Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T04:05:33.615Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  05 May 2015

Martin Ammon
Affiliation:
Friedrich-Schiller-Universität, Jena, Germany
Johanna Erdmenger
Affiliation:
Max-Planck-Institut für Physik, Munich
Get access

Summary

Gauge/gravity duality is a major new development within theoretical physics. It brings together string theory, quantum field theory and general relativity, and has applications to elementary particle, nuclear and condensed matter physics. Gauge/gravity duality is of fundamental importance since it provides new links between quantum theory and gravity which are based on string theory. It has led to both new insights about the structure of string theory and quantum gravity, and new methods and applications in many areas of physics. In a particular case, the duality maps strongly coupled quantum field theories, which are generically hard to describe, to more tractable classical gravity theories. In this way, it provides a wealth of applications to strongly coupled systems. Examples include theories similar to low-energy quantum chromodynamics (QCD), the theory of strong interactions in elementary particle physics, and models for quantum phase transitions relevant in condensed matter systems.

Gauge/gravity duality realises the holographic principle and is therefore referred to as holography. The holographic principle states that the entire information content of a quantum gravity theory in a given volume can be encoded in an effective theory at the boundary surface of this volume. The theory describing the boundary degrees of freedom thus encodes all information about the bulk degrees of freedom and their dynamics, and vice versa. The holographic principle is of very general nature and is expected to be realised in many examples. In many of these cases, however, the precise form of the boundary theory is unknown, so that it cannot be used to describe the bulk dynamics.

String theory, however, gives rise to a precise realisation of the holographic principle, in which both bulk and boundary theory are known: this is gauge/gravity duality. In this case, a quantum field theory at the boundary, which involves a gauge symmetry, is conjectured to be equivalent to a theory involving gravity in the bulk. Moreover, string theory provides many examples of dualities: a physical theory may generically have different equivalent formulations which are referred to as being dual to each other.

Type
Chapter
Information
Gauge/Gravity Duality
Foundations and Applications
, pp. ix - xii
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Martin Ammon, Friedrich-Schiller-Universität, Jena, Germany, Johanna Erdmenger, Max-Planck-Institut für Physik, Munich
  • Book: Gauge/Gravity Duality
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511846373.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Martin Ammon, Friedrich-Schiller-Universität, Jena, Germany, Johanna Erdmenger, Max-Planck-Institut für Physik, Munich
  • Book: Gauge/Gravity Duality
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511846373.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Martin Ammon, Friedrich-Schiller-Universität, Jena, Germany, Johanna Erdmenger, Max-Planck-Institut für Physik, Munich
  • Book: Gauge/Gravity Duality
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511846373.001
Available formats
×