Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-01T02:38:30.592Z Has data issue: false hasContentIssue false

Chapter 19 - Abusive head trauma: parenchymal injury

from Section II - Abusive head and spinal trauma

Published online by Cambridge University Press:  05 September 2015

P. Ellen Grant
Affiliation:
Director, Center on Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital and Associate Professor of Radiology at Harvard Medical School, Boston, Massachusetts, USA
Paul K. Kleinman
Affiliation:
Children's Hospital Boston
Get access

Summary

Overview

The most feared consequence of child abuse is brain injury. Abusive head trauma (AHT) can result in significant brain injuries that can cause death or lifelong handicap of a child, with the full consequence not truly evident until school age or later. AHT is the most common cause of traumatic death for infants with as many as one in four victims of AHT/shaken baby syndrome (SBS) dying (1). Almost all suffer serious health consequences such as sensory impairments as well as cognitive, learning, and behavioral disabilities (2).

These parenchymal brain injuries can be quite subtle initially, but the appropriate history or the presence of intracranial hemorrhage or extra-axial collections should trigger a search for subtle changes that indicate evolving brain injury. Although some parenchymal brain injuries observed in AHT are similar to those observed in accidental trauma, there are injury patterns that are more common in documented cases of abuse. The uniqueness of these injury patterns is likely due to a combination of specific mechanical forces and the vulnerability of the immature brain, particularly in infancy. Infants are more susceptible to direct mechanical brain injury from abusive shaking owing to poor neck control, larger head size, and softer brain owing to incomplete myelination. Also with shaking, indirect injuries from associated cardiac and/or respiratory compromise may occur. To further complicate matters, physiologic cascades cause the imaging appearance of abusive brain injury to evolve over time. To better understand the evolution of brain injury, we begin with an overview on cell death processes in the immature brain. Next we divide parenchymal injuries into those caused by direct mechanical forces (primary injuries) and those associated with, but not directly due to mechanical forces (secondary injuries). Also included is a discussion on mechanisms of injury for different imaging patterns of brain injury, recognizing that in some cases mechanisms are unproven or controversial. Finally, we remind the reader that it is common for severe brain injury to be present in the absence of external evidence of injury (3, 4). Therefore, brain imaging should be performed if there is a high clinical suspicion or if neurologic signs and symptoms are present, even if there are no overt signs of abuse. The recommended neuroimaging protocol is provided in Chapter 20.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Duhaime, AC, Christian, C, Moss, E, Seidl, T. Long-term outcome in infants with the shaking-impact syndrome. Pediatr Neurosurg. 1996;24(6):292–8.CrossRefGoogle ScholarPubMed
National Center on Shaken Baby Syndrome. Physical consequences of shaking, 2009. Available from .
Gilliland, MG, Folberg, R. Shaken babies – some have no impact injuries. J Forensic Sci. 1996;41(1):114–16.CrossRefGoogle ScholarPubMed
Shannon, P, Smith, CR, Deck, J, Ang, LC, Ho, M, Becker, L. Axonal injury and the neuropathology of shaken baby syndrome. Acta Neuropathol. 1998;95(6):625–31.CrossRefGoogle ScholarPubMed
Blomgren, K, Leist, M, Groc, L. Pathological apoptosis in the developing brain. Apoptosis. 2007;12(5):993–1010.CrossRefGoogle ScholarPubMed
Grant, PE, Yu, D. Acute injury to the immature brain with hypoxia with or without hypoperfusion. Magn Reson Imaging Clin N Am. 2006;14(2):271–85.CrossRefGoogle ScholarPubMed
Hilario, E, Cañavate, ML, Lacalle, J, Alonso-Alconada, D, Lara-Celador, I, Alvarez-Granda, L, et al. Cell death. A comprehensive approximation. Delayed cell death. In Méndez-Vilas, A, Díaz, J, eds. Microscopy: Science, Technology Applications and Education, vol. 3. Microscopy series no. 4. Banajoz, Spain: Formatex; 2010.Google Scholar
Alvarez, A, Lacalle, J, Cañavate, ML, Alonso-Alconada, D, Lara-Celador, I, Alvarez, FJ, et al. Cell death. A comprehensive approximation. Necrosis. In Méndez-Vilas, A, Díaz, J, eds. Microscopy: Science, Technology Applications and Education, vol. 3. Microscopy series no. 4. Banajoz, Spain: Formatex; 2010.Google Scholar
Leist, M, Jaattela, M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol. 2001;2(8):589–98.CrossRefGoogle Scholar
Yakovlev, AG, Faden, AI. Mechanisms of neural cell death: implications for development of neuroprotective treatment strategies. NeuroRx. 2004;1(1):5–16.CrossRefGoogle ScholarPubMed
Lin, K, Rapalino, O, Law, M, Babb, JS, Siller, KA, Pramanik, BK. Accuracy of the Alberta Stroke Program Early CT Score during the first three hours of middle cerebral artery stroke: comparison of noncontrast CT, CT angiography source images, and CT perfusion. AJNR Am J Neuroradiol. 2008;29(5):931–6.CrossRefGoogle Scholar
Schaefer, PW, Grant, PE, Gonzalez, RG. Diffusion-weighted MR imaging of the brain. Radiology. 2000;217(2):331–45.CrossRefGoogle Scholar
Oppenheim, C, Samson, Y, Manai, R, Lalam, T, Vandamme, X, Crozier, S, et al. Prediction of malignant middle cerebral artery infarction by diffusion-weighted imaging. Stroke. 2000;31(9):2175–81.CrossRefGoogle ScholarPubMed
Maeda, T, Katayama, Y, Kawamata, T, Koyama, S, Sasaki, J. Ultra-early study of edema formation in cerebral contusion using diffusion MRI and ADC mapping. Acta Neurochir Suppl. 2003;86:329–31.Google ScholarPubMed
Kawamata, T, Katayama, Y. Surgical management of early massive edema caused by cerebral contusion in head trauma patients. Acta Neurochir Suppl. 2006;96:3–6.CrossRefGoogle ScholarPubMed
Kawamata, T, Katayama, Y. Cerebral contusion: a role model for lesion progression. Prog Brain Res. 2007;161:235–41.CrossRefGoogle ScholarPubMed
Kawamata, T, Katayama, Y, Mori, T, Aoyama, N, Tsubokawa, T. Mechanisms of the mass effect of cerebral contusion: ICP monitoring and diffusion MRI study. Acta Neurochir Suppl. 2002;81:281–3.Google ScholarPubMed
Willman, KY, Bank, DE, Senac, M, Chadwick, DL. Restricting the time of injury in fatal inflicted head injuries. Child Abuse Negl. 1997;21(10):929–40.CrossRefGoogle ScholarPubMed
Kawamata, T, Katayama, Y, Aoyama, N, Mori, T. Heterogeneous mechanisms of early edema formation in cerebral contusion: diffusion MRI and ADC mapping study. Acta Neurochir Suppl. 2000;76:9–12.Google ScholarPubMed
Kawamata, T, Mori, T, Sato, S, Katayama, Y. Tissue hyperosmolality and brain edema in cerebral contusion. Neurosurg Focus. 2007;22(5):E5.CrossRefGoogle ScholarPubMed
Katayama, Y, Mori, T, Maeda, T, Kawamata, T. Pathogenesis of the mass effect of cerebral contusions: rapid increase in osmolality within the contusion necrosis. Acta Neurochir Suppl. 1998;71:289–92.Google ScholarPubMed
Ment, LR, Bada, HS, Barnes, P, Grant, PE, Hirtz, D, Papile, LA, et al. Practice parameter: neuroimaging of the neonate: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2002;58(12):1726–38.CrossRefGoogle ScholarPubMed
Cowan, F, Mercuri, E, Groenendaal, F, Bassi, L, Ricci, D, Rutherford, M, et al. Does cranial ultrasound imaging identify arterial cerebral infarction in term neonates?Arch Dis Child Fetal Neonatal Ed. 2005;90(3):F252–6.CrossRefGoogle ScholarPubMed
Rodrigues, K, Grant, PE. Diffusion-weighted imaging in neonates. Neuroimaging Clin N Am. 2011;21(1):127–51.CrossRefGoogle ScholarPubMed
Raghupathi, R, Graham, DI, McIntosh, TK. Apoptosis after traumatic brain injury. J Neurotrauma. 2000;17(10):927–38.CrossRefGoogle ScholarPubMed
Adhami, F, Schloemer, A, Kuan, CY. The roles of autophagy in cerebral ischemia. Autophagy. 2007;3(1):42–4.CrossRefGoogle ScholarPubMed
Friede, RL. Developmental Neuropathology, 2nd edn. Berlin: Springer-Verlag; 1989.CrossRefGoogle Scholar
Ruppel, RA, Clark, RS, Bayir, H, Satchell, MA, Kochanek, PM. Critical mechanisms of secondary damage after inflicted head injury in infants and children. Neurosurg Clin N Am. 2002;13(2):169–82.CrossRefGoogle ScholarPubMed
Ruppel, RA, Kochanek, PM, Adelson, PD, Rose, ME, Wisniewski, SR, Bell, MJ, et al. Excitatory amino acid concentrations in ventricular cerebrospinal fluid after severe traumatic brain injury in infants and children: the role of child abuse. J Pediatr. 2001;138(1):18–25.CrossRefGoogle ScholarPubMed
Lorek, A, Takei, Y, Cady, EB, Wyatt, JS, Penrice, J, Edwards, AD, et al. Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res. 1994;36(6):699–706.CrossRefGoogle ScholarPubMed
Gilland, E, Puka-Sundvall, M, Hillered, L, Hagberg, H. Mitochondrial function and energy metabolism after hypoxia-ischemia in the immature rat brain: involvement of NMDA-receptors. J Cereb Blood Flow Metab. 1998;18(3):297–304.CrossRefGoogle ScholarPubMed
Puka-Sundvall, M, Wallin, C, Gilland, E, Hallin, U, Wang, X, Sandberg, M, et al. Impairment of mitochondrial respiration after cerebral hypoxia-ischemia in immature rats: relationship to activation of caspase-3 and neuronal injury. Brain Res Dev Brain Res. 2000;125(1–2):43–50.CrossRefGoogle ScholarPubMed
Northington, FJ, Zelaya, ME, O’Riordan, DP, Blomgren, K, Flock, DL, Hagberg, H, et al. Failure to complete apoptosis following neonatal hypoxia-ischemia manifests as “continuum” phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain. Neuroscience. 2007;149(4):822–33.CrossRefGoogle ScholarPubMed
van der Lugt, JJ, Venter, I. Myelin vacuolation, optic neuropathy and retinal degeneration after closantel overdosage in sheep and in a goat. J Comp Pathol. 2007;136(2–3):87–95.CrossRefGoogle Scholar
Chen, Y, Yi, Q, Liu, G, Shen, X, Xuan, L, Tian, Y. Cerebral white matter injury and damage to myelin sheath following whole-brain ischemia. Brain Res. 2013;1495:11–17.CrossRefGoogle ScholarPubMed
Nukada, H, McMorran, PD. Perivascular demyelination and intramyelinic oedema in reperfusion nerve injury. J Anat. 1994;185(Pt. 2):259–66.Google ScholarPubMed
Gupta, P, Goyal, S, Grant, PE, Fawaz, R, Lok, J, Yager, P, et al. Acute liver failure and reversible leukoencephalopathy in a pediatric patient with homocystinuria. J Pediatr Gastroenterol Nutr. 2010;51(5):668–71.CrossRefGoogle Scholar
Grant, PE, He, J, Halpern, EF, Wu, O, Schaefer, PW, Schwamm, LH, et al. Frequency and clinical context of decreased apparent diffusion coefficient reversal in the human brain. Radiology. 2001;221(1):43–50.CrossRefGoogle ScholarPubMed
Sakai, Y, Kira, R, Torisu, H, Ihara, K, Yoshiura, T, Hara, T. Persistent diffusion abnormalities in the brain stem of three children with mitochondrial diseases. AJNR Am J Neuroradiol. 2006;27(9):1924–6.Google ScholarPubMed
Siskas, N, Lefkopoulos, A, Ioannidis, I, Charitandi, A, Dimitriadis, AS. Cortical laminar necrosis in brain infarcts: serial MRI. Neuroradiology. 2003;45(5):283–8.CrossRefGoogle ScholarPubMed
Fujioka, M, Taoka, T, Hiramatsu, KI, Sakaguchi, S, Sakaki, T. Delayed ischemic hyperintensity on T1-weighted MRI in the caudoputamen and cerebral cortex of humans after spectacular shrinking deficit. Stroke. 1999;30(5):1038–42.CrossRefGoogle ScholarPubMed
Fujioka, M, Taoka, T, Matsuo, Y, Hiramatsu, KI, Sakaki, T. Novel brain ischemic change on MRI. Delayed ischemic hyperintensity on T1-weighted images and selective neuronal death in the caudoputamen of rats after brief focal ischemia. Stroke. 1999;30(5):1043–6.CrossRefGoogle ScholarPubMed
Gennarelli, TA, Thibault, LE. Biomechanics of acute subdural hematoma. J Trauma. 1982;22(8):680–6.CrossRefGoogle ScholarPubMed
Staykov, D, Wagner, I, Volbers, B, Hauer, EM, Doerfler, A, Schwab, S, et al. Natural course of perihemorrhagic edema after intracerebral hemorrhage. Stroke. 2011;42(9):2625–9.CrossRefGoogle ScholarPubMed
Wagner, I, Volbers, B, Kloska, S, Doerfler, A, Schwab, S, Staykov, D. Sex differences in perihemorrhagic edema evolution after spontaneous intracerebral hemorrhage. Eur J Neurol. 2012;19(11):1477–81.CrossRefGoogle ScholarPubMed
Cheng, AL, Batool, S, McCreary, CR, Lauzon, ML, Frayne, R, Goyal, M, et al. Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds. Stroke. 2013;44(10):2782–6.CrossRefGoogle ScholarPubMed
Geurts, BH, Andriessen, TM, Goraj, BM, Vos, PE. The reliability of magnetic resonance imaging in traumatic brain injury lesion detection. Brain Injury. 2012;26(12):1439–50.CrossRefGoogle ScholarPubMed
Calder, IM, Hill, I, Scholtz, CL. Primary brain trauma in non-accidental injury. J Clin Pathol. 1984;37(10):1095–100.CrossRefGoogle ScholarPubMed
Gentry, LR. Imaging of closed head injury. Radiology. 1994;191(1):1–17.CrossRefGoogle ScholarPubMed
Johnson, VE, Stewart, W, Smith, DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013;246:35–43.CrossRefGoogle ScholarPubMed
Adams, JH, Doyle, D, Ford, I, Gennarelli, TA, Graham, DI, McLellan, DR. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology. 1989;15(1):49–59.CrossRefGoogle ScholarPubMed
da Silva, PS, Reis, ME, Aguiar, VE. Value of repeat cranial computed tomography in pediatric patients sustaining moderate to severe traumatic brain injury. J Trauma. 2008;65(6):1293–7.CrossRefGoogle ScholarPubMed
Geddes, JF, Vowles, GH, Hackshaw, AK, Nickols, CD, Scott, IS, Whitwell, HL. Neuropathology of inflicted head injury in children. II. Microscopic brain injury in infants. Brain. 2001;124(Pt. 7):1299–306.CrossRefGoogle ScholarPubMed
Johnson, MW, Stoll, L, Rubio, A, Troncoso, J, Pletnikova, O, Fowler, DR, et al. Axonal injury in young pediatric head trauma: a comparison study of beta-amyloid precursor protein (beta-APP) immunohistochemical staining in traumatic and nontraumatic deaths. J Forensic Sci. 2011;56(5):1198–205.CrossRefGoogle ScholarPubMed
Eucker, SA, Smith, C, Ralston, J, Friess, SH, Margulies, SS. Physiological and histopathological responses following closed rotational head injury depend on direction of head motion. Exp Neurol. 2011;227(1):79–88.CrossRefGoogle ScholarPubMed
Topal, NB, Hakyemez, B, Erdogan, C, Bulut, M, Koksal, O, Akkose, S, et al. MR imaging in the detection of diffuse axonal injury with mild traumatic brain injury. Neurol Res. 2008;30(9):974–8.CrossRefGoogle ScholarPubMed
Muccio, CF, De Simone, M, Esposito, G, De Blasio, E, Vittori, C, Cerase, A. Reversible post-traumatic bilateral extensive restricted diffusion of the brain. A case study and review of the literature. Brain Injury. 2009;23(5):466–72.CrossRefGoogle Scholar
Mechtler, LL, Shastri, KK, Crutchfield, KE. Advanced neuroimaging of mild traumatic brain injury. Neurol Clin. 2014;32(1):31–58.CrossRefGoogle ScholarPubMed
Brandstack, N, Kurki, T, Tenovuo, O. Quantitative diffusion-tensor tractography of long association tracts in patients with traumatic brain injury without associated findings at routine MR imaging. Radiology. 2013;267(1):231–9.CrossRefGoogle ScholarPubMed
Brandstack, N, Kurki, T, Hiekkanen, H, Tenovuo, O. Diffusivity of normal-appearing tissue in acute traumatic brain injury. Clin Neuroradiol. 2011;21(2):75–82.CrossRefGoogle ScholarPubMed
McDonald, BC, Saykin, AJ, McAllister, TW. Functional MRI of mild traumatic brain injury (mTBI): progress and perspectives from the first decade of studies. Brain Imaging Behav. 2012;6(2):193–207.CrossRefGoogle Scholar
Lindenberg, R, Fisher, R, Durlacher, S, eds. The pathology of the brain in blunt head injuries of infants and children. In McMenemey, WH, ed. Proceedings of the Second International Congress on Neuropathology, London, 1955. Amsterdam: Excerpta Medica; 1955.Google Scholar
Lindenberg, R, Freytag, E. Morphology of brain lesions from blunt trauma in early infancy. Arch Pathol. 1969;87(3):298–305.Google ScholarPubMed
Ordia, IJ, Strand, R, Gilles, F, Welch, K. Computerized tomography of contusional clefts in the white matter in infants. Report of two cases. J Neurosurg. 1981;54(5):696–8.CrossRefGoogle ScholarPubMed
Hausdorf, G, Helmke, K. Sonographic demonstration of contusional white matter clefts in an infant. Neuropediatrics. 1984;15(2):110–12.CrossRefGoogle ScholarPubMed
Jaspan, T, Narborough, G, Punt, JA, Lowe, J. Cerebral contusional tears as a marker of child abuse – detection by cranial sonography. Pediatr Radiol. 1992;22(4):237–45.CrossRefGoogle ScholarPubMed
Palifka, LA, Frasier, LD, Metzger, RR, Hedlund, GL. Parenchymal brain lacerations in abusive head trauma. American Society of Neuroradiology Meeting. May 2014, Montreal. AJNR, Am J Neuroradiol. 2015 in press.
Parizel, PM, Makkat, S, Van Miert, E, Van Goethem, JW, van den Hauwe, L, De Schepper, AM. Intracranial hemorrhage: principles of CT and MRI interpretation. Eur Radiol. 2001;11(9):1770–83.CrossRefGoogle ScholarPubMed
Rutherford, MA. MRI of the Neonatal Brain, 4th edn. Philadelphia, PA: W. B. Saunders Ltd.; 2001.Google Scholar
Levy, AD. Essentials of Forensic Imaging: A Text Atlas: Boca Raton, FL: CRC Press; 2012.Google Scholar
Pinto, PS, Meoded, A, Poretti, A, Tekes, A, Huisman, TA. The unique features of traumatic brain injury in children. Review of the characteristics of the pediatric skull and brain, mechanisms of trauma, patterns of injury, complications, and their imaging findings – part 2. J Neuroimaging. 2012;22(2):e18–41.CrossRefGoogle Scholar
Pinto, PS, Poretti, A, Meoded, A, Tekes, A, Huisman, TA. The unique features of traumatic brain injury in children. Review of the characteristics of the pediatric skull and brain, mechanisms of trauma, patterns of injury, complications and their imaging findings—part 1. J Neuroimaging. 2012;22(2):e1–17.CrossRefGoogle Scholar
Bird, CR, Drayer, BP, Gilles, FH. Pathophysiology of “reverse” edema in global cerebral ischemia. AJNR Am J Neuroradiol. 1989;10(1):95–8.Google ScholarPubMed
Han, BK, Towbin, RB, De Courten-Myers, G, McLaurin, RL, Ball, WS. Reversal sign on CT: effect of anoxic/ischemic cerebral injury in children. AJNR Am J Neuroradiol. 1989;10(6):1191–8.Google ScholarPubMed
Ammermann, H, Kassubek, J, Lotze, M, Gut, E, Kaps, M, Schmidt, J, et al. MRI brain lesion patterns in patients in anoxia-induced vegetative state. J Neurol Sci Turk. 2007;260(1–2):65–70.CrossRefGoogle ScholarPubMed
Salazar, R, Dubow, J. Delayed posthypoxic leukoencephalopathy following a morphine overdose. J Clin Neurosci. 2012;19(7):1060–2.CrossRefGoogle ScholarPubMed
DiMaio, D, DiMaio, VJM. Forensic Pathology, 2nd edn. Boca Raton, FL: CRC Press; 2001.Google Scholar
Matsuyama, T, Okuchi, K, Seki, T, Higuchi, T, Ito, S, Makita, D, et al. Magnetic resonance images in hanging. Resuscitation. 2006;69(2):343–5.CrossRefGoogle ScholarPubMed
Hori, A, Hirose, G, Kataoka, S, Tsukada, K, Furui, K, Tonami, H. Delayed postanoxic encephalopathy after strangulation. Serial neuroradiological and neurochemical studies. Arch Neurol. 1991;48(8):871–4.CrossRefGoogle ScholarPubMed
Bird, CR, McMahan, JR, Gilles, FH, Senac, MO, Apthorp, JS. Strangulation in child abuse: CT diagnosis. Radiology. 1987;163(2):373–5.CrossRefGoogle ScholarPubMed
Oualha, M, Gatterre, P, Boddaert, N, Dupic, L, De Saint Blanquat, L, Hubert, P, et al. Early diffusion-weighted magnetic resonance imaging in children after cardiac arrest may provide valuable prognostic information on clinical outcome. Intensive Care Med. 2013;39(7):1306–12.CrossRefGoogle ScholarPubMed
Aldrich, EF, Eisenberg, HM, Saydjari, C, Luerssen, TG, Foulkes, MA, Jane, JA, et al. Diffuse brain swelling in severely head-injured children. A report from the NIH Traumatic Coma Data Bank. J Neurosurg. 1992;76(3):450–4.CrossRefGoogle ScholarPubMed
Langfitt, TW, Tannanbaum, HM, Kassell, NF. The etiology of acute brain swelling following experimental head injury. J Neurosurg. 1966;24(1):47–56.CrossRefGoogle ScholarPubMed
Bruce, DA, Alavi, A, Bilaniuk, L, Dolinskas, C, Obrist, W, Uzzell, B. Diffuse cerebral swelling following head injuries in children: the syndrome of “malignant brain edema.”J Neurosurg. 1981;54(2):170–8.CrossRefGoogle ScholarPubMed
Zwienenberg, M, Muizelaar, JP. Severe pediatric head injury: the role of hyperemia revisited. J Neurotrauma. 1999;16(10):937–43.CrossRefGoogle ScholarPubMed
Vavilala, MS, Muangman, S, Waitayawinyu, P, Roscigno, C, Jaffe, K, Mitchell, P, et al. Neurointensive care; impaired cerebral autoregulation in infants and young children early after inflicted traumatic brain injury: a preliminary report. J Neurotrauma. 2007;24(1):87–96.CrossRefGoogle ScholarPubMed
Chiron, C, Raynaud, C, Maziere, B, Zilbovicius, M, Laflamme, L, Masure, MC, et al. Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med. 1992;33(5):696–703.Google ScholarPubMed
Filosa, JA, Iddings, JA. Astrocyte regulation of cerebral vascular tone. Am J Physiol. 2013;305(5):H609–19.Google ScholarPubMed
Barnes, PD, Galaznik, J, Gardner, H, Shuman, M. Infant acute life-threatening event–dysphagic choking versus nonaccidental injury. Semin Pediatr Neurol. 2010;17(1):7–11.CrossRefGoogle ScholarPubMed
Talbert, DG. Dysphagia as a risk factor for sudden unexplained death in infancy. Med Hypotheses. 2006;67(4):786–91.CrossRefGoogle ScholarPubMed
Goldman, M, Dagan, Z, Yair, M, Elbaz, U, Lahat, E, Yair, M. Severe cough and retinal hemorrhage in infants and young children. J Pediatr. 2006;148(6):835–6.CrossRefGoogle ScholarPubMed
Curcoy, AI, Trenchs, V, Morales, M, Serra, A, Pou J. Is pertussis in infants a potential cause of retinal haemorrhages?Arch Dis Child. 2012;97(3):239–40.CrossRefGoogle ScholarPubMed
Watts, CC, Acosta, C. Pertussis and bilateral subdural hematomas. Am J Dis Child. 1969;118(3):518–19.Google ScholarPubMed
Greenberg, DP, von Konig, CH, Heininger, U. Health burden of pertussis in infants and children. Pediatr Infect Dis J. 2005;24(5 Suppl.):S39–43.CrossRefGoogle ScholarPubMed
Ichord, RN, Naim, M, Pollock, AN, Nance, ML, Margulies, SS, Christian, CW. Hypoxic-ischemic injury complicates inflicted and accidental traumatic brain injury in young children: the role of diffusion-weighted imaging. J Neurotrauma. 2007;24(1):106–18.CrossRefGoogle ScholarPubMed
Piteau, SJ, Ward, MG, Barrowman, NJ, Plint, AC. Clinical and radiographic characteristics associated with abusive and nonabusive head trauma: a systematic review. Pediatrics. 2012;130(2):315–23.CrossRefGoogle ScholarPubMed
Squier, W, Mack, J, Green, A, Aziz, T. The pathophysiology of brain swelling associated with subdural hemorrhage: the role of the trigeminovascular system. Childs Nerv Syst. 2012;28(12):2005–15.CrossRefGoogle ScholarPubMed
Davidson, JR, Mack, J, Gutnikova, A, Varatharaj, A, Darby, S, Squier, W. Developmental changes in human dural innervation. Childs Nerv Syst. 2012;28(5):665–71.CrossRefGoogle ScholarPubMed
Cipolla, MJ. The Cerebral Circulation. San Rafael, CA: Morgan & Claypool Life Sciences; 2009.Google ScholarPubMed
Hamel, E. Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol. 2006;100(3):1059–64.CrossRefGoogle ScholarPubMed
Sakas, DE, Moskowitz, MA, Wei, EP, Kontos, HA, Kano, M, Ogilvy, CS. Trigeminovascular fibers increase blood flow in cortical gray matter by axon reflex-like mechanisms during acute severe hypertension or seizures. Proc Natl Acad Sci U S A. 1989;86(4):1401–5.CrossRefGoogle ScholarPubMed
Duhaime, AC, Durham, S. Traumatic brain injury in infants: the phenomenon of subdural hemorrhage with hemispheric hypodensity (“big black brain”). Prog Brain Res. 2007;161:293–302.CrossRefGoogle Scholar
Yazbak, PA, McComb, JG, Raffel, C. Pediatric traumatic intracranial aneurysms. Pediatr Neurosurg. 1995;22(1):15–19.CrossRefGoogle ScholarPubMed
Lam, CH, Montes, J, Farmer, JP, O’Gorman, AM, Meagher-Villemure, K. Traumatic aneurysm from shaken baby syndrome: case report. Neurosurgery. 1996;39(6):1252–5.CrossRefGoogle ScholarPubMed
Nichols, GR, Corey, TS, Davis, GJ. Nonfracture-associated fatal fat embolism in a case of child abuse. J Forensic Sci. 1990;35(2):493–9.CrossRefGoogle Scholar
Guskiewicz, KM, McCrea, M, Marshall, SW, Cantu, RC, Randolph, C, Barr, W, et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003;290(19):2549–55.CrossRefGoogle ScholarPubMed
McCrea, M, Guskiewicz, K, Randolph, C, Barr, WB, Hammeke, TA, Marshall, SW, et al. Effects of a symptom-free waiting period on clinical outcome and risk of reinjury after sport-related concussion. Neurosurgery. 2009;65(5):876–82; discussion 882–3.CrossRefGoogle ScholarPubMed
Vagnozzi, R, Signoretti, S, Floris, R, Marziali, S, Manara, M, Amorini, AM, et al. Decrease in N-acetylaspartate following concussion may be coupled to decrease in creatine. J Head Trauma Rehab. 2013;28(4):284–92.CrossRefGoogle ScholarPubMed
Cantu, RC. Second-impact syndrome. Clin Sports Med. 1998;17(1):37–44.CrossRefGoogle ScholarPubMed
Cantu, RC, Gean, AD. Second-impact syndrome and a small subdural hematoma: an uncommon catastrophic result of repetitive head injury with a characteristic imaging appearance. J Neurotrauma. 2010;27(9):1557–64.CrossRefGoogle Scholar
McCrory, P, Davis, G, Makdissi, M. Second impact syndrome or cerebral swelling after sporting head injury. Curr Sports Med Rep. 2012;11(1):21–3.CrossRefGoogle ScholarPubMed
Potts, MA, Stewart, EW, Griesser, MJ, Harris, JD, Gelfius, CD, Klamar, K. Exceptional neurologic recovery in a teenage football player after second impact syndrome with a thin subdural hematoma. PM R. 2012;4(7):530–2.CrossRefGoogle Scholar
Weinstein, E, Turner, M, Kuzma, BB, Feuer, H. Second impact syndrome in football: new imaging and insights into a rare and devastating condition. J Neurosurg Pediatr. 2013;11(3):331–4.CrossRefGoogle ScholarPubMed
Schneider, RC. Head and Neck Injuries in Football. Baltimore, MD: Williams & Wilkins; 1973.Google Scholar
Helfer, RE, Slovis, TL, Black, M. Injuries resulting when small children fall out of bed. Pediatrics. 1977;60(4):533–5.Google ScholarPubMed
Lyons, TJ, Oates, RK. Falling out of bed: a relatively benign occurrence. Pediatrics. 1993;92(1):125–7.Google ScholarPubMed
Nimityongskul, P, Anderson, LD. The likelihood of injuries when children fall out of bed. J Pediatr Orthop. 1987;7(2):184–6.CrossRefGoogle ScholarPubMed
Greenes, DS, Schutzman, SA. Clinical indicators of intracranial injury in head-injured infants. Pediatrics. 1999;104(4 Pt. 1):861–7.CrossRefGoogle ScholarPubMed
Gruskin, KD, Schutzman, SA. Head trauma in children younger than two years: are there predictors for complications?Arch Pediatr Adolesc Med. 1999;153(1):15–20.CrossRefGoogle ScholarPubMed
Brown, L, Moynihan, JA, Denmark, TK. Blunt pediatric head trauma requiring neurosurgical intervention: how subtle can it be?Am J Emerg Med. 2003;21(6):467–72.CrossRefGoogle Scholar
Thomas, AG, Hegde, SV, Dineen, RA, Jaspan, T. Patterns of accidental craniocerebral injury occurring in early childhood. Arch Dis Child. 2013;98(10):787–92.CrossRefGoogle ScholarPubMed
Haney, SB, Starling, SP, Heisler, KW, Okwara, L. Characteristics of falls and risk of injury in children younger than two years. Pediatr Emerg Care. 2010;26(12):914–18.CrossRefGoogle Scholar
Chiaviello, CT, Christoph, RA, Bond, GR. Infant walker-related injuries: a prospective study of severity and incidence. Pediatrics. 1994;93(6 Pt. 1):974–6.Google ScholarPubMed
Zix, C, Pister, C. [Should infant walkers be forbidden?]Arch Pediatr. 2002;9(1):100.CrossRefGoogle Scholar
American Academy of Pediatrics. Committee on Injury and Poison Prevention. Injuries associated with infant walkers. Pediatrics. 2001;108(3):790–2.CrossRefGoogle Scholar
Fazen, LE, Felizberto, PI. Baby walker injuries. Pediatrics. 1982;70(1):106–9.Google ScholarPubMed
Smith, GA, Bowman, MJ, Luria, JW, Shields, BJ. Babywalker-related injuries continue despite warning labels and public education. Pediatrics. 1997;100(2):E1.CrossRefGoogle ScholarPubMed
Partington, MD, Swanson, JA, Meyer, FB. Head injury and the use of baby walkers: a continuing problem. Ann Emerg Med. 1991;20(6):652–4.CrossRefGoogle ScholarPubMed
Smith, GA, Dietrich, AM, Garcia, CT, Shields, BJ. Injuries to children related to shopping carts. Pediatrics. 1996;97(2):161–5.Google ScholarPubMed
Chiaviello, CT, Christoph, RA, Bond, GR. Stairway-related injuries in children. Pediatrics. 1994;94(5):679–81.Google ScholarPubMed
Docherty, E, Hassan, A, Burke, D. Things that go bump … bump … bump: an analysis of injuries from falling down stairs in children based at Sheffield Children’s Hospital. Emerg Med J. 2010;27(3):207–8.CrossRefGoogle Scholar
Joffe, M, Ludwig, S. Stairway injuries in children. Pediatrics. 1988;82(3 Pt. 2):457–61.Google ScholarPubMed
Selbst, SM, Baker, MD, Shames, M. Bunk bed injuries. Am J Dis Child. 1990;144(6):721–3.Google ScholarPubMed
Mayr, JM, Seebacher, U, Lawrenz, K, Pesendorfer, P, Berghold, A, Baradaran, S. Bunk beds–a still underestimated risk for accidents in childhood?Eur J Pediatr. 2000;159(6):440–3.CrossRefGoogle ScholarPubMed
Watson, W, Ozanne-Smith, J, Begg, S, Stathakis, V. Bunkbed injuries in Australia: the case for a mandatory safety standard. Int J Consumer Product Safety 1999;6:87–96.Google Scholar
Duhaime, AC, Eppley, M, Margulies, S, Heher, KL, Bartlett, SP. Crush injuries to the head in children. Neurosurgery. 1995;37(3):401–6; discussion 407.CrossRefGoogle ScholarPubMed
Kodikara, S, Pollanen, M. Fatal pediatric head injury due to toppled television: Does the injury pattern overlap with abusive head trauma?Leg Med (Tokyo). 2012;14(4):197–200.CrossRefGoogle ScholarPubMed
Muniz, AE. Craniofacial injuries from television tip-over. Pediatr Emerg Care. 2012;28(1):52–4.CrossRefGoogle ScholarPubMed
Platt, MS, Stanley, C. TV tip-over morbidity and mortality in children. J Forensic Sci. 2011;56(5):1364–7.CrossRefGoogle ScholarPubMed
Deisch, J, Quinton, R, Gruszecki, AC. Craniocerebral trauma inflicted by television falls. J Forensic Sci. 2011;56(4):1049–53.CrossRefGoogle ScholarPubMed
Matshes, E, Deisch, J, Gruszeck, iA, Quinton, R, eds. Child deaths due to television falls with injury patterns that mimic child abuse. In Proceedings of the 61st Annual Meeting of the American Academy of Forensic Sciences, Denver, CO, February 16–21, 2009. Colorado Springs, CO: American Association of Forensic Sciences; 2009.Google Scholar
Gottesman, BL, McKenzie, LB, Conner, KA, Smith, GA. Injuries from furniture tip-overs among children and adolescents in the United States, 1990–2007. Clin Pediatr (Phila). 2009;48(8):851–8.CrossRefGoogle ScholarPubMed
Scheidler, MG, Shultz, BL, Schall, L, Vyas, A, Barksdale, EM. Falling televisions: the hidden danger for children. J Pediatr Surg. 2002;37(4):572–5.CrossRefGoogle ScholarPubMed
DiScala, C, Barthel, M, Sege, R. Outcomes from television sets toppling onto toddlers. Arch Pediatr Adolesc Med. 2001;155(2):145–8.CrossRefGoogle ScholarPubMed
Beattie, GC, Glaser, CA, Sheriff, H, Messenger, S, Preas, CP, Shahkarami, M, et al. Encephalitis with thalamic and basal ganglia abnormalities: etiologies, neuroimaging, and potential role of respiratory viruses. Clin Infect Dis. 2013;56(6):825–32.CrossRefGoogle ScholarPubMed
Hill, IR, Denham, DA, Scholtz, CL. Toxocara canis larvae in the brain of a British child. Trans R Soc Trop Med Hyg. 1985;79(3):351–4.CrossRefGoogle ScholarPubMed
Arita, JH, Faria, EC, Peruchi, MM, Lin, J, Rodrigues Masruha, M, Vilanova LC. Menkes disease as a differential diagnosis of child abuse. Arq Neuropsiquiatr. 2009;67(2B):507–9.CrossRefGoogle ScholarPubMed
Hartley, LM, Khwaja, OS, Verity, CM. Glutaric aciduria type 1 and nonaccidental head injury. Pediatrics. 2001;107(1):174–5.CrossRefGoogle ScholarPubMed
Gago, LC, Wegner, RK, Capone, A, Williams, GA. Intraretinal hemorrhages and chronic subdural effusions: glutaric aciduria type 1 can be mistaken for shaken baby syndrome. Retina. 2003;23(5):724–6.CrossRefGoogle ScholarPubMed
Menkes, JH. Subdural haematoma, non-accidental head injury or …?Eur J Paediatr Neurol. 2001;5(4):175–6.CrossRefGoogle ScholarPubMed
van der Knaap, MS, Valk, J. Magnetic Resonance of Myelination and Myelin Disorders, 3rd edn. New York, NY: Springer; 2005.CrossRefGoogle Scholar
Barkovich, AJ. Pediatric Neuroimaging, 4th edn. Philadelphia, PA: Lippincott, Williams & Wilkins; 2005.Google Scholar
Barnerias, C, Boddaert, N, Guiraud, P, Desguerre, I, Hertz Pannier, L, Dulac, O, et al. Unusual magnetic resonance imaging features in Menkes disease. Brain Dev. 2008;30(7):489–92.CrossRefGoogle ScholarPubMed
Kanaumi, T, Hirose, S, Goto, Y, Naitou, E, Mitsudome, A. An infant with a mitochondrial A3243G mutation demonstrating the MELAS phenotype. Pediatr Neurol. 2006;34(3):235–8.CrossRefGoogle ScholarPubMed
Tan, WH, Eichler, FS, Hoda, S, Lee, MS, Baris, H, Hanley, CA, et al. Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics. 2005;116(3):757–66.CrossRefGoogle ScholarPubMed
Eichler, F, Tan, WH, Shih, VE, Grant, PE, Krishnamoorthy, K. Proton magnetic resonance spectroscopy and diffusion-weighted imaging in isolated sulfite oxidase deficiency. J Child Neurol. 2006;21(9):801–5.CrossRefGoogle ScholarPubMed
Altinok, D, Agarwal, A, Ascadi, G, Luat, A, Tapos, D. Pediatric hemiplegic migraine: susceptibility weighted and MR perfusion imaging abnormality. Pediatr Radiol. 2010;40(12):1958–61.CrossRefGoogle Scholar
Stam, AH, Luijckx, GJ, Poll-The, BT, Ginjaar, IB, Frants, RR, Haan, J, et al. Early seizures and cerebral oedema after trivial head trauma associated with the CACNA1A S218L mutation. J Neurol Neurosurg Psychiatry. 2009;80(10):1125–9.CrossRefGoogle ScholarPubMed
Bhatia, R, Desai, S, Tripathi, M, Garg, A, Padma, MV, Prasad, K, et al. Sporadic hemiplegic migraine: report of a case with clinical and radiological features. J Headache Pain. 2008;9(6):385–8.CrossRefGoogle ScholarPubMed
Jacob, A, Mahavish, K, Bowden, A, Smith, ET, Enevoldson, P, White, RP. Imaging abnormalities in sporadic hemiplegic migraine on conventional MRI, diffusion and perfusion MRI and MRS. Cephalalgia. 2006;26(8):1004–9.CrossRefGoogle ScholarPubMed
Dreier, JP, Jurkat-Rott, K, Petzold, GC, Tomkins, O, Klingebiel, R, Kopp, UA, et al. Opening of the blood-brain barrier preceding cortical edema in a severe attack of FHM type II. Neurology. 2005;64(12):2145–7.CrossRefGoogle Scholar
Butteriss, DJ, Ramesh, V, Birchall, D. Serial MRI in a case of familial hemiplegic migraine. Neuroradiology. 2003;45(5):300–3.CrossRefGoogle Scholar
Hayashi, R, Tachikawa, H, Watanabe, R, Honda, M, Katsumata, Y. Familial hemiplegic migraine with irreversible brain damage. Intern Med. 1998;37(2):166–8.CrossRefGoogle ScholarPubMed
Colbert, CA, Holshouser, BA, Aaen, GS, Sheridan, C, Oyoyo, U, Kido, D, et al. Value of cerebral microhemorrhages detected with susceptibility-weighted MR imaging for prediction of long-term outcome in children with nonaccidental trauma. Radiology. 2010;256(3):898–905.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Abusive head trauma: parenchymal injury
    • By P. Ellen Grant, Director, Center on Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital and Associate Professor of Radiology at Harvard Medical School, Boston, Massachusetts, USA
  • Edited by Paul K. Kleinman
  • Book: Diagnostic Imaging of Child Abuse
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511862366.028
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Abusive head trauma: parenchymal injury
    • By P. Ellen Grant, Director, Center on Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital and Associate Professor of Radiology at Harvard Medical School, Boston, Massachusetts, USA
  • Edited by Paul K. Kleinman
  • Book: Diagnostic Imaging of Child Abuse
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511862366.028
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Abusive head trauma: parenchymal injury
    • By P. Ellen Grant, Director, Center on Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital and Associate Professor of Radiology at Harvard Medical School, Boston, Massachusetts, USA
  • Edited by Paul K. Kleinman
  • Book: Diagnostic Imaging of Child Abuse
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511862366.028
Available formats
×