar
Sciurano, R., Rahn, M., Rey-Valzacchi, G. & Solari, A. J. (2007). The asynaptic chromatin in spermatocytes of translocation carriers contains the histone variant gamma-H2AX and associates with the XY body. Human Reproduction, 22, 142–50.CrossRefGoogle ScholarPubMed
Sergerie, M., Laforest, G., Boulanger, K., Bissonnette, F. & Bleau, G. (2005). Longitudinal study of sperm DNA fragmentation as measured by terminal uridine nick end-labelling assay. Human Reproduction, 20, 1921–7.CrossRefGoogle ScholarPubMed
Setchell, B. P. (1998). The Parkes Lecture. Heat and the testis. Journal of Reproduction and Fertility, 114, 179–94.CrossRefGoogle ScholarPubMed
Shah, M. N., Devesa, S. S., Zhu, K. & McGlynn, K. A. (2007). Trends in testicular germ cell tumours by ethnic group in the United States. International Journal of Andrology, 30, 206–14.CrossRefGoogle ScholarPubMed
Sharpe, R. M. (1994). Regulation of spermatogenesis. In The Physiology of Reproduction, ed. Knobil, E. and Neale, J. D., 2nd edition. New York NY: Raven Press, Ltd.Google Scholar
Sharpe, R. M. (2003). The ‘oestrogen hypothesis’ – where do we stand now?International Journal of Andrology, 26, 2–15.CrossRefGoogle ScholarPubMed
Sharpe, R. M. & Skakkebaek, N. E. (1993). Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract?Lancet, 341, 1392–5.CrossRefGoogle ScholarPubMed
Shen, H., Main, K. M., Andersson, A.-M.et al. (2008). Concentrations of persistent organochlorine compounds in human milk and placenta are higher in Denmark than in Finland. Human Reproduction, 23, 201–10.CrossRefGoogle ScholarPubMed
Singh, N. P., Muller, C. H. & Berger, R. E. (2003). Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertility and Sterility, 80, 1420–30.CrossRefGoogle ScholarPubMed
Skakkebaek, N. E. (2007). Testicular cancer trends as ‘whistle blower’ of testicular development problems in populations. International Journal of Andrology, 30, 198–205.CrossRefGoogle Scholar
Skakkebaek, N. E., Berthelsen, J. G., Giwercman, A. & Muller, J. (1987). Carcinoma-in-situ of the testis: possible origin from gonocytes and precursors of all types of germ cell tumours except spermatocytoma. International Journal of Andrology, 10, 19–28.CrossRefGoogle Scholar
Skakkebaek, N. E., Rajperts-de Meyts, E. & Main, K. M. (2001). Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Human Reproduction, 16, 972–8.CrossRefGoogle ScholarPubMed
Skotheim, R. I. & Lothe, R. (2003). The testicular germ cell tumour genome. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 111, 136–51.CrossRefGoogle ScholarPubMed
Slama, R. & Leridon, H. (2002). How much of the decline in sperm counts can be explained by relaxed reproductive selection? Epidemiology, 13, 613–15.CrossRefGoogle ScholarPubMed
Sloter, E. D., Low, X., Moore, D. H., Nath, J. & Wyrobek, A. J. (2000). Multicolor FISH analysis of chromosomal breaks, duplications, deletions, and numerical abnormalities in the sperm of healthy men. American Journal of Human Genetics, 67, 862–72.CrossRefGoogle ScholarPubMed
Sloter, E., Nath, J., Eskenazi, B. & Wyrobek, A. J. (2004). Effects of male age on the frequencies of germinal and heritable chromosomal abnormalities in humans and rodents. Fertility and Sterility, 81, 925–43.CrossRefGoogle ScholarPubMed
Storchova, Z. & Pellman, D. (2004). From polyploidy to aneuploidy, genome instability and cancer. Nature Review of Molecular Cell Biology, 5, 45–54.CrossRefGoogle ScholarPubMed
Storgaard, L., Bonde, J. P., Ernst, E.et al. (2003). The impact of genes and environment on semen quality: an epidemiological twin study. In Storgaard, L., Genetical and Prenatal Determinants for Semen Quality: An Epidemiological Twin Study (PhD thesis). Aarhus: University of Aarhus.Google Scholar
Storgaard, L., Bonde, J. P. & Olsen, J. (2006). Male reproductive disorders in humans and prenatal indicators of estrogen exposure: a review of published epidemiological studies. Reproductive Toxicology, 21, 4–15.CrossRefGoogle ScholarPubMed
Swerdlow, A. J., Stavola, B. L., Swanwick, M. A. & Maconochie, N. E. S. (1997). Risks of breast and testicular cancers in young adult twins in England and Wales: evidence on prenatal and genetic aetiology. Lancet, 350, 1723–8.CrossRefGoogle ScholarPubMed
Tesaryk, J., Mendoza, C. & Greco, E. (2002). Paternal effects acting during the first cell cycle of human preimplantation development after ICSI. Human Reproduction, 17, 184–9.CrossRefGoogle Scholar
Toppari, J., Kaleva, M. & Virtanen, H. E. (2001). Trends in the incidence of cryptorchidism and hypospadias, and methodological limitations of registry-based data. Human Reproduction Update, 7, 282–6.CrossRefGoogle ScholarPubMed
Tyl, R. W., Marr, M. C., Myers, C. B., Ross, W. P. & Friedman, M. A. (2000). Relationship between acrylamide reproductive and neurotoxicity in male rats. Reproductive Toxicology, 14, 147–57.CrossRefGoogle ScholarPubMed
Golde, R. J., Avoort, I. A., Tuerlings, J. H.et al. (2004). Phenotyic characteristics of male subfertility and its familial occurrence. Journal of Andrology, 25, 819–23.CrossRefGoogle Scholar
Waeleghem, K., Clercq, N., Vermeulen, L., Schoonjans, F. & Comhaire, F. (1996). Deterioration of sperm quality in young healthy Belgian men. Human Reproduction, 11, 325–9.CrossRefGoogle ScholarPubMed
Vendrell, J. M., Garcia, F., Veiga, A.et al. (1999). Meiotic abnormalities and spermatogenic parameters in severe oligozoospermia. Human Reproduction, 14, 375–8.CrossRefGoogle Scholar
Vierula, M., Niemi, M., Keiski, A.et al. (1996). High and unchanged sperm counts of Finnish men. International Journal of Andrology, 19, 11–17.CrossRefGoogle ScholarPubMed
Weidner, I. S., Møller, H., Jensen, T. K. & Skakkebaek, N. E. (1999). Risk factors for cryptorchidism and hypospadias. Journal of Urology. 161, 1606–9.CrossRefGoogle ScholarPubMed
Wittmaack, F. M. & Shapiro, S. S. (1992). Longitudinal study of semen quality in Wisconsin men over a decade. Wisconsin Medical Journal, 91, 477–9.Google Scholar
Wyrobek, A. J., Eskenazi, B., Young, S.et al. (2006). Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proceedings of the National Academy of Sciences, 103, 9601–6.CrossRefGoogle ScholarPubMed
Zenzes, M. T. (2000). Smoking and reproduction: gene damage to human gametes and embryos. Human Reproduction Update, 6, 122–31.CrossRefGoogle ScholarPubMed
Zhu, B., Walker, S. K., Oakey, H., Setchell, B. P. & Maddocks, S. (2004). Effect of paternal health stress on the development in vitro of preimplantation embryos in the mouse. Andrologia, 36, 384–94.CrossRefGoogle Scholar
Zöllner, S., Wen, X., Hanchard, N. A.et al. (2004). Evidence for extensive transmission distortion in the human genome. American Journal of Human Genetics, 74, 62–72.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×