Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-04-30T13:41:38.600Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Edmund C. Sutton
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Observational Astronomy
Techniques and Instrumentation
, pp. 369 - 377
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadie, J.et al. (LIGO and Virgo Collaborations) (2010a). Search for gravitational-wave inspiral signals associated with short gamma-ray bursts during LIGO's fifth and Virgo's first science run. ApJ, 715, 1453–1461.CrossRefGoogle Scholar
Abadie, J.et al. (LIGO and Virgo Collaborations) (2010b). All-sky search for gravitationalwave bursts in the first joint LIGO-GEO-Virgo run. Phys. Rev. D, 81, 102001.CrossRefGoogle Scholar
Abadie, J.et al. (2010c). Calibration of the LIGO gravitational wave detectors in the fifth science run. Nucl. Instrum. Methods Phys. Res. A, 624, 223–240.CrossRefGoogle Scholar
Abbasi, R. U.et al. (High Resolution Fly's Eye Collaboration) (2005). A study of the composition of ultra-high-energy cosmic rays using the High-Resolution Fly's Eye. ApJ, 622, 910–926.CrossRefGoogle Scholar
Abbasi, R. U.et al. (High Resolution Fly's Eye Collaboration (2008a). First observation of the Greisen-Zatsepin-Kuzmin suppression. Phys. Rev. Lett., 100, 101101.CrossRefGoogle ScholarPubMed
Abbasi, R. U.et al. (High Resolution Fly's Eye Collaboration (2008b). An upper limit on the electron-neutrino flux from the HiRes detector. ApJ, 684, 790–793.CrossRefGoogle Scholar
Abbasi, R. U.et al. (High Resolution Fly's Eye Collaboration) (2010a). Indications of proton-dominated cosmic-ray composition above 1.6 EeV. Phys. Rev. Lett., 104, 161101.Google ScholarPubMed
Abbasi, R. U.et al. (High Resolution Fly's Eye Collaboration) (2010b). Analysis of largescale anisotropy of ultra-high energy cosmic rays in HiRes data. ApJ, 713, L64–L68.CrossRefGoogle Scholar
Abbott, B.et al. (LIGO and TAMA Collaborations) (2005). Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts. Phys. Rev. D, 72, 122004.Google Scholar
Abdurashitov, J. N.et al. (1994). Results from SAGE (The Russian-American gallium solar neutrino experiment). Phys. Lett. B, 328, 234–248.CrossRefGoogle Scholar
Abraham, J.et al. (Pierre Auger Collaboration) (2008a). Observation of the suppression of the flux of cosmic rays above 4 × 1019eV. Phys. Rev. Lett., 101, 061101.CrossRefGoogle Scholar
Abraham, J.et al. (Pierre Auger Collaboration) (2008b). Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei. Astropart. Phys., 29, 188–204.CrossRefGoogle Scholar
Abraham, J.et al. (Pierre Auger Collaboration) (2010). Measurement of the depth of maximum of extensive air showers above 1018eV. Phys. Rev. Lett., 104, 091101.CrossRefGoogle Scholar
Abramowitz, M. & Stegun, I. A. (1970). Handbook of mathematical functions. Washington: National Bureau of Standards.Google Scholar
Accadia, T.et al. (2010). Status and perspectives of the Virgo gravitational wave detector. J. Phys. Conf. Ser., 203, 012074.CrossRefGoogle Scholar
Achterberg, A.et al. (IceCube Collaboration) (2006). First year performance of the IceCube neutrino telescope. Astropart. Phys., 26, 155–173.CrossRefGoogle Scholar
Achterberg, A.et al. (IceCube Collaboration) (2007). Detection of atmospheric muon neutrinos with the IceCube 9-string detector. Phys. Rev. D, 76, 027101.CrossRefGoogle Scholar
Agresti, J. (2008). Researches on non-standard optics for advanced gravitational wave interferometers. Ph.D. thesis, University of Pisa.
Aharmim, B.et al. (SNO Collaboration) (2005). Electron energy spectra, fluxes, and daynight asymmetries of 8B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory. Phys. Rev. C, 72, 055502.CrossRefGoogle Scholar
Ahlen, S. P. (1980). Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles. Rev. Mod. Phys., 52, 121–173.CrossRefGoogle Scholar
Ahmad, Q. R.et al. (SNO Collaboration) (2001). Measurement of the rate of ve + d → p + p + e- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett., 87, 071301.CrossRefGoogle Scholar
Ahmed, S. N.et al. (SNO Collaboration) (2004). Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity. Phys. Rev. Lett., 92, 181301.CrossRefGoogle ScholarPubMed
Ahn, H. S.et al. (CREAM Collaboration) (2007). The cosmic ray energetics and mass (CREAM) instrument. Nucl. Instrum. Methods Phys. Res. A, 579, 1034–1053.CrossRefGoogle Scholar
Ahrens, J.et al. (IceCube Collaboration) (2001). IceCube preliminary design document (revision 1.24; www.icecube.wisc.edu/science/publications/pdd/pdd.pdf).
Allen, C. W. (2001). Allen's astrophysical quantities, 4th edn., A. N., Cox, ed. New York: Springer.Google Scholar
Amblard, A., Cooray, A., & Kaplinghat, M. (2007). Search for gravitational waves in the CMB after WMAP3: foreground confusion and the optimal frequency coverage for foreground minimization. Phys. Rev. D, 75, 083508.CrossRefGoogle Scholar
Antonucci, R. (1993). Unified models for active galactic nuclei and quasars. ARA&A, 31, 473–521.CrossRefGoogle Scholar
Armstrong, J. W., Estabrook, F. B., & Tinto, M. (1999). Time-delay interferometry for space-based gravitational wave searches. ApJ, 527, 814–826.CrossRefGoogle Scholar
Arqueros, F., Hörandell, J. R., & Keilhauer, B. (2008). Air fluorescence relevant for cosmic-ray detection. Summary of the 5th fluorescence workshop, El Escorial, 2007. Nucl. Instrum. Methods Phys. Res. A, 597, 1–22.CrossRefGoogle Scholar
Ashie, Y.et al. (Super-Kamiokande Collaboration) (2005). Measurement of atmospheric neutrino oscillation parameters by Super-Kamiokande I. Phys. Rev. D, 71, 112005.CrossRefGoogle Scholar
The astronomical almanac for the year 2009 (2009). US Naval Observatory and HM Nautical Almanac Office (also http://asa.usno.navy.mil).
Bahcall, J. N., Pinsonneault, M. H., & Basu, S. (2001). Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. ApJ, 555, 990–1012.CrossRefGoogle Scholar
Bahcall, J. N., Serenelli, A. M., & Basu, S. (2005). New solar opacities, abundances, helioseismology, and neutrino fluxes. ApJ, 621, L85–L88.CrossRefGoogle Scholar
Ballardin, G.et al. (2001). Measurement of the VIRGO superattenuator performance for seismic noise suppression. Rev. Sci. Instrum., 72, 3643–3652.CrossRefGoogle Scholar
Beatty, J. J. & Westerhoff, S. (2009). The highest-energy cosmic rays. Annu. Rev. Nucl. Part. Sci., 59, 319–345.CrossRefGoogle Scholar
Bennett, C. L.et al. (2003). The microwave anisotropy probe mission. ApJ, 583, 1–23.CrossRefGoogle Scholar
Bessell, M. S. & Brett, J. M. (1988). JHKLM photometry: standard systems, passbands, and intrinsic colors. PASP, 100, 1134–1151.CrossRefGoogle Scholar
Bessell, M. S., Castelli, F., & Plez, B. (1998). Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O-M stars. A&A, 333, 231–250.Google Scholar
Bevington, P. R. & Robinson, D. K. (2003). Data reduction and error analysis for the physical sciences, 3rd edn. New York: McGraw-Hill.Google Scholar
Bildsten, L. (1998). Gravitational radiation and rotation of accreting neutron stars. ApJ, 501, L89–L93.CrossRefGoogle Scholar
Blair, D. G., ed. (1991). The detection of gravitational waves. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Born, M. & Wolf, E. (1999). Principles of optics, 7th edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Boyer, J. H., Knapp, B. C., Mannel, E. J., & Seman, M. (2002). FADC-based DAQ for HiRes Fly's Eye. Nucl. Instrum. Methods Phys. Res. A, 482, 457–474.CrossRefGoogle Scholar
Braccini, S.et al. (WG2 Suspension group) (2009). Superattenuator seismic isolation measurements by Virgo interferometer: a comparison with the future generation antenna. Einstein Telescope scientific note ET-025-09.
Bracewell, R. N. (2000). The Fourier transform and its applications, 3rd edn. New York: McGraw-Hill.
Burke, B. E., Mountain, R.W., Harrison, D. C.et al. (1991). An abuttable CCD imager for visible and X-ray focal plane arrays. IEEE Trans. Electron Dev., 38, 1069–1076.CrossRefGoogle Scholar
Callen, H. & Welton, T. (1951). Irreversibility and generalized noise. Phys. Rev., 83, 34–40.CrossRefGoogle Scholar
Caves, C. M. (1980a). Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett., 45, 75–79.CrossRefGoogle Scholar
Caves, C. M., Thorne, K. S., Drever, R. W. P., Sandberg, V. D., & Zimmermann, M. (1980b). On the measurement of a weak classical force coupled to a quantummechanical oscillator. I. Issues of principle. Rev. Mod. Phys., 52, 341–392.CrossRefGoogle Scholar
Caves, C. M. (1981). Quantum-mechanical noise in an interferometer. Phys. Rev. D, 23, 1693–1708.CrossRefGoogle Scholar
Cesarsky, C. J. (1980). Cosmic-ray confinement in the galaxy. ARA&A, 18, 289–319.CrossRefGoogle Scholar
Chang, F.-Y., Chen, P., Lin, G.-L., Noble, R., & Sydora, R. (2009). Magnetowave induced plasma wakefield acceleration for ultrahigh energy cosmic rays. Phys. Rev. Lett., 102, 111101.CrossRefGoogle ScholarPubMed
Cherry, M. L., Hartmann, G., Müller, D., & Prince, T. A. (1974). Transition radiation from relativistic electrons in periodic radiators. Phys. Rev. D, 10, 3594–3607.CrossRefGoogle Scholar
Chiang, H. C.et al. (2010). Measurement of cosmic microwave background polarization power spectra from two years of BICEP data. ApJ, 711, 1123–1140.CrossRefGoogle Scholar
Cleveland, B. T.et al. (1998). Measurement of the solar electron neutrino flux with the Homestake chlorine detector. ApJ, 496, 505–526.CrossRefGoogle Scholar
Corbitt, T., Chen, Y., Khalili, F.et al. (2006). Squeezed-state source using radiationpressure-induced rigidity. Phys. Rev. A, 73, 023801.CrossRefGoogle Scholar
Cox, R. T. (1946). Probability, frequency, and reasonable expectation. Am. J. Phys., 14, 1–13.CrossRefGoogle Scholar
Crutcher, R. M., Troland, T. H., Goodman, A. A.et al. (1993). OH Zeeman observations of dark clouds. ApJ, 407, 175–184.CrossRefGoogle Scholar
Crutcher, R. M., Troland, T. H., Lazareff, B., Paubert, G., & Kazès, I. (1999). Detection of the CN Zeeman effect in molecular clouds. ApJ, 514, L121–L124.CrossRefGoogle Scholar
Cutler, C. & Thorne, K. S. (2002). An overview of gravitational-wave sources. In Proceedings of 16th international conference on general relativity and gravitation (GR16), N., Bishop & S. D., Maharaj, eds., 72–111, Singapore: World Scientific.CrossRefGoogle Scholar
Cuttaia, F.et al. (2004). Analysis of the pseudocorrelation radiometers for the low frequency instrument onboard the PLANCK satellite. Proc. SPIE, 5498, 756–767.CrossRefGoogle Scholar
Davis, L. Jr. & Greenstein, J. L. (1951). The polarization of starlight by aligned dust grains. ApJ, 114, 206–240.CrossRefGoogle Scholar
den Herder, J. W.et al. (2001). The reflection grating spectrometer on board XMM-Newton. A&A, 365, L7–L17.Google Scholar
Diaconis, P. & Efron, B. (1983). Computer-intensive methods in statistics. Sci. Am., 248, 116–130.CrossRefGoogle Scholar
Efron, B. (1981). Censored data and the bootstrap. J. Am. Stat. Assoc., 76, 312–319.CrossRefGoogle Scholar
ESA/NASA (2009a). Laser Interferometer Space Antenna (LISA) Mission Concept, LISA-PRJ-RP-0001.
ESA/NASA (2009b). Laser Interferometer Space Antenna (LISA) Measurement Requirements Flowdown Guide, LISA-MSE-TN-0001.
Esposito, J. A.et al. (1999). In-flight calibration of EGRET on the Compton gamma-ray observatory. ApJS, 123, 203–217.CrossRefGoogle Scholar
Estabrook, F. B. & Wahlquist, H. D. (1975). Response of Doppler spacecraft tracking to gravitational radiation. Gen. Relativ. Gravit., 6, 439–447.CrossRefGoogle Scholar
Estabrook, F. B., Tinto, M., & Armstrong, J.W. (2000). Time-delay analysis of LISA gravitational wave data: elimination of spacecraft motion effects. Phys. Rev. D, 62, 042002.CrossRefGoogle Scholar
Falta, D., Fisher, R., & Khanna, G. (2010). Gravitational wave emission from the singledegenerate channel of type Ia supernovae. arXiv:1011.6387v1.
Forward, R. L. (1978). Wideband laser-interferometer gravitational-radiation experiment. Phys. Rev. D, 17, 379–390.CrossRefGoogle Scholar
Fryer, C. & Kalogera, V. (1997). Double neutron star systems and natal neutron star kicks. ApJ, 489, 244–253.CrossRefGoogle Scholar
Fukuda, Y.et al. (1998). Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett., 81, 1562–1567.CrossRefGoogle Scholar
Fukuda, S.et al. (2001). Solar 8B and hep neutrino measurements from 1258 days of Super-Kamiokande data. Phys. Rev. Lett., 86, 5651–5655.CrossRefGoogle ScholarPubMed
Gahbauer, F., Hermann, G., Hörandel, J. R., Müller, D., & Radu, A. A. (2004). A new measurement of the intensities of the heavy primary cosmic-ray nuclei around 1 TeV amu-1. ApJ, 607, 333–341.CrossRefGoogle Scholar
Gaisser, T. & Stanev, T. (2008). Cosmic rays. In Review of particle physics. Phys. Lett. B, 667, 254–260.Google Scholar
Gelman, A., Roberts, G. O., & Gilks, W. R. (1996). Efficient Metropolis jumping rules. In Bayesian statistics, Vol. 5, J., Bernardo, J., Berger, A., Dawid, & A., Smith, eds., 599–607, Oxford: Oxford University Press.Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis, 2nd edn. Boca Raton: CRC Press.Google Scholar
Genzel, R. & Karas, V. (2007). The galactic center. Proc. Int. Astron. Union Symp., 238, 173–180.Google Scholar
Ghez, A. M., Klein, B. L., Morris, M., & Becklin, E. E. (1998). High proper-motion stars in the vicinity of Sagittarius A*: evidence for a supermassive black hole at the center of our galaxy. ApJ, 509, 678–686.CrossRefGoogle Scholar
Gillespie, A. & Raab, F. (1993). Thermal noise in the test mass suspensions of a laser interferometer gravitational-wave detector prototype. Phys. Lett. A, 178, 357–363.CrossRefGoogle Scholar
Ginzburg, V. L. & Tsytovich, V. N. (1979). Several problems of the theory of transition radiation and transition scattering. Phys. Rep., 49, 1–89.CrossRefGoogle Scholar
Giunti, C. & Kim, C. W. (2007). Fundamentals of neutrino physics and astrophysics. Oxford:Oxford University Press.CrossRefGoogle Scholar
Goda, K., Mikhailov, E. E., Miyakawa, O.et al. (2008). Generation of a stable low-frequency squeezed vacuum field with periodically poled KTiOPO4 at 1064 nm. Opt. Lett., 33, 92–94.CrossRefGoogle ScholarPubMed
Goldreich, R. & Kylafis, N. D. (1981). On mapping the magnetic field direction in molecular clouds by polarization measurements. ApJ, 243, L75–L78.CrossRefGoogle Scholar
Gorbunov, D. S., Tinyakov, P. G., Tkachev, I. I., & Troitsky, S. V. (2004). Testing the correlations between ultrahigh-energy cosmic rays and BL Lac-type objects with HiRes stereoscopic data. JETP Lett., 80, 145–148.CrossRefGoogle Scholar
Goßler, S.et al. (2003). Mode-cleaning and injection optics of the gravitational-wave detector GEO600. Rev. Sci. Instrum., 74, 3787–3795.CrossRefGoogle Scholar
Gradshteyn, I. S. & Ryzhik, I. M. (1980). Table of integrals, series, and products (corrrected and enlarged edition), A., Jeffrey, ed. New York: Academic Press.Google Scholar
Gross, E. P. (1955). Shape of collision-broadened spectral lines. Phys. Rev., 97, 395–403.CrossRefGoogle Scholar
Hamaker, J. P. & Bregman, J. D. (1996). Understanding radio polarimetry. III. Interpreting the IAU/IEEE definitions of the Stokes parameters. A&AS, 117, 161–165.Google Scholar
Hamaker, J. P., Bregman, J. D., & Sault, R. J. (1996). Understanding radio polarimetry. I. Mathematical foundations. A&AS, 117, 137–147.Google Scholar
Hamamatsu, Photonics (2006). Photomultiplier tubes: basics and applications, 3rd edn.
Hampel, W.et al.(GALLEX Collaboration) (1999). GALLEX solar neutrino observations: results for GALLEX IV. Phys. Lett. B, 447, 127–133.CrossRef
Hanbury Brown, R., Jennison, R. C., & Das Gupta, >M. K. (1952). Apparent angular sizes of discrete radio sources: observations at Jodrell Bank, Manchester. Nature, 170, 1061–1063.CrossRefGoogle Scholar
Hecht, E. (2002). Optics, 4th edn. Reading: Addison-Wesley.Google Scholar
Helstrom, C. W. (1991). Probability and stochastic processes for engineers, 2nd edn. New York: Macmillan.Google Scholar
Hild, S., Chelkowski, S., Freise, A.et al. (2010). A xylophone configuration for a third generation gravitational wave detector. Class. Quantum Grav., 27, 015003.CrossRef
Hillas, A. M. (1984). The origin of ultra-high-energy cosmic rays. ARA&A, 22, 425–444.CrossRefGoogle Scholar
Hillas, A. M. (1996). Differences between gamma-ray and hadronic showers. Space Sci. Rev., 75, 17–30.CrossRefGoogle Scholar
Hopkins, A. M. & Beacom, J. F. (2006). On the normalization of the cosmic star formation history. ApJ, 651, 142–154.CrossRefGoogle Scholar
Horiuchi, S., Beacom, J. F., & Dwek, E. (2009). Diffuse supernova neutrino background is detectable in Super-Kamiokande. Phys. Rev. D, 79, 083013.CrossRefGoogle Scholar
Hu, W. & White, M. (1997). CMB anisotropies: total angular momentum method. Phys. Rev. D, 56, 596–615.CrossRefGoogle Scholar
Hughes, S. A. (2001). Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms. Phys. Rev. D, 64, 064004.CrossRefGoogle Scholar
Hulse, R. A. & Taylor, J. H. (1975). Discovery of a pulsar in a binary system. ApJ, 195, L51–L53.CrossRefGoogle Scholar
IAU (1974). Polarization definitions (Commission 40). Trans. Int. Astron. Union, 15B, 166.
IEEE (1969). IEEE standard #211: definitions of terms for radio wave propagation. IEEE Trans. Antennas Propag., AP-17, 270–275.
In't Zand, J. J. M. (1992). A coded-mask imager as monitor of galactic X-ray sources. Ph.D. thesis, University of Utrecht.
Irwin, K. D. & Hilton, G. C. (2005). Transition-edge sensors. In Cryogenic particle detection, C., Enss, ed. Topics in Applied Physics, 99, 63–149, Berlin: Springer.Google Scholar
Jackson, J. D. (1998). Classical electrodynamics, 3rd edn. New York: Wiley.Google Scholar
Jahoda, K., Markwardt, C. B., Radeva, Yet al. (2006). Calibration of the Rossi x-ray timing explorer proportional counter array. ApJS, 163, 401–423.CrossRefGoogle Scholar
Jansen, R. A. (2006). Astronomy with charged coupled devices (e-book: www.public.asu.edu/∼rjansen/ast598/ast598_jansen2006.pdf).
Jansen, F., Lumb, D., Altieri, B.et al. (2001). XMM-Newton observatory. I. The spacecraft and operations. A&A, 365, L1–L6.Google Scholar
Johnson, H. L. (1966). Astronomical measurements in the infrared. ARA&A, 4, 193–206.CrossRefGoogle Scholar
Johnson, H. L. & Morgan, W. W. (1953). Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas. ApJ, 117, 313–352.CrossRefGoogle Scholar
Kitchin, C. R. (2009). Astrophysical techniques, 5th edn. Boca Raton: CRC Press.Google Scholar
Kliger, D. S., Lewis, J. W., & Randall, C. E. (1990). Polarized light in optics and spectroscopy. Boston: Academic Press.Google Scholar
Kuroda, K.et al.(LCGT Collaboration) (2010). Status of LCGT. Class. Quantum Grav., 27, 084004.
Lamarre, J. M.et al. (2003). The Planck high frequency instrument, a third generation CMB experiment, and a full sky submillimeter survey. New Astron. Rev., 47, 1017–1024.CrossRefGoogle Scholar
Larson, D.et al. (2011). Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: power spectra and WMAP-derived parameters. ApJS, 192, 16.CrossRefGoogle Scholar
Lazarian, A. & Cho, J. (2005). Grain alignment in molecular clouds. In Astronomical polarimetry: current status and future directions, ASP Conference Series, 343 A. Adamson, C. Aspin, C. J. Davis, , & T., Fujiyoshi, eds. 333–345.
Lazarian, A., Goodman, A. A., & Myers, P. C. (1997). On the efficiency of grain alignment in dark clouds. ApJ, 490, 273–280.CrossRefGoogle Scholar
Lèna, P., Lebrun, F., & Mignard, F. (1998). Observational astrophysics, 2nd edn. Berlin: Springer.CrossRefGoogle Scholar
Loredo, T. J. (1992). Promise of Bayesian inference for astrophysics. In Statistical challenges in modern astronomy, E. D., Feigelson & G. J., Babu, eds., 275–306. New York: Springer-Verlag.CrossRefGoogle Scholar
Lyons, L. (1991). A practical guide to data analysis for physical science students. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
MacKay, D. J. C. (2003). Information theory, inference, and learning algorithms. Cambridge: Cambridge University Press.Google Scholar
Mathews, J. (1962). Gravitational multipole radiation. J. Soc. Indust. Appl. Math., 10, 768–780.CrossRefGoogle Scholar
Mathews, J. & Walker, R. L. (1970). Mathematical methods of physics. Menlo Park: Benjamin.
Matthews, J. N. (2010). Overview of the high resolution fly's eye: some results from the HiRes experiment. In Proc. 2009 Snowbird particle astrophysics and cosmology workshop, ASP Conference Series, 426, D. B., Kieda & P., Gondolo, eds., 3–10.Google Scholar
McKenzie, K., Grosse, N., Bowen, W. P.et al. (2004). Squeezing in the audio gravitationalwave detection band. Phys. Rev. Lett., 93, 161105.
Meers, B. J. (1988). Recycling in laser-interferometric gravitational-wave detectors. Phys. Rev. D, 38, 2317–2326.CrossRefGoogle ScholarPubMed
Mie, G. (1908). Beiträge zur optik trüber medien, speziell kolloidaler Metallösungen. Ann. Physik, 330, 377–445.CrossRefGoogle Scholar
Misner, C. W., Thorne, K. S., & Wheeler, M. A. (1973). Gravitation. San Francisco:Freeman.Google Scholar
Nyquist, H. (1928). Thermal agitation of electric charge in conductors. Phys. Rev., 32, 110–113.CrossRefGoogle Scholar
Ogliore, R. (2007). The sulfur, argon, and calcium isotopic composition of the galactic cosmic ray source. Ph.D. thesis, Caltech.
Oke, J. B. (1964). Photoelectric spectrophotometry of stars suitable for standards. ApJ, 140, 689–693.CrossRefGoogle Scholar
Oppenheimer, B. R. & Hinkley, S. (2009). High-contrast observations in optical and infrared astronomy. ARA&A, 47, 253–289.CrossRefGoogle Scholar
Papoulis, A. (1991). Probability, random variables, and stochastic processes, 3rd edn. New York: McGraw-Hill.Google Scholar
Perryman, M. A. C.et al. (1997). The HIPPARCOS catalogue. A&A, 323, L49–L52.Google Scholar
Peters, P. C. & Mathews, J. (1963). Gravitational radiation from point masses in a Keplerian orbit. Phys. Rev., 131, 435–440.CrossRefGoogle Scholar
Press, W. H. (1997). Understanding data better with Bayesian and global statistical methods. In Unsolved problems in astrophysics, J. N., Bahcall & J. P., Ostriker, eds., pp. 49–60, Princeton: Princeton University Press.Google Scholar
Press, W. H., Teukolsky, S. A, Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: the art of scientific computing, 3rd edn. Cambridge: Cambridge University Press.Google Scholar
Price, P. B. & Fleisher, R. L. (1971). Identification of energetic heavy nuclei with solid dielectric track detectors: applications to astrophysical and planetary studies. Annu. Rev. Nucl. Sci., 21, 295–334.CrossRefGoogle Scholar
Prior, G.(for SNO Collaboration) (2009). Results from the Sudbury Neutrino Observatory phase III. Nucl. Phys. B (Proc. Suppl.), 188, 96–100.CrossRef
Raffelt, G. (1996). Stars as laboratories for fundamental physics. Chicago: University of Chicago Press.Google Scholar
Ramsey, N. F. (1949). A new molecular beam resonance method. Phys. Rev., 76, 996.CrossRefGoogle Scholar
Reitz, J. R., Milford, F. J., & Christy, R.W. (1979). Foundations of electromagnetic theory, 3rd edn. Reading: Addison-Wesley.Google Scholar
Rieke, G. H. (2002). Detection of light: from the ultraviolet to the submillimeter, 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Roberts, G. O., Gelman, A., & Gilks, W. R. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Annu. Appl. Prob., 7, 110–120.Google Scholar
Röser, S. & Bastian, U., eds. (1991). PPM star catalogue. Heidelberg: Spektrum Akademischer Verlag.Google Scholar
Saikia, D. J. & Salter, C. J. (1988). Polarization properties of extragalactic radio sources. ARA&A, 26, 93–144.CrossRefGoogle Scholar
Sault, R. J.Hamaker, J. P., & Bregman, J. D. (1996). Understanding radio polarimetry. II. Instrumental calibration of an interferometer array. A&AS, 117, 149–159.Google Scholar
Schönfelder, V.et al. (1993). Instrument description and performance of the imaging gamma-ray telescope COMPTEL aboard the Compton gamma-ray observatory. ApJS, 86, 657–692.CrossRefGoogle Scholar
Schroeder, D. J. (2000). Astronomical optics, 2nd edn. San Diego: Academic Press.Google Scholar
Seidelmann, P. K. (2006). Explanatory supplement to the astronomical almanac, rev. edn. Mill Valley: University Science Books.Google Scholar
Sivia, D. S. (1996). Data analysis: a Bayesian tutorial. Oxford: Clarendon Press.Google Scholar
Soffitta, P.et al. (2003). Techniques and detectors for polarimetry in X-ray astronomy. Nucl. Instrum. Meth. A, 510, 170–175.CrossRefGoogle Scholar
Stone, E. C.et al. (1998). The solar isotope spectrometer for the Advanced Composition Explorer. Space Sci. Rev., 86, 357–408.CrossRefGoogle Scholar
Streetman, B. G. & Banerjee, S. K. (2005). Solid state electronic devices, 6th edn. Englewood Cliffs: Prentice Hall.Google Scholar
Strömgren, B. (1966). Spectral classification through photoelectric narrow-band photometry. ARA&A, 4, 433–472.CrossRefGoogle Scholar
Strüder, L., Briel, U., Dennerl, K.et al. (2001). The European photon imaging camera on XMM-Newton: the pn-CCD camera. A&A, 365, L18–L26.Google Scholar
Sutton, E. C. & Wandelt, B. D. (2006). Optimal image reconstruction in radio interferometry. ApJS, 162, 401–416.CrossRefGoogle Scholar
Sze, S. M. & Ng, K wok K. (2006). Physics of semiconductor devices, 3rd edn. Hoboken:Wiley.CrossRefGoogle Scholar
Tatarskii, V. I. (1971). The effects of the turbulent atmosphere on wave propagation. Jerusalem: Israel Program for Scientific Translations.Google Scholar
Thompson, A. R., Moran, J. M., & Swenson, G. W. (2001). Interferometry and synthesis in radio astronomy, 2nd edn. New York: Wiley.CrossRefGoogle Scholar
Thorne, K. S. (1987). Gravitational radiation. In Three hundred years of gravitation, S. W., Hawking & W., Israel, eds., 330–458. Cambridge: Cambridge University Press.Google Scholar
Timothy, J. G. (1983). Optical detectors for spectroscopy. PASP, 95, 810–834.CrossRefGoogle Scholar
Tinbergen, J. (1996). Astronomical polarimetry. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Tinto, M. & Armstrong, J. W. (1999). Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation. Phys. Rev. D, 59, 102003.CrossRefGoogle Scholar
Tinto, M. & Dhurandhar, S. V. (2005). Time-delay interferometry. Living Rev. Relativity, 8, 4 (http://www.livingreviews.org/lrr-2005-4).
Tretyakov, M. Yu., Koshelev, M. A., Dorovskikh, V. V., Makarov, D. S., and Rosenkranz, P. W. (2005). 60-GHz oxygen band: precise broadening and central frequencies of fine-structure lines, absolute absorption profile at atmospheric pressure, and revision of mixing coefficients. J. Mol. Spectrosc., 231, 1–14.CrossRefGoogle Scholar
Turner, M. J. L., Abbey, A., Arnaud, M., et al. (2001). The European photon imaging camera on XMM-Newton: the MOS cameras. A&A, 365, L27–L35.Google Scholar
Vahlbruch, H., Khalaidovski, A., Lastzka, N.et al. (2010). The GEO 600 squeezed light source. Class. Quantum Grav. 27, 084027.CrossRefGoogle Scholar
Vallerga, J. V., Kaplan, G. C., Siegmund, O. H. W.et al. (1989). Imaging characteristics of the extreme ultraviolet explorer microchannel plate detectors. IEEE Trans. Nucl. Sci., 36, 881–886.CrossRefGoogle Scholar
van de Hulst, H. C. (1957). Light scattering by small particles. New York: Dover.Google Scholar
Virtue, C. J.(SNO Collaboration) (2001). SNO and supernovae. Nucl. Phys. B Proc. Suppl., 100, 326–331.CrossRef
Wakely, S. P. (2002). Precision x-ray transition radiation detection. Astropart. Phys., 18, 67–87.CrossRefGoogle Scholar
Wang, L. & Wheeler, J. C. (2008). Spectropolarimetry of supernovae. ARA&A, 46, 433–474.CrossRefGoogle Scholar
Weber, J. (1966). Observation of the thermal fluctuations of a gravitational-wave detector. Phys. Rev. Lett., 17, 1228–1230.CrossRefGoogle Scholar
Weisberg, J. M. & Taylor, J. H. (2005). The relativistic binary pulsar B1913+16: thirty years of observations and analysis. In Binary radio pulsars, ASP Conference Series, 328, F. A., Razio & I. H., Stairs, eds., 25–31.
Wilson, R. N. (1996). Reflecting telescope optics I. Berlin: Springer.CrossRefGoogle Scholar
Wilson, R. N. & Delabre, B. (1995). New optical solutions for very large telescopes using a spherical primary. A&A, 294, 322–338.Google Scholar
Wolf, E. (2007). Introduction to the theory of coherence and polarization of light. Cambridge: Cambridge University Press.Google Scholar
Zuber, K. (2004). Neutrino physics. Bristol: Institute of Physics Publishing.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Edmund C. Sutton, University of Illinois, Urbana-Champaign
  • Book: Observational Astronomy
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511862335.022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Edmund C. Sutton, University of Illinois, Urbana-Champaign
  • Book: Observational Astronomy
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511862335.022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Edmund C. Sutton, University of Illinois, Urbana-Champaign
  • Book: Observational Astronomy
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511862335.022
Available formats
×