Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-28T16:35:19.222Z Has data issue: false hasContentIssue false

3 - Theory of Complex-Valued Matrix Derivatives

Published online by Cambridge University Press:  03 May 2011

Are Hjørungnes
Affiliation:
University of Oslo
Get access

Summary

Introduction

A theory developed for finding derivatives with respect to real-valued matrices with independent elements was presented in Magnus and Neudecker (1988) for scalar, vector, and matrix functions. There, the matrix derivatives with respect to a real-valued matrix variable are found by means of the differential of the function. This theory is extended in this chapter to the case where the function depends on a complex-valued matrix variable and its complex conjugate, when all the elements of the matrix are independent. It will be shown how the complex differential of the function can be used to identify the derivative of the function with respect to both the complex-valued input matrix variable and its complex conjugate. This is a natural extension of the real-valued vector derivatives in Kreutz-Delgado (2008) and the real-valued matrix derivatives in Magnus and Neudecker (1988) to the case of complex-valued matrix derivatives. The complex-valued input variable and its complex conjugate should be treated as independent when finding complex matrix derivatives. For scalar complex-valued functions that depend on a complex-valued vector and its complex conjugate, a theory for finding derivatives with respect to complex-valued vectors, when all the vector components are independent, was given in Brandwood (1983). This was extended to a systematic and simple way of finding derivatives of scalar, vector, and matrix functions with respect to complex-valued matrices when the matrix elements are independent (Hjørungnes & Gesbert 2007a). In this chapter, the definition of the complex-valued matrix derivative will be given, and a procedure will be presented for how to obtain the complex-valued matrix derivative.

Type
Chapter
Information
Complex-Valued Matrix Derivatives
With Applications in Signal Processing and Communications
, pp. 43 - 69
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×