Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-10T06:32:29.953Z Has data issue: false hasContentIssue false

7 - Air breathers under water: diving mammals and birds

Published online by Cambridge University Press:  05 June 2012

Göran E. Nilsson
Affiliation:
Universitetet i Oslo
Get access

Summary

Introduction

Most people know that seals spend most of their time, and whales all of their time, in water, but research over the last few decades has shown that several species of both orders of these air-breathing mammals spend as much as 80–90% of the time under water. Moreover, sperm whales (Physeter catodon) (Watkins et al., 1985) and southern elephant seals (Mirounga leonina) (Hindell et al., 1992) normally dive to 300–600 m, but may dive to more than 1000 m and occasionally remain submerged for a staggering 2 hours. Hooded seals (Cystophora cristata) normally also dive to 300–600 m with dive durations of 5–25 minutes, but some individuals specialize in repetitive deep diving to more than 1000 m, with durations of up to one hour (Folkow and Blix, 1999). Even birds such as the emperor penguin (Aptenodytes forsteri) dive to depths of 550 m with durations of more than 15 minutes (Kooyman and Kooyman, 1995). How is this achieved? Let us look at what physiological problems life under water imposes on air-breathing animals such as whales, seals, penguins, and ducks – but before we do, we have to define ‘diving,’ for reasons that will be obvious as we go along. Thus, in the following, ‘experimental dive’ implies that the animal is held under water more or less against its own will, whereas ‘voluntary dive’ implies that an animal swimming freely (in a pond or in the ocean) dives of its own free will.

Type
Chapter
Information
Respiratory Physiology of Vertebrates
Life With and Without Oxygen
, pp. 222 - 264
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, H. T. (1959). Depression of metabolism in the duck during diving. Acta Physiol. Scand. 46, 234–9.CrossRefGoogle Scholar
Andersen, H. T. (1963). The reflex nature of the physiological adjustments to diving, and their afferent pathway. Acta Physiol. Scand. 58, 263–73.CrossRefGoogle ScholarPubMed
Andersen, H. T. (1966). Physiological adaptation in diving vertebrates. Physiol. Rev. 46, 212–43.CrossRefGoogle ScholarPubMed
Andersen, H. T. and Løvø, A. (1964). The effect of carbon dioxide on the respiration of avian divers (ducks). Comp. Biochem. Physiol. 12, 451–6.CrossRefGoogle Scholar
Anderson, T. R., Jarvis, C. R., Biedermann, A. J., Molnar, C. and Andrew, R. D. (2005). Blocking the anoxic depolarization protects without functional compromise following simulated stroke in cortical brain slices. J. Neurophysiol. 93, 963–79.CrossRefGoogle ScholarPubMed
Ashwell-Erickson, S. and Elsner, R. (1981). The energy cost of free existence for Bering Sea harbour and spotted seals. In: The Eastern Bering Sea Shelf: Oceanography and Resources, ed. Hood, D. W. and Calder, J. A.. Washington, DC: US Dept. of Commerce 2, pp. 879–99.Google Scholar
Barger, J. L., Brand, M. D., Barnes, B. M. and Boyer, B. B. (2003). Tissue-specific depression of mitochondrial proton leak and substrate oxidation in hibernating arctic ground squirrels. Am. J. Physiol. 284, R1306–13.Google ScholarPubMed
Bentmann, A., Schmidt, M., Reuss, S., Wolfrum, U., Hankeln, T. and Burmester, T. (2005). Divergent distribution in vascular and avascular mammalian retinae links neuroglobin to cellular respiration. J. Biol. Chem. 280, 20660–5.CrossRefGoogle ScholarPubMed
Bevan, R. M., Boyd, I. L., Butler, P. J., Reid, K. R., Woakes, A. J. and Croxall, J. (1997). Heart rates and abdominal temperatures of free-ranging South Georgian shags. J. Exp. Biol. 200, 661–75.Google ScholarPubMed
Bickler, P. E. (1992). Cerebral anoxia tolerance in turtles: regulation of intracellular calcium and pH. Am. J. Physiol. 263, R1298–302.Google Scholar
Bickler, P. E. and Buck, L. T. (2007) Hypoxia tolerance in reptiles, amphibians and fishes: life with variable oxygen availability. Annu. Rev. Physiol. 69, 145–70.CrossRefGoogle ScholarPubMed
Bishop, T., St-Pierre, J. and Brand, M. D. (2002). Primary causes of decreased mitochondrial oxygen consumption during metabolic depression in snail cells. Am. J. Physiol. 282, R372–82.Google ScholarPubMed
Blix, A. S. (1971). Creatine in diving animals – a comparative study. Comp. Biochem. Physiol. A 40, 805–7.CrossRefGoogle ScholarPubMed
Blix, A. S. and Berg, T. (1974). Arterial hypoxia and the diving responses of ducks. Acta Physiol. Scand. 92, 566–8.CrossRefGoogle ScholarPubMed
Blix, A. S., and Folkow, B. (1983). Cardiovascular adjustments to diving in mammals and birds. In: Handbook of Physiology. The Cardiovascular System III. Peripheral Circulation and Organ Blood Flow, ed. Shepherd, J. T. and Abboud, F. M.. Bethesda: American Physiological Society, pp. 917–45.Google Scholar
Blix, A. S. and From, S. H. (1971). Lactate dehydrogenase in diving animals – a comparative study with special reference to the eider (Somateria mollissima). Comp. Biochem. Physiol. B 40, 579–84.CrossRefGoogle Scholar
Blix, A. S. and Hol, R. (1973). Ventricular dilatation in the diving seal. Acta Physiol. Scand. 87, 431–2.CrossRefGoogle ScholarPubMed
Blix, A. S., Elsner, R. and Kjekshus, J. K. (1983). Cardiac output and its distribution through A-V shunts and capillaries during and after diving in seals. Acta Physiol. Scand. 118, 109–16.CrossRefGoogle Scholar
Blix, A. S., Folkow, L. P. and Walloe, L. (2002). How seals may cool their brains during prolonged diving. J. Physiol. 543.P, 7P.Google Scholar
Blix, A. S., Rettedal, A. and Stokkan, K. -A. (1976a). On the elicitation of the diving responses in ducks. Acta Physiol. Scand. 98, 478–83.CrossRefGoogle ScholarPubMed
Blix, A. S., Kjekshus, J. K., Enge, I. and Bergan, A. (1976b). Myocardial blood flow in the diving seal. Acta Physiol. Scand. 96, 227–8.CrossRefGoogle ScholarPubMed
Boyle, R. (1670). New pneumatical experiments about respiration. Philos. Trans. R. Soc. Lond. 5, 2011–31.Google Scholar
Brix, O., Condo, S. G., Bargard, A., Tavazzi, B. and Giardina, B. (1990a). Temperature modulation of oxygen transport in a diving mammal (Balaenoptera acutorostrata). Biochem. J. 271, 509–13.CrossRefGoogle Scholar
Brix, O., Ekker, M., Condo, S. G., Scatena, R., Clementi, M. E. and Giardina, B. (1990b). Lactate does facilitate oxygen unloading from the haemoglobin of the whale Balaenoptera acutorostrata, after diving. Arct. Med. Res. 49, 39–42.Google ScholarPubMed
Bron, K. M., Jr. Murdaugh, H. V., Millen, J. E., Lenthall, R., Raskin, P. and Robin, E. D. (1966). Arterial constrictor response in a diving mammal. Science 152, 540–3.CrossRefGoogle Scholar
Brown, A. M.and Ransom, B. R. (2007). Astrocyte glycogen and brain metabolism. Glia 55, 1263–71.CrossRefGoogle Scholar
Bryan, R. M.and Jones, D. R. (1980). Cerebral energy metabolism in diving and non-diving birds during hypoxia and apnoeic asphyxia. J. Physiol. 299, 323–36.CrossRefGoogle ScholarPubMed
Bryden, M. M.and Lim, G. H. K. (1969). Blood parameters of the southern elephant seal (Mirounga leonina) in relation to diving. Comp. Biochem. Physiol. 28, 139–48.CrossRefGoogle Scholar
Buck, L. T.and Bickler, P. E. 1998. Adenosine and anoxia reduce N-methyl-D-aspartate receptor open probability in turtle cerebrocortex. J. Exp. Biol. 210, 289–97.Google Scholar
Burmester, T., Ebner, B., Weich, B. and Hankeln, T. (2002). Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissue. Mol. Biol. Evol. 19, 416–21.CrossRefGoogle Scholar
Burmester, T., Weich, B., Reinhardt, S. and Hankeln, T. (2000). A vertebrate globin expressed in the brain. Nature 407, 520–3.CrossRefGoogle Scholar
Burns, J. M., Lestyk, K. C., Folkow, L. P., Hammill, M. O. and Blix, A. S. (2007). Size and distribution of oxygen stores in harp and hooded seals from birth to maturity. J. Comp. Physiol. B 177, 687–700.CrossRefGoogle ScholarPubMed
Burow, A. (1838). Ueber des Gefässystem der Robben. Arch. Anat. Physiol. Leipzig 5, 230–58.Google Scholar
Butler, P. J. (2006). Aerobic dive limit. What is it and is it always used appropriately?Comp. Biochem. Physiol. A 145, 1–6.CrossRefGoogle ScholarPubMed
Butler, P. J. and Jones, D. R. (1982). The comparative physiology of diving vertebrates. In Advances in Comparative Physiology and Biochemistry, Vol. 8, ed. Lowenstein, O. E.. New York: Academic Press, pp. 179–364.Google Scholar
Butler, P. J. and Jones, D. R. (1997). Physiology of diving of birds and mammals. Physiol. Rev. 77, 837–99.CrossRefGoogle ScholarPubMed
Butler, P. J. and Woakes, A. J. (1975). Changes in heart rate and respiratory frequency associated with natural submersion of ducks. J. Physiol. 256, 73–4.Google Scholar
Cabanac, A., Folkow, L. P. and Blix, A. S. (1997). Volume capacity and contraction control of the seal spleen. J. Appl. Physiol. 82, 1989–94.CrossRefGoogle ScholarPubMed
Cabanac, A. J., Messelt, E. B., Folkow, L. P. and Blix, A. S. (1999). The structure and blood-storing function of the spleen of the hooded seal. J. Zool. 248, 75–81.CrossRefGoogle Scholar
Caputa, M., Folkow, L. and Blix, A. S. (1998). Rapid brain cooling in diving ducks. Am. J. Physiol. 275, R363–71.Google ScholarPubMed
Castellini, J. M. and Castellini, M. A. (1993). Estimation of splenic volume and its relationship to long-duration apnea in seals. Physiol. Zool. 66, 619–27.CrossRefGoogle Scholar
Castellini, M. A., Davis, R. W. and Kooyman, G. L. (1988). Blood chemistry regulation during repetitive diving in Weddell seals. Physiol. Zool. 61, 379–86.CrossRefGoogle Scholar
Castellini, M. A., Kooyman, G. L. and Ponganis, P. J. (1992). Metabolic rates of freely diving Weddell seals: correlations with oxygen stores, swim velocity and diving duration. J. Exp. Biol. 165, 181–94.Google ScholarPubMed
Clausen, G. and Ersland, A. (1969). The respiratory properties of the blood of the bladdernose seal (Cystophora cristata). Respir. Physiol. 7, 1–6.CrossRefGoogle Scholar
Danbolt, N. C. (2001). Glutamate uptake. Prog. Neurobiol. 65, 1–105.CrossRefGoogle ScholarPubMed
Davis, R. W. (1983). Lactate and glucose metabolism in the resting and diving harbour seal (Phoca vitulina). J. Comp. Physiol. 153, 275–88.CrossRefGoogle Scholar
Davis, R. W., Williams, T. M. and Kooyman, G. L. (1985). Swimming metabolism of yearling and adult harbour seals. Physiol. Zool. 58, 590–6.CrossRefGoogle Scholar
Davis, R. W., Castellini, M. A., Kooyman, G. L. and Maue, R. (1983). Renal glomerular filtration rate and hepatic blood flow during voluntary diving in Weddell seals. Am. J. Physiol. 245, R743–8.Google ScholarPubMed
Davis, R. W., Castellini, M. A., Williams, T. M. and Kooyman, G. L. (1991). Fuel homeostasis in the harbour seal during submerged swimming. J. Comp. Physiol. B 160, 627–35.CrossRefGoogle Scholar
Davis, R. W., Polasek, L., Watson, R., Fuson, A., Williams, T. M. and Kanatous, S. B. (2004). The diving paradox: new insight into the role of the dive response in air-breathing vertebrates. Comp. Biochem. Physiol. A 138, 263–8.CrossRefGoogle Scholar
Djojosugito, A. M., Folkow, B. and Yonce, L. R. (1969). Neurogenic adjustments of muscle blood flow, cutaneous A-V shunt flow and of venous tone during ‘diving’ in ducks. Acta Physiol. Scand. 75, 377–86.CrossRefGoogle Scholar
Doll, C. J., Hochachka, P. W. and Reiner, P. B. (1993). Reduced ionic conductances in turtle brain. Am. J. Physiol. 265, R929–33.Google Scholar
Dormer, K. J., Denn, M. J. and Stone, H. L. (1977). Cerebral blood flow in the sea lion (Zalophus californianus) during voluntary dives. Comp. Biochem. Physiol. A 58, 11–8.CrossRefGoogle Scholar
Drabek, C. M. (1975). Some anatomical aspects of the cardiovascular system of Antarctic seals and their possible functional significance in diving. J. Morphol. 145, 85–92.CrossRefGoogle ScholarPubMed
Eliassen, E. (1960). Cardiovascular responses to submersion asphyxia in avian divers. Årbok Univ. Bergen, Mat.-Nat., ser. no. 2, pp. 1–76.Google Scholar
Elsner, R. and Meiselman, H. J. (1995). Splenic oxygen storage and blood viscosity in seals. Mar. Mamm. Sci. 11, 93–6.CrossRefGoogle Scholar
Elsner, R., Blix, A. S. and Kjekshus, J. K. (1978). Tissue perfusion and ischemia in diving seals. Physiologist 21, 33.Google Scholar
Elsner, R., Hanafee, W. N. and Hammond, D. D. (1971). Angiography of the inferior vena cava of the harbour seal during simulated diving. Am. J. Physiol. 220, 1155–7.Google Scholar
Elsner, R., Kooyman, G. L. and Drabek, C. M. (1969). Diving durations in pregnant Weddell seals. In Antrctic Ecology, ed. Holdgate, M.. New York: Academic Press, pp. 477–82.Google Scholar
Elsner, R., Franklin, D. L., Citters, R. L. and Kenney, D. W. (1966). Cardiovascular defence against asphyxia. Science 153: 941–9.CrossRefGoogle Scholar
Elsner, R., Øyasæter, S., Almaas, R. and Saugstad, O. D. (1998). Diving seals, ischemia-reperfusion and oxygen radicals. Comp. Biochem. Physiol. A 119, 975–80.CrossRefGoogle ScholarPubMed
Elsner, R, Shurley, J. T., Hammond, D. D. and Brooks, R. E. (1970). Cerebral tolerance to hypoxemia in asphyxiated Weddell seals. Resp. Physiol. 9, 287–97.CrossRefGoogle ScholarPubMed
Elsner, R., Wartzok, D., Sonfrank, N. B. and Kelly, B. P. (1989). Behavioral and physiological reactions of arctic seals during under-ice pilotage. Can. J. Zool. 67, 2506–13.CrossRefGoogle Scholar
Elsner, R., Millard, R. W., Kjekshus, J. K., White, F., Blix, A. S. and Kemper, W. S. (1985). Coronary blood flow and myocardial segment dimensions during simulated dives in seals. Am. J. Physiol. 249, H1119–26.Google ScholarPubMed
Erecińska, M., Cherian, S. and Silver, I. A. (2004). Energy metabolism in mammalian brain during development. Prog. Neurobiol. 73, 397–445.CrossRefGoogle ScholarPubMed
Falke, K. J., Hill, R. D., Qvist, J., et al. (1985). Seal lung collapse during free diving: evidence from arterial nitrogen tensions. Science 229, 556–8.CrossRefGoogle ScholarPubMed
Ferren, H. and Elsner, R. (1979). Diving physiology of the ringed seal: adaptations and implications. Proc. 29th Alaska Sci. Conf., pp. 379–87.Google Scholar
Flögel, U., Godecke, A., Klotz, L. O. and Schrader, J. (2004). Role of myoglobin in the antioxidant defense of the heart. FASEB J. 18, 1156–8.CrossRefGoogle Scholar
Folkow, L. P. and Blix, A. S. (1992). Metabolic rates of minke whales (Balaenoptera acutorostrata) in cold water. Acta Physiol. Scand. 146, 141–50.CrossRefGoogle Scholar
Folkow, L. P. and Blix, A. S. (1999). Diving behaviour of hooded seals (Cystophora cristata) in the Greenland and Norwegian Seas. Polar Biol. 22, 61–74.CrossRefGoogle Scholar
Folkow, B., Fuxe, K. and Sonnenschein, R. R. (1966). Responses of skeletal musculature in its vasculature during ‘diving’ in the duck: peculiarities of the adrenergic vasoconstrictor innervation. Acta Physiol. Scand. 67, 327–42.CrossRefGoogle ScholarPubMed
Folkow, B., Nilsson, N. J. and Yonce, L. R. (1967). Effects of ‘diving’ on cardiac output in ducks. Acta Physiol. Scand. 70, 347–61.CrossRefGoogle ScholarPubMed
Folkow, L. P., Ramirez, J. M., Ludvigsen, S., Ramirez, N. and Blix, A. S. (2008). Remarkable neuronal hypoxia tolerance in the deep-diving adult hooded seal(Cystophora cristata). Neurosci. Lett. 446, 147–150.CrossRefGoogle ScholarPubMed
Fraser, K. P. P., Houlihan, D. F., Lutz, P. L., Leone-Kabler, S., Manuel, L. and Brechin, J. G. (2001) Complete suppression of protein synthesis during anoxia with no post-anoxia protein synthesis debt in the red-eared slider turtle Trachemys scripta elegans. J. Exp. Biol. 204, 4353–60.Google ScholarPubMed
Fuson, A. L., Cowan, D. F., Kanatous, S. B., Polasek, L. K. and Davis, R. W. (2003). Adaptations to diving hypoxia in the heart, kidneys and splanchnic organs of harbour seals (Phoca vitulina). J. Exp. Biol. 206, 4139–54.CrossRefGoogle Scholar
Gabbot, G. R. J. and Jones, D. R. (1991). The effect of brain transection on the response to forced submergence in ducks. J. Auton. Nerv. Syst. 36, 65–74.CrossRefGoogle Scholar
George, J. C. and Ronald, K. (1973). The harp seal. XXV. Ultrastructure and metabolic adaptation of skeletal muscle. Can J. Zool. 51, 833–40.CrossRefGoogle ScholarPubMed
Glezer, I. I., Jacobs, M. S. and Morgane, P. J. (1987). Ultrastructure of the blood brain barrier in the dolphin (Stenella coeruleoalba). Brain Res. 414, 205–18.CrossRefGoogle Scholar
Globus, M. Y., Alonso, O., Dietrich, W. D., Busto, R. and Ginsberg, M. D. (1995). Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J. Neurochem. 65, 1704–11.CrossRefGoogle ScholarPubMed
Gozal, D., Daniel, J. M. and Dohanich, G. P. (2001). Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat. J. Neurosci. 21, 2442–50.CrossRefGoogle ScholarPubMed
Green, J. A., Halsey, L. G., Butler, P. J. and Holder, R. L. (2007). Estimating the rate of oxygen consumption during submersion from the heart rate of diving animals. Am. J. Physiol. 292, R2028–38.Google ScholarPubMed
Guppy, M. and Withers, P. (1999). Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol. Rev. 74, 1–40.CrossRefGoogle ScholarPubMed
Guppy, M., Hill, R. D., Schneider, R. C., Qvist, J., Liggins, G. C., Zapol, W. M. and Hochachka, P. W. (1986). Microcomputer assisted metabolic studies of voluntary diving of Weddell seals. Am. J. Physiol. 250, R175–87.Google ScholarPubMed
Guyton, G. P., Stanek, K. S., Sneider, R. C., et al. (1995). Myoglobin saturation in free-diving Weddell seals. J. Appl. Physiol. 79, 1148–55.CrossRefGoogle ScholarPubMed
Haggblom, L., Terwilliger, R. C. and Terwilliger, N. B. (1988). Changes in myoglobin and lactate dehydrogenase in muscle tissues of a diving bird, the pigeon guillemot, during maturation. Comp. Biochem. Physiol. B 91, 273–77.CrossRefGoogle ScholarPubMed
Halasz, N. A., Elsner, R., Garvie, R. S. and Grotke, G. T. (1974). Renal recovery from ischemia: a comparative study of harbour seal and dog kidneys. Am. J. Physiol. 227, 1331–5.Google Scholar
Hance, A. J., Robin, E. D., Halter, J. B., et al. (1982). Hormonal changes and enforced diving in the harbour seal. II. Plasma catecholamines. Am. J. Physiol. 242, R528–32.Google ScholarPubMed
Handrich, Y. R., Bevan, R., Charrassin, J.-B., et al. (1997). Hypothermia in foraging king penguins. Nature 388, 64–7.CrossRefGoogle Scholar
Hankeln, T., Wystub, S., Laufs, T., et al. (2004). The cellular and subcellular localization of neuroglobin and cytoglobin – a clue to their function?IUBMB Life 56, 671–9.CrossRefGoogle ScholarPubMed
Henden, T., Aasum, E., Folkow, L., Mjøs, O. D., Lathrop, D. A. and Larsen, T. S. (2004). Endogenous glycogen prevents calcium overload and hypercontracture in harp seal myocardial cells during simulated ischemia. J. Mol. Cell. Cardiol. 37, 43–50.CrossRefGoogle ScholarPubMed
Hill, R. D., Schneider, R. C., Liggins, G. C.et al. (1987). Heart rate and body temperature during free diving of Weddell seals. Am. J. Physiol. 253, R344–51.Google ScholarPubMed
Hindell, M. A., Slip, D. J., Burton, H. R. and Bryden, M. M. (1992). Physiological implications of continuous, prolonged and deep dives of the southern elephant seal (Mirounga leonina). Can. J. Zool. 70, 370–9.CrossRefGoogle Scholar
Hochachka, P. W. (1979). Metabolic status during diving and recovery in marine mammals. Int. Rev. Physiol. 20, 253–87.Google ScholarPubMed
Hochachka, P. W. (1986a). Metabolic arrest. Intensive Care Med. 12, 127–33.CrossRefGoogle ScholarPubMed
Hochachka, P. W. (1986b). Defense strategies against hypoxia and hypothermia. Science 231, 234–41.CrossRefGoogle ScholarPubMed
Hochachka, P. W., Castellini, J. M., Hill, R. D., et al. (1988). Protective metabolic mechanisms during liver ischemia: transferable lessons from long-diving animals. Mol. Cell. Biochem. 84, 77–85.CrossRefGoogle ScholarPubMed
Hochachka, P. W., Liggins, G. C., Guyton, G. P., et al. (1995). Hormonal regulatory adjustments during voluntary diving in Weddell seals. Comp. Biochem. Physiol. B 112, 361–75.CrossRefGoogle ScholarPubMed
Hochachka, P. W., Liggins, G. C., Qvist, J., et al. (1977). Pulmonary metabolism during diving: conditioning blood for the brain. Science 198, 831–3.CrossRefGoogle Scholar
Hochachka, P. W., Buck, L. T., Doll, C. and Land, S. C. (1996). Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc. Natl. Acad. Sci. USA 93, 9493–9.CrossRefGoogle ScholarPubMed
Hol, R., Blix, A. S. and Myhre, H. O. (1975). Selective redistribution of the blood volume in the diving seal (Pagophilus groenlandicus). Rapp. P-v. Reun. Cons. Int. Explor. Mer. 169, 423–32.Google Scholar
Hong, S. K., Ashwell-Erickson, S., Gigliotti, P. and Elsner, R. (1982). Effects of anoxia and low pH on organic ion transport and electrolyte distribution in harbour seal (Phoca vitulina) kidney slices. J. Comp. Physiol. B 149, 19–24.CrossRefGoogle Scholar
Irvine, L. G., Hindell, M. A., Hoff, J. and Burton, H. R. (2000). The influence of body size on dive duration of underyearling southern elephant seals. J. Zool. 251, 463–71.CrossRefGoogle Scholar
Irving, L., Scholander, P. F. and Grinnell, S. W. (1942). The regulation of arterial blood pressure in the seal during diving. Am. J. Physiol. 135, 557–66.Google Scholar
Jobsis, P. D., Ponganis, P. J. and Kooyman, G. L. (2001). Effects of training on forced submersion responses in harbour seals. J. Exp. Biol. 204, 3877–85.Google Scholar
Jones, D. R. and Purves, M. J. (1970). The carotid body in the duck and the consequences of its denervation upon the cardiac responses to immersion. J. Physiol. 211, 279–94.CrossRefGoogle ScholarPubMed
Kanatous, S. B., Elsner, R. and Mathieu-Costello, O. (2001). Muscle capillary supply in harbour seals. J. Appl. Physiol. 90, 1919–26.CrossRefGoogle Scholar
Kanwisher, J., Gabrielsen, G. and Kanwisher, N. (1981). Free and forced diving in birds. Science 211, 717–19.CrossRefGoogle ScholarPubMed
Kerem, D. and Elsner, R. (1973). Cerebral tolerance to asphyxial hypoxia in the harbour seal. Resp. Physiol. 19, 188–200.CrossRefGoogle Scholar
Kerem, D., Hammond, D. D. and Elsner, R. (1973). Tissue glycogen levels in the Weddell seal: a possible adaptation to asphyxial hypoxia. Comp. Biochem. Physiol. 45, 731–6.CrossRefGoogle ScholarPubMed
Kjekshus, J. K., Maroko, P. K. and Sobel, B. E. (1972). Distribution of myocardial injury and its relation to epicardial ST-segment changes after coronary artery occlusion in the dog. Cardiovasc. Res. 6, 490–9.CrossRefGoogle ScholarPubMed
Kjekshus, J. K., Blix, A. S., Hol, R., Elsner, R. and Amundsen, E. (1982). Myocardial blood flow and metabolism in the diving seal. Am. J. Physiol. 242, R97–104.Google ScholarPubMed
Koopman, H. N., Westgate, A. J. and Read, A. J. (1999). Hematology values of wild harbour porpoises (Phocoena phocoena) from the Bay of Fundy, Canada. Mar. Mamm. Sci. 15, 52–64.CrossRefGoogle Scholar
Kooyman, G. L. (1965). Techniques used in measuring diving capacities of Weddell seals. Polar Rec. 12, 391–4.CrossRefGoogle Scholar
Kooyman, G. L. and Campbell, W. B. (1972). Heart rate in freely diving Weddell seals (Leptonychotes weddellii). Comp. Biochem. Physiol. A 43, 31–6.CrossRefGoogle Scholar
Kooyman, G. L. and Kooyman, T. G. (1995). Diving behaviour of emperor penguins nuturing chicks at Coulman Island, Antarctica. Condor 97, 536–49.CrossRefGoogle Scholar
Kooyman, G. L., Hammond, D. D. and Schroeder, J. P. (1970). Bronchograms and tracheograms of seals under pressure. Science 169, 82–4.CrossRefGoogle ScholarPubMed
Kooyman, G. L., Castellini, M. A., Davis, R. W. and Maue, R. A. (1983). Aerobic diving limits of immature Weddell seals. J. Comp. Physiol. 151, 171–4.CrossRefGoogle Scholar
Kooyman, G. L., Kerem, D. H., Campbell, W. B. and Wright, J. J. (1971). Pulmonary function in freely diving Weddell seals, Leptonychotes weddelli. Respir. Physiol. 12, 271–82.CrossRefGoogle ScholarPubMed
Kooyman, G. L., Wahrenbrock, E. A., Castellini, M. A., Davis, R. A. and Sinnett, E. E. (1980). Aerobic and anaerobic metabolism during diving in Weddell seals: evidence of preferred pathways from blood chemistry and behavior. J. Comp. Physiol. 138, 335–46.CrossRefGoogle Scholar
Krockenberger, M. B. and Bryden, M. M. (1994). Rate of passage of digesta through the alimentary tract of southern elephant seals (Mirounga leonina) (Carnivora: Phocidae). J. Zool. 234, 229–37.CrossRefGoogle Scholar
Kvadsheim, P. H., Folkow, L. P and Blix, A. S. (2005). Inhibition of shivering in hypothermic seals during diving. Am. J. Physiol. 289, R326–31.Google ScholarPubMed
Laufs, T. L., Wystub, S., Reuss, S., Burmester, T., Saaler-Reinhardt, S. and Hankeln, T. (2004). Neuron-specific expression of neuroglobin in mammals. Neurosci. Lett. 362, 83–6.CrossRefGoogle ScholarPubMed
Boeuf, B. J., Costa, D. P., Huntley, A. C. and Feldkamp, S. D. (1988). Continuous, deep diving in female northern elephant seals. Can. J. Zool. 66, 446–58.CrossRefGoogle Scholar
Leith, D. E. (1976). Comparative mammalian respiratory mechanics. Physiologist 19, 485–510.Google ScholarPubMed
Lenfant, C., Johansen, K. and Torrance, J. D. (1970). Gas transport and oxygen storage capacity in some pinnipeds and the sea otter. Respir. Physiol. 9, 277–86.CrossRefGoogle ScholarPubMed
Lenfant, C., Elsner, R., Kooyman, G. L. and Drabek, C. M. (1969). Respiratory function of the blood of the adult and fetal Weddell seal. Am J. Physiol. 216, 1595–7.Google ScholarPubMed
Lestyk, K. C., Folkow, L. P., Blix, A. S., Hammill, M. D. and Burns, J. M. Development of myoglobin concentration and acid buffering capacity in harp (Pagophilus greenlandicus) and hooded (Cystophora cristat) seals from birth to maturity. J.Comp.Physiol.B.doi 10.1007/s 00360-009-0378-9.
Liggins, G. C., Qvist, J., Hochachka, P. W., et al. (1980). Fetal cardiovascular and metabolic responses to simulated diving in the Weddell seal. J. Appl. Physiol. 49, 424–30.CrossRefGoogle ScholarPubMed
Lipton, P. (1999). Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–568.CrossRefGoogle ScholarPubMed
Liu, L. and Yenari, M. A. (2007). Therapeutic hypothermia: neuroprotective mechanisms. Front. Biosci. 12, 816–25.CrossRefGoogle ScholarPubMed
Ludvigsen, S. and Folkow, L. P. (2009). Differences in in-vitro cerebellar neuronal responses to hypoxia in eider ducks, chicken and rats. J.Comp.Physiol. A. doi 10.1007/s 00359-009-0476-X.CrossRefGoogle ScholarPubMed
Lutz, P. L., Nilsson, G. E. and Prentice, H. M. (2003). The Brain without Oxygen, 3rd edn. Dordrecht: Kluwer Academic Publishers, pp. 62–3.Google Scholar
Marder, E. and Bucher, D. (2007). Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu. Rev. Physiol. 69, 291–316.CrossRefGoogle ScholarPubMed
Mårtensson, P. -E., Nordøy, E. S., Messelt, E. B. and Blix, A. S. (1998). Gut length, food transit time and diving habit in phocid seals. Polar Biol. 20, 213–17.Google Scholar
Messelt, E. B and Blix, A. S. (1976). The LDH of the frequently asphyxiated beaver (Castor fiber). Comp. Biochem. Physiol. B 53, 77–80.CrossRefGoogle Scholar
Miller, N. J., Postle, A. D., Orgeig, S., Koster, G. and Daniels, C. B. (2006). The composition of pulmonary surfactants from diving mammals. Resp. Physiol. Neurobiol. 152, 152–68.CrossRefGoogle ScholarPubMed
Milsom, W. K., Johansen, K. and Millard, R. W. (1973). Blood respiratory properties in some Antarctic birds. Condor 75, 472–4.CrossRefGoogle Scholar
Mitz, S. A., Reuss, S., Folkow, L. P., et al. (2009). When the brain goes diving: glial oxidative metabolism may confer hypoxia tolerance to the seal brain. Neuroscience, 163, 552–560.CrossRef
Mottishaw, P. D., Thornton, S. J. and Hochachka, P. W. (1999). The diving response mechanism and its surprising evolutionary path in seals and sea lions. Am. Zool. 39, 434–50.CrossRefGoogle Scholar
Murphy, B., Zapol, W. M. and Hochachka, P. W. (1980). Metabolic activities of heart, lung and brain during diving and recovery in the Weddell seal. J. Appl. Physiol. 48, 596–605.CrossRefGoogle ScholarPubMed
Murrish, D. E. (1982). Acid-base balance in three species of Antarctic penguins exposed to thermal stress. Physiol. Zool. 55, 137–43.CrossRefGoogle Scholar
Nilsson, G. E. and Lutz, P. L. (1992). Adenosine release in anoxic turtle brain as a mechanism for anoxic survival. J. Exp. Biol. 162, 345–51.Google Scholar
O'Brien, P. J., Shen, H., McCutcheon, L. J., et al. (1992). Rapid, simple and sensitive microassay for skeletal and cardiac muscle myoglobin and hemoglobin: use in various animals indicates functional role of myohemoproteins. Mol. Cell. Biochem. 112, 42–52.CrossRefGoogle ScholarPubMed
Odden, Å., Folkow, L. P., Caputa, M., Hotvedt, R. and Blix, A. S. (1999). Brain cooling in diving seals. Acta Physiol. Scand. 166, 77–8.CrossRefGoogle ScholarPubMed
Olsen, C. R., Elsner, R., Hale, F. C. and Kenney, D. W. (1969). Blow of the pilot whale. Science 163, 953–5.CrossRefGoogle ScholarPubMed
Pain, T., Yang, X. M., Critz, S. D., et al. (2000). Opening of mitochondrial Kadenosine triphosphate channels triggers the preconditioned state by generating free radicals. Circ. Res. 87, 460–6.CrossRefGoogle ScholarPubMed
Pakay, J. L., Withers, P. C., Hobbs, A. A. and Guppy, M. (2002). The in vivo down-regulation of protein synthesis in the snail Helix aspera during estivation. Am. J. Physiol. 283, R197–204.Google Scholar
Pan, T. -T., Feng, Z. -N., Lee, S. W., Moore, P. K. and Bian, J. -S. (2006). Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. J. Mol. Cell. Cardiol. 40, 119–30.CrossRefGoogle ScholarPubMed
Pellerin, L., Bouzier-Sore, A.-K., Aubert, A., et al. (2007). Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55, 1251–62.CrossRefGoogle ScholarPubMed
Pérez-Pinzón, M. A., Rosenthal, T., Sick, T. J., Lutz, P. L., Pablo, J. and Mash, D. (1992). Downregulation of sodium channels during anoxia: a putative survival strategy of turtle brain. Am. J. Physiol. 262, R712–15.Google ScholarPubMed
Pesce, A., Bolognesi, M., Ascenzi, P., et al. (2002). Neuroglobin and cytoglobin: fresh blood for the vertebrate globin family. EMBO Rep. 3, 1146–51.CrossRefGoogle ScholarPubMed
Polasek, L. K. and Davis, R. W. (2001). Heterogeneity of myoglobin distribution in the locomotory muscles of five cetacean species. J. Exp. Biol. 204, 209–15.Google ScholarPubMed
Ponganis, P. J., Stockard, T. K., Meir, J. U., et al. (2007). Returning on empty: extreme blood O2 depletion underlies dive capacity of emperor penguins. J. Exp. Biol. 210, 4279–85.CrossRefGoogle ScholarPubMed
Ponganis, P. J., Kooyman, G. L., Starke, L. N., Kooyman, C. A. and Kooyman, T. G. (1997). Post-dive blood lactate concentrations in emperor penguins, Aptenodytes forsteri. J. Exp. Biol. 200, 1623–6.Google ScholarPubMed
Ponganis, P. J., Starke, L. N., Horning, M. and Kooyman, G. L. (1999). Development of diving capacity in emperor penguins. J. Exp. Biol. 202, 781–6.Google ScholarPubMed
Qvist, J., Hill, R. D., Schneider, R. C., et al. (1986). Hemoglobin concentrations and blood gas tensions of free-diving Weddell seals. J. Appl. Physiol. 61, 1560–9.CrossRefGoogle ScholarPubMed
Ramirez, J. -M., Folkow, L. P. and Blix, A. S. (2007) Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annu. Rev. Physiol. 69, 113–43.CrossRefGoogle ScholarPubMed
Reed, J. Z., Chambers, C., Fedak, M. A. and Butler, P. B. 1994. Gas exchange of captive freely diving grey seals (Halichoerus grypus). J. Exp. Biol. 191, 1–18.Google Scholar
Richet, C. (1899). De la résistance des canards à l'asphyxie. J. Physiol. Pathol. Gén. 1, 641–50.Google Scholar
Ridgway, S. H. and Johnston, D. G. (1966). Blood oxygen and ecology of porpoises of three genera. Science 151, 456–8.CrossRefGoogle ScholarPubMed
Ridgway, S. H., Scronce, B. L. and Kanwisher, N. (1969). Respiration and deep diving in the bottlenose porpoise. Science 166 1651–54.CrossRefGoogle ScholarPubMed
Robin, E. D., Ensick, J., Hance, A. J., et al. (1981). Glucoregulation and simulated diving in the harbor seal Phoca vitulina. Am. J. Physiol. 241, R293–300.Google ScholarPubMed
Robin, E. D., Jr, Murdaugh, H. V., Pyron, W., Weiss, E. and Soteres, P. (1963). Adaptations to diving in the harbour seal – gas exchange and ventilatory responses to CO2. Am. J. Physiol. 205, 1175–7.Google Scholar
Robinson, D. (1939). The muscle haemoglobin of seals as an oxygen store in diving. Science 90, 276–7.CrossRefGoogle ScholarPubMed
Ronald, K., McCarter, R. and Selley, L. J. (1977). Venous circulation in the harp seal. In Functional Anatomy of Marine Mammals, Vol. 3, ed. Harrison, R. J.. London: Academic Press, pp. 235–70.Google Scholar
Scholander, P. F. (1940). Experimental investigations on the respiratory function in diving mammals and birds. Hvalrådets Skr. 22, 1–131.Google Scholar
Scholander, P. F. (1960). Oxygen transport through haemoglobin solutions. Science 131, 585–90.CrossRefGoogle Scholar
Scholander, P. F. (1963). The master switch of life. Sci. Am. 209, 92–106.CrossRefGoogle ScholarPubMed
Scholander, P. F., Irving, L. and Grinnell, S. W. (1942a). Aerobic and anaerobic changes in seal muscles during diving. J. Biol. Chem. 142, 431–40.Google Scholar
Scholander, P. F., Irving, L. and Grinnell, S. W. (1942b). On the temperature and metabolism of the seal during diving. J. Cell. Comp. Physiol. 19, 67–78.CrossRefGoogle Scholar
Siesjö, B. K. (1978). Brain Energy Metabolism. New York: John Wiley.Google ScholarPubMed
Singer, D., Bach, F., Bretschneider, H. J. and Kuhn, H. J. (1993). Metabolic size allometry and the limits to beneficial metabolic reduction: hypothesis of a uniform specific minimal metabolic rate. In Surviving Hypoxia: Mechanisms of Control and Adaptation, ed. Hochachka, P. W., Lutz, P. L., Sick, T., Rosenthal, M. and Thillart, G.. London: CRC Press, pp. 447–58.Google Scholar
Sinnett, E. E., Kooyman, G. L. and Wahrenbrock, E. A. (1978). Pulmonary circulation of the harbour seal. J. Appl. Physiol. 45, 718–27.CrossRefGoogle Scholar
Skinner, L. A. and Milsom, W. K. (2004). Respiratory chemosensitivity during wake and sleep in harbour seal pups (Phoca vitulina richardsii). Physiol. Biochem. Zool. 77, 847–63.CrossRefGoogle Scholar
Smith, R. W., Houlihan, D. F., Nilsson, G. E. and Brechin, J. G. (1996). Tissue-specific changes in protein synthesis rates in vivo during anoxia in crucian carp. Am. J. Physiol. 271, R897–904.Google ScholarPubMed
Snyder, G. K. (1983). Respiratory adaptations in diving mammals. Respir. Physiol. 54, 269–94.CrossRefGoogle ScholarPubMed
Sparling, C. E., Fedak, M. A. and Thompson, D. (2007). Eat now, pay later? Evidence of deferred food-processing costs in diving seals. Biol. Lett. 3, 94–8.CrossRefGoogle ScholarPubMed
Stephenson, R., Butler, P. J. and Woakes, A. J. (1986). Diving behaviour and heart rate in tufted ducks (Aythya fuligula). J. Exp. Biol. 126, 341–59.Google Scholar
Stephenson, R., Turner, D. L. and Butler, P. J. (1989). The relationship between diving activity and oxygen storage capacity in the tufted duck (Aythya fuligula). J. Exp. Biol. 141, 265–75.Google Scholar
Stockard, T. K., Levenson, D. H., Berg, L., Fransioli, J. R., Baranov, E. A. and Ponganis, P. J. 2007. Blood oxygen depletion during rest-associated apneas of northern elephant seals (Mirounga angustirostris). J. Exp. Biol. 210, 2607–17.CrossRefGoogle Scholar
Storey, K. B. (1988). Suspended animation: the molecular basis of metabolic depression. Can. J. Zool. 66, 124–32.CrossRefGoogle Scholar
Storey, K. B. and Storey, J. M. (1990). Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Q. Rev. Biol. 65, 145–74.CrossRefGoogle ScholarPubMed
Storey, K. B. and Storey, J. M. (2007). Tribute to P. L. Lutz: putting life on ‘pause’ – molecular regulation of hypometabolism. J. Exp. Biol. 210, 1700–14.CrossRefGoogle Scholar
Sun, Y., Jin, K., Mao, X. O., Zhu, Y. and Greenberg, D. A. (2001). Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc. Natl. Acad. Sci. USA 98, 15306–11.CrossRefGoogle ScholarPubMed
Theorell, H. (1934). Kristallinisches Myoglobin: I. Mitteilung: Kristallisieren und Reinigung des Myoglobins sowie Vorläufige Mitteilung über sein Molekulargewicht. Biochem. Z. 252, 1–7.Google Scholar
Thompson, D. and Fedak, M. A. (1993). Cardiac responses of gray seals during diving at sea. J. Exp. Biol. 174, 139–64.Google ScholarPubMed
Breukelen, F. and Martin, S. L. (2002). Reversible depression of transcription during hibernation. J. Comp. Physiol. B 172, 355–61.CrossRefGoogle ScholarPubMed
Vázquez-Medina, J. P., Zenteno-Savín, T. and Elsner, R. (2006). Antioxidant enzymes in ringed seal tissues: potential protection against dive-associated ischemia/reperfusion. Comp. Biochem. Physiol. C. 142, 198–204.Google ScholarPubMed
Wahrenbrock, E. A., Maruschak, G. F., Elsner, R. and Kenney, D. W. (1974). Respiration and metabolism in two baleen whale calves. Marine Fish. Rev. 36, 3–8.Google Scholar
Walz, W. (2000). Role of astrocytes in the clearance of excess extracellular potassium. Neurochem. Int. 36, 291–300.CrossRefGoogle ScholarPubMed
Watkins, W. A., Moore, K. E. and Tyack, P. (1985). Investigations of sperm whale acoustic behaviours in the southeast Carribean. Cetology 49, 1–15.Google Scholar
Watson, R. R., Miller, T. A. and Davis, R. A. (2003). Immunohistochemical fiber typing of harbour seal skeletal muscle. J. Exp. Biol. 206, 4105–11.CrossRefGoogle Scholar
Weber, R. E., Hemmingsen, E. A. and Johansen, K. (1974). Functional and biochemical studies of penguin myoglobin. Comp. Biochem. Physiol. B 49, 197–214.CrossRefGoogle ScholarPubMed
White, F. N., Ideda, M. and Elsner, R. (1973). Adrenergic innervation of large arteries in the seal. Comp. Gen. Pharmacol. 4, 271–6.CrossRefGoogle ScholarPubMed
Wickham, L. L., Elsner, R., White, F. C. and Cornell, L. H. (1989). Blood viscosity in phocid seals: possible adaptations to diving. J. Comp. Physiol. B 159, 153–8.CrossRefGoogle ScholarPubMed
Wilhelm Filho, D., Sell, F., Ribeiro, L., et al. (2002). Comparison between the antioxidant status of terrestrial and diving mammals. Comp. Biochem. Physiol. A 133, 885–92.CrossRefGoogle ScholarPubMed
Willford, D. C., Gray, A. T., Hempleman, S. C., Davis, R. W. and Hill, E. P. (1990). Temperature and the oxygen-hemoglobin dissociation curve of the harbour seal, Phoca vitulina. Respir. Physiol. 79, 137–44.CrossRefGoogle Scholar
Williams, T. M. and Kooyman, G. L. (1985). Swimming performance and hydrodynamic characteristics of the harbour seal. Physiol. Zool. 58, 576–89.CrossRefGoogle Scholar
Williams, T. M., Davis, R. W., Fuiman, L. A., et al. (2000). Sink or swim: strategies for cost-efficient diving by marine mammals. Science 288, 133–5.CrossRefGoogle ScholarPubMed
Williams, T. M., Zavanelli, M., Miller, M. A., et al. (2008). Running, swimming and diving modifies neuroprotecting globins in the mammalian brain. Proc. Biol. Sci. 275, 751–8.CrossRefGoogle ScholarPubMed
Wittenberg, B. A. and Wittenberg, J. B. (1989). Transport of oxygen in muscle. Annu. Rev. Physiol. 51, 857–78.CrossRefGoogle ScholarPubMed
Zapol, W. M., Liggins, G. C., Schneider, R. C., et al. 1979. Regional blood flow during simulated diving in the conscious Weddell seal. J. Appl. Physiol. 47, 968–73.CrossRefGoogle ScholarPubMed
Zenteno-Savín, T., Clayton-Hermández, E. and Elsner, R. (2002). Diving seals: are they a model for coping with oxidative stress?Comp. Biochem. Physiol. C 133, 527–36.Google ScholarPubMed
Zheng, Z., Lee, J. E. and Yenari, M. A. (2003). Stroke: molecular mechanisms and potential targets for treatment. Curr. Mol. Med. 3, 361–72.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×