Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T14:23:02.832Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  10 November 2010

Peter D. Ditlevsen
Affiliation:
Niels Bohr Institutet, Copenhagen
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, J. C., & Lesieur, M. 1977. Influence of helicity on high Reynolds number isotropic turbulence. J. Fluid Mech., 81, 187–207.CrossRefGoogle Scholar
Anselmet, F., Gagne, Y., Hopfinger, E. J., & Antonia, R. A. 1984. High-order velocity structure functions in turbulent shear flow. J. Fluid Mech., 140, 63–89.CrossRefGoogle Scholar
Aurell, E., Boffetta, G., Crisanti, A., et al. 1994. Statistical mechanics of shell models for two-dimensional turbulence. Phys. Rev. E, 50, 4705–15.CrossRefGoogle ScholarPubMed
Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., & Vulpiani, A. 1996a. Growth of noninfinitesimal perturbations in turbulence. Phys. Rev. Lett., 77, 1262–5.CrossRefGoogle ScholarPubMed
Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., & Vulpiani, A. 1996b. Predictability in systems with many characteristic times: The case of turbulence. Phys. Rev. E, 53, 2337–49.CrossRefGoogle ScholarPubMed
Biferale, L., Lambert, A., Lima, R., & Paladin, G. 1995. Transition to chaos in a shell model of turbulence. Physica D, 80, 105–19.CrossRefGoogle Scholar
Biferale, L., Pierotti, D., & Toschi, F. 1998. Helicity transfer in turbulent models. Phys. Rev. E, 57, R2515–8.CrossRefGoogle Scholar
Boer, G. J., & Shepherd, T. G. 1983. Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40, 164–84.2.0.CO;2>CrossRefGoogle Scholar
Bohr, T., Jensen, M., Paladin, G., & Vulpiani, A. 1998. Dynamical Systems Approach to Turbulence. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Borue, V., & Orszag, S. A. 1997. Spectra in helical three-dimensional homogeneous isotropic turbulence. Phys. Rev. E, 55, 7005–9.CrossRefGoogle Scholar
Brissaud, A., Frisch, U., Leorat, J., Lesieur, M., & Mazure, A. 1973. Helicity cascade in fully developed isotropic turbulence. Phys. Fluids, 16, 1366–7.CrossRefGoogle Scholar
Charney, J. G. 1971. Geostropic turbulence. J. Atmos. Sci., 28, 1087–95.2.0.CO;2>CrossRefGoogle Scholar
Charney, J. G., & Stern, M. E. 1962. On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159–72.2.0.CO;2>CrossRefGoogle Scholar
Chkhetiani, O. G. 1996. On the third moments in helical turbulence. JETP Lett., 63, 808–12.CrossRefGoogle Scholar
,Clay Mathematics Institute. 2000. Seven Problems of the Millenium. www.claymath.org/prizeproblems.
Comte-Bellot, G., & Corrsin, S. 1971. Simple Eulerian time correlation of full- and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. J. Fluid Mech., 48, 273–337.CrossRefGoogle Scholar
Crisanti, A., Jensen, M. H., Vulpiani, A., & Paladin, G. 1993a. Intermittency and predictability in turbulence. Phys. Rev. Lett., 70, 166–9.CrossRefGoogle ScholarPubMed
Crisanti, A., Vulpiani, A., Jensen, M. H., & Paladin, G. 1993b. Predictability and the butterfly effect in turbulent flows: A shell model study. Int. J. Bifurcation Chaos, 3, 1581–5.CrossRefGoogle Scholar
Desnyansky, V. N., & Novikov, E. A. 1974. The evolution of turbulence spectra to the similarity regime. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 10, 127–36.Google Scholar
Ditlevsen, P. D. 1996. Temporal intermittency and cascades in shell models of turbulence. Phys. Rev. E., 54, 985–8.CrossRefGoogle ScholarPubMed
Ditlevsen, P. D. 1997. Cascades of energy and helicity in the GOY shell model of turbulence. Phys. Fluids, 9, 1482–4.CrossRefGoogle Scholar
Ditlevsen, P. D. 2000. Symmetries, invariants, and cascades in a shell model of turbulence. Phys. Rev. E, 62, 484–9.CrossRefGoogle Scholar
Ditlevsen, P. D., & Giuliani, P. 2000. Anomalous scaling in a shell model of helical turbulence. Physica A, 280, 69–74.CrossRefGoogle Scholar
Ditlevsen, P. D., & Giulani, P. 2001a. Cascades in helical turbulence. Phys. Rev. E., 63, 036304.CrossRefGoogle ScholarPubMed
Ditlevsen, P. D., & Giuliani, P. 2001b. Dissipation in helical turbulence. Phys. Fluids, 13, 3508–9.CrossRefGoogle Scholar
Ditlevsen, P. D., & Mogensen, I. A. 1996. Cascades and statistical equilibrium in shell models of turbulence. Phys. Rev. E, 53, 4785–93.CrossRefGoogle ScholarPubMed
Ditlevsen, P. D., Jensen, M. H., & Olesen, P. 2004. Scaling and the prediction of energy spectra in decaying hydrodynamic turbulence. Physica A, 342, 471–8.CrossRefGoogle Scholar
Frick, P., & Sokoloff, D. 1998. Cascade and dynamo action in a shell model of magnetohydrodynamic turbulence. Phys. Rev. E, 57, 4155–64.CrossRefGoogle Scholar
Frisch, U. 1995. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge.Google Scholar
Frisch, U., & Parisi, G. 1985. On the singular structure of fully developed turbulence. Pages 84–87 of: Ghil, M., Benzi, R., & Parisi, G. (eds.), Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. Amsterdam/New/York/Oxford/Tokyo: North-Holland Publ. Co.Google Scholar
Gibson, J. K., Källberg, P., Uppala, S., et al. 1997. ECMWF re-analysis report series, vol. 1. ERA Description. European Center for Medium Range Weather Forecast, Reading, UK, 72pp.Google Scholar
Gledzer, E. B. 1973. System of hydrodynamic type admitting two quadratic integrals of motion. Sov. Phys. Dokl. SSSR, 18, 216–7.Google Scholar
Goldstein, H. 1980. Classical Mechanics. 2nd edition. Reading, MA, Addison-Wesley.Google Scholar
Grassberger, P., & Procaccia, I. 1983. Measuring the strangeness of strange attractors. Physica D, 9, 189–208.CrossRefGoogle Scholar
Grigoriu, M. O., Ditlevsen, P. D., & Arwade, S. R. 2003. A Monte Carlo simulation model for stationary non-Gaussian processes. Probabilistic Engineering Mechanics, 18, 87–95.CrossRefGoogle Scholar
Grossmann, S., & Lohse, D. 1994. Universality in fully-developed turbulence. Phys. Rev. E, 50, 2784–9.CrossRefGoogle ScholarPubMed
Gurbatov, S. N., Simdyankin, S. I., Aurell, E., Frisch, U., & Tóth, G. 1997. On the decay of Burgers turbulence. J. Fluid Mech., 344, 339–74.CrossRefGoogle Scholar
Holton, J. R. 1992. An Introduction to Dynamic Meteorology. Third edition. San Diego, Academic Press.Google Scholar
Jensen, M. H., Paladin, G., & Vulpiani, A. 1991. Intermittency in a cascade model for three-dimensional turbulence. Phys. Rev. A, 43, 798–805.CrossRefGoogle Scholar
Jensen, M. H., Paladin, G., & Vulpiani, A. 1992. Shell model for turbulent advection of passive-scaler fields. Phys. Rev. A, 45, 7214–21.CrossRefGoogle ScholarPubMed
Kadanoff, L., Lohse, D., Wang, J., & Benzi, R. 1995. Scaling and dissipation in the GOY shell model. Phys. Fluids, 7, 617–29.CrossRefGoogle Scholar
Kadanoff, L., Lohse, D., & Schörghofer, N. 1997. Scaling and linear response in the GOY turbulence model. Physica D, 100, 165–86.CrossRefGoogle Scholar
Kang, H. S., & Meneveau, C. 2001. Passive scalar anisotropy in a heated turbulent wake: New observations and implications for large-eddy simulations. J. Fluid Mech., 442, 161–70.CrossRefGoogle Scholar
Kaplan, J. L., & Yorke, J. A. 1979. Preturbulence-regime observed in a fluid-flow model of Lorenz. Commun. Math. Phys., 67, 93–108.CrossRefGoogle Scholar
Kerr, R., & Biferale, L. 1995. On the role of inviscid invariants in shell models of turbulence. Phys. Rev. E, 52, 6113–22.Google Scholar
Kolmogorov, A. N. 1941a. Dissipation of energy in locally isotropic turbulence. C. R. (Dokl.) Acad. Sci. SSSR, 32, 16–18.Google Scholar
Kolmogorov, A. N. 1941b. Local structure of turbulence in an incompressible liquid for very large Reynolds numbers. C. R. (Dokl.) Acad. Sci. SSSR, 30, 299.Google Scholar
Kolmogorov, A. N. 1941c. On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid. C. R. (Dokl.) Acad. Sci. SSSR, 31, 538–540.Google Scholar
Kolmogorov, A. N. 1962. Arefinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., 5, 82–5.CrossRefGoogle Scholar
Kraichnan, R. H. 1967. Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 1417–23.CrossRefGoogle Scholar
Kraichnan, R. H. 1971. Inertial-range transfer in 2-dimensional and 3-dimensional turbulence. J. Fluid Mech., 47, 525–35.CrossRefGoogle Scholar
Kraichnan, R. H., & Montgomery, D. 1980. Two-dimensional turbulence. Rep. Prog. Phys., 43, 547–619.CrossRefGoogle Scholar
Landau, L. D., & Lifshitz, E. M. 1987. Fluid Mechanics, 2nd edition. Oxford, Pergamon Press.Google Scholar
Leray, J. 1934. Sur le mouvement d'un liquide visquex emplissement l'espace. Acta Math. J., 63, 193–248.CrossRefGoogle Scholar
Lesieur, M. 1997. Turbulence in Fluids, 3rd Revised and enlarged edition. Dordrecht, Kluwer Academic Publishers.CrossRefGoogle Scholar
Lindborg, E. 1999. Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech., 388, 259–88.CrossRefGoogle Scholar
Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–41.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E. N. 1969. The predictability of a flow which possesses many scales of motion. Tellus, 21, 289–307.CrossRefGoogle Scholar
Lorenz, E. N. 1972. Low order models representing realizations of turbulence. J. Fluid Mech., 55, 545–63.CrossRefGoogle Scholar
L'vov, V. S., Podivilov, E., & Procaccia, I. 1997. Exact result for the 3rd order correlations of velocity in turbulence with helicity. chao-dyn/9705016.
L'vov, V. S., Podivilov, E., Pomyalov, A., Procaccia, I., & Vandembroueq, D. 1998. Improved shell model of turbulence. Phys. Rev. E, 58, 1811–22.CrossRefGoogle Scholar
Mandelbrot, B. 1977. Fractals: Form, Chance and Dimension. San Francisco, Freeman & Co.Google Scholar
Mohamed, M. S., & LaRue, J. C. 1990. The decay power law in grid-generated turbulence. J. Fluid Mech., 219, 195–214.CrossRefGoogle Scholar
Monin, A. S., & Yaglom, A. M. 1981. Statistical Fluid Mechanics: Mechanics of Turbulence, Volumes 1+2. Cambridge, MA, The MIT Press.Google Scholar
Nastrom, G. D., & Gage, K. S. 1985. A climatology of atmospheric wavenumber spectra observed by commercial aircraft. J. Atmos. Sci., 42, 950–60.2.0.CO;2>CrossRefGoogle Scholar
Obukhov, A. M. 1962. Some specific features of atmospheric turbulence. J. Fluid Mech., 13, 77–81.CrossRefGoogle Scholar
Obukhov, A. M. 1971. On some general characteristics of the equations of the dynamics of the atmosphere. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 7, 695–704.Google Scholar
Olesen, P. 1997. Inverse cascades and primordial magnetic fields. Phys. Lett. B, 398, 321–25.CrossRefGoogle Scholar
Olla, P. 1998. Three applications of scaling to inhomogeneous, anisotropic turbulence. Phys. Rev. E, 57, 2824–31.CrossRefGoogle Scholar
Pedlosky, J. 1987. Geophysical Fluid Dynamics, 2nd edition. New York, Springer-Verlag.CrossRefGoogle Scholar
Pope, S. B. 2000. Turbulent Flows. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Richardson, L. F. 1922. Weather Prediction by Numerical Process. Cambridge, Cambridge University Press.Google Scholar
Ruelle, D. 1979. Microscopic fluctuations and turbulence. Phys. Lett. A, 72, 81–2.CrossRefGoogle Scholar
Saltzman, B. 1962. Finite amplitude free convection as an initial value problem. J. Atmos. Sci., 19, 329–41.2.0.CO;2>CrossRefGoogle Scholar
Shannon, C. E. 1948. A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.CrossRefGoogle Scholar
She, Z. S., Aurell, E., & Frisch, U. 1992. The inviscid Burgers equation with initial conditions of Brownian type. Comm. Math. Phys., 148, 623–641.CrossRefGoogle Scholar
Straus, D. M., & Ditlevsen, P. 1999. Two-dimensional turbulence properties of the ECMWF reanalysis. Tellus, 51A, 749–72.CrossRefGoogle Scholar
Vergassola, M., Dubrulle, B., Frisch, U., & Noullez, A. 1994. Burger's equation, Devil's staircases and the mass distribution for large-scale structures. Astron. Astrophys., 289, 325–56.Google Scholar
von Kármán, T., & Howarth, L. 1938. On the statistical theory of isotropic turbulence. Proc. R. Soc. London, A 164, 192–215.CrossRefGoogle Scholar
Waleffe, F. 1992. The nature of triad interactions in homogeneous turbulence. Phys. Fluids A-Fluid Dynamics, 4, 350–63.CrossRefGoogle Scholar
Wiin-Nielsen, A. 1967. On annual variation and spectral distribution of atmospheric energy. Tellus, 19, 540–59.CrossRefGoogle Scholar
Wiin-Nielsen, A. 1972. A study of power laws in the atmospheric kinetic energy spectrum using spherical harmonic functions. Meteor. Ann., 6, 107–24.Google Scholar
Yamada, M., & Okhitani, K. 1988a. Lyapunov spectrum of a model of two-dimensional turbulence. Phys. Rev. Lett., 60, 983–6.CrossRefGoogle ScholarPubMed
Yamada, M., & Okhitani, K. 1988b. The inertial subrange and non-positive Lyapunov exponents in fully-developed turbulence. Progr. Theo. Phys., 79, 1265–68.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Peter D. Ditlevsen, Niels Bohr Institutet, Copenhagen
  • Book: Turbulence and Shell Models
  • Online publication: 10 November 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511919251.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Peter D. Ditlevsen, Niels Bohr Institutet, Copenhagen
  • Book: Turbulence and Shell Models
  • Online publication: 10 November 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511919251.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Peter D. Ditlevsen, Niels Bohr Institutet, Copenhagen
  • Book: Turbulence and Shell Models
  • Online publication: 10 November 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511919251.011
Available formats
×