Skip to main content Accessibility help
×
Hostname: page-component-68945f75b7-jkr4m Total loading time: 0 Render date: 2024-09-05T01:19:45.988Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Simon Haykin
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Cognitive Dynamic Systems
Perception-action Cycle, Radar and Radio
, pp. 297 - 305
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aghassi, M. and Bertsimas, D. (2006). Robust game theory. Mathematical Programming, Series B, 107, 231–73.CrossRefGoogle Scholar
Aleksander, I. and Morton, H. (1990). An Introduction to Neural Computing. London: Chapman and Hall.Google Scholar
Anderson, J. (1995). An Introduction to Neural Networks. Cambridge, MA: MIT Press.Google Scholar
Anderson, B. D. O. and Moore, J. B. (1979). Linear Optimal Control. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Annastasio, T. J. (2003). Vestibulo-occular reflex. In M. A. Arbib, ed., The Handbook of Brain Theory and Neural Networks, second edition. Cambridge, MA: MIT Press, pp. 1192–96.Google Scholar
Apt, K. R. and Witzel, A. (2006). A generic approach to coalition formation. International Game Theory Review, 11, 347–67.CrossRefGoogle Scholar
Arasaratnam, I. and Haykin, S. (2009). Cubature Kalman filters. IEEE Transactions on Automatic Control, 54, 1254–69.CrossRefGoogle Scholar
Arasaratnam, I., Haykin, S., and Hurd, T. R. (2010). Cubature Kalman filtering for continuousdiscrete systems: theory and simulations. IEEE Transactions on Signal Processing, 58, 4977–4993.CrossRefGoogle Scholar
Athans, M., Wishner, R. P., and Bertolini, A. (1968). Suboptimal state estimation for continuoustime nonlinear systems from discrete noise measurements. IEEE Transactions on Automatic Control, AC13, 504–14.CrossRefGoogle Scholar
Autmann, R. J. and Peleg, B. (1960). Von Neumann–Morgenstern solutions to cooperative games without side payments. Bulletin of the American Mathematical Society, 6, 173–9.CrossRefGoogle Scholar
Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews Neuroscience, 4, 829–39.CrossRefGoogle ScholarPubMed
Baird, L. C. (1999). Reinforcement learning through gradient descent. Ph.D. thesis, Carnegie- Mellon University, May.Google Scholar
Barlow, H. (1961). The coding of sensory images. In W. H., Thorpe and O. L., Zangwill, eds, Current Problems in Animal Behaviour. Cambridge: Cambridge University Press, pp. 331–60.Google Scholar
Barlow, H. (2001). Redundancy reduction revisited. Network: Computational Neural Systems, 12, 241–53.CrossRefGoogle ScholarPubMed
Bar-Shalom, Y., Li, X., and Kirburajan, T. (2001). Estimation with Applications to Tracking and Control. Wiley.CrossRefGoogle Scholar
Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike elements that can solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, 13, 835–46.Google Scholar
Basar, T. and Bernhard, P. (eds) (1995). H∞-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach, second edition, Boston. MA: Birkhäuser.Google Scholar
Basar, T. and Olsder, G. J. (1999). Dynamic Noncooperative Game Theory. SIAM.Google Scholar
Bellman, R. E. (1957). Dynamic Programming. Princeton, NJ: Princeton University Press.Google ScholarPubMed
Bellman, R. E. (1961). Adaptive Control Processes: A Guided Tour. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Bellman, R. E. and Dreyfus, S. E. (1962). Applied Dynamic Programming. Princeton, NJ: Princeton University Press.CrossRefGoogle ScholarPubMed
Bengio, Y. and LeCun, Y. (2007). Scaling learning algorithms toward AI. In L., Bottou, O., Chapelle, D., DeCoste, and J., Weston, eds, Large Scale Kernel Machines. Cambridge, MA: MIT Press. pp. 321–59.Google Scholar
Bennett, B.Hoffman, D.Nichola, J., and Prokash, C. (1989). Structure from two orthographic views of rigid motion. journal of the Optical Society of America, A.6, 1052–69.CrossRefGoogle Scholar
Bernardo, J. M. and Smith, A. F. M. (1998). Bayesian Theory. Wiley.Google Scholar
Bertsekas, D. P. (2005). Dynamic Programming and Optimal Control, vol. 1, third edition. Athena Scientific.Google Scholar
Bertsekas, D. P. (2007). Dynamic Programming and Optimal Control, vol. 2, third edition. Athena Scientific.Google Scholar
Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Belmont, MA: Athena Scientific.Google Scholar
Bertsekas, D. P. and Tsitsiklis, J. N. (2008). Introduction to Probability, second edition. Belmont, MA: Athena Scientific.Google Scholar
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.Google Scholar
Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.CrossRefGoogle Scholar
Bradtke, S. J. and Barto, A. G. (1996). Linear least-squares algorithms for temporal difference learning. Machine Learning, 22, 33–57.CrossRefGoogle Scholar
Brady, M. H. and Cioffi, J. M. (2006). The worst-case interference in DSL systems employing dynamic spectrum management. EURASIP Journal on Advanced Signal Processing, 1–11.Google Scholar
Bronez, T. P. (1992). On the performance advantage of multitaper spectral analysis. IEEE Transactions on Signal Processing, 40, 2941–46.CrossRefGoogle Scholar
Buddhiko, M. M. (2007). Understanding dynamic spectrum access: models taxonomy, and challenges. In Proceedings of IEEE DYSPAN, April.Google Scholar
Cappé, O., Moulines, E., and Ryden, T. (2005). Inference in Hidden Markov Models. Springer.Google Scholar
Churchland, P. S. and Sejnowski, T. J. (1992). The Computational Brain. Cambridge, MA: MIT Press.Google Scholar
Clancy, T. C. and Goergen, N. (2008). Security in cognitive radio networks: threats and mitigation. In International Conference on Cognitive Radio Oriented Wireless Networks and Communucations (Crowncom), May, pp. 1–8.Google Scholar
Cohen, L. (1995). Time–Frequency Analysis. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Cools, R. (1997). Constructing cubature formulae: the science behind the art. Acta Numerica, 6, 1–54.CrossRefGoogle Scholar
Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory, second edition. New York: Wiley.Google Scholar
Danskin, J. (1967). The Theory of Max–Min. Springer-Verlag.Google Scholar
Dayan, P. and Abott, L. (2001). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press.Google Scholar
Donoho, D. L. and Elad, M. (2003). Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2197–202.CrossRefGoogle Scholar
Doya, K., Ishi, S., Pouget, A., and Rao, R. (2007). Bayesian Brain: Probabilistic Approaches to Neural Coding. Cambridge, MA: MIT Press.Google Scholar
Drosopoulos, A. and Haykin, S. (1992). Adaptive radar parameter estimation with Thomson's multiple-window method. In S., Haykin and A., Steinhardt, eds, Radar Detection and Estimation. New York: Wiley.Google Scholar
Dupuy, J.-P. (2009). On the Origins of Cognitive Science: The Mechanization of the Mind. Cambridge, MA: MIT Press.Google Scholar
Elliott, R. J. and Haykin, S. (2010). A Zakai equation derivation of the extended Kalman filter, Automatica, 46, 620–4.Google Scholar
FCC. (2002). Spectrum Policy Task Force, Report ET Docket No. 02-135, Federal Communications Commission, November.
FCC. (2008). Second Report and Order and Memorandum Opinion and Order In the Matter of Unlicensed Operation in the TV Broadcast Bands, Additional Spectrum for Unlicensed Devices Below 900 MHz and in the 3 GHz Band. Docket number 08-260, Federal Communication Commission, November.
FCC. (2010). Second Memorandum Opinion and Order In the Matter of Unlicensed Operation in the TV Broadcast Bands, Additional Spectrum for Unlicensed Devices Below 900 MHz and in the 3 GHz Band. Docket number 10-174, Federal Communication Commission, September.
Fisher, R. A. (1912). On an absolute criteria for fitting frequency curves. Messenger of Mathematics, 41, 155–60.Google Scholar
Fisher, R. A. (1922). On the mathematical foundation of theoretical statistics. Philosophical Transactions of the Royal Society of London, Series A, 222, 309–68.CrossRefGoogle Scholar
Frigo, M. and Johnson, S. G. (2005). The design and implementation of FFTW3. Proceedings of the IEEE, 93, 216–31.CrossRefGoogle Scholar
Fukushima, M. (2007). Stochastic and robust approaches to optimization problems under uncertainty. Proceedings of International Conference on Informatics Research for Development of Knowledge Society Infrastructure (ICKS), pp. 87–94.Google Scholar
Fundenberg, D. and Levine, D. K. (1999). The Theory of Learning in Games. Cambridge, MA: MIT Press.Google Scholar
Fuster, J. M. (2003). Cortex and Mind: Unifying Cognition. Oxford, UK: Oxford University Press.Google Scholar
Gardner, W. A. (1988). Signal interception: a unifying theoretical framework for feature detection. IEEE Transactions on Communications, 36, 897–906.CrossRefGoogle Scholar
Gardner, W. A. ed. (1994). Cyclostationarity in Communications and Signal Processing. New York: IEEE Press.Google Scholar
Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6, 721–41.CrossRefGoogle Scholar
Giannakis, G. B. and Serpedin, E. (1998). Blind identification of ARMA channels with periodically modulated inputs. IEEE Transactions on Signal Processing, 46, 3099–104.CrossRefGoogle Scholar
Gjessing, D. T. (1986). Target Adaptive Matched Illumination Radar: Principles and Applications. Peter Peregrinus Ltd on Behalf of the Institution of Electrical Engineers, London, UK.Google Scholar
Glimcher, P. W. (2003). Decisions, Uncertainty, and the Brain: The Science of Neuroeconomics. Cambridge, MA: MIT Press.Google Scholar
Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations, third edition. Johns Hopkins University Press.Google Scholar
Grenander, U. (1976–1981). Lectures in Pattern Theory I, II and III: Pattern Analysis, Pattern Synthesis and Regular Structures. Springer-Verlag.Google Scholar
Gross, B. (1964). The Managing of Organizations: The Administrative Struggle. New York: Free Press of Glencoe.Google Scholar
Grossberg, S. (1988). Neural Networks and Natural Intelligence. Cambridge, MA: MIT Press.Google Scholar
Guerci, J. R. (2010). Cognitive Radar: The Knowledge-Aided Fully Adaptive Approach. Artech House.
Habibi, S. R. and Burton, R. (2003). The variable structure filter. Journal of Dynamic Systems Measurement and Control, 125, 287–93.CrossRefGoogle Scholar
Hanzo, L., Akhtman, Y., Wang, L., and Jiang, M. (2010). MIMO-OFDM for LTE, WiFi and WiMAX: Coherent versus Non-Coherent and Cooperative Turbo-Transceivers. Wiley–IEEE.CrossRefGoogle Scholar
Harker, P. T. and Pang, J.-S. (1990). Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Mathematical Programming, 48, 161–220.CrossRefGoogle Scholar
Hastie, T., Tishbirani, R., and Friedman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Canada: Springer.CrossRefGoogle Scholar
Haykin, S. (2000). Communication Systems, third edition. New York: Wiley.Google Scholar
Haykin, S. (2002). Adaptive Filter Theory, fourth edition. Prentice-Hall.Google Scholar
Haykin, S. (2005a). Cognitive radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23, 201–20.CrossRefGoogle Scholar
Haykin, S. (2005b). Cognitive radar networks. In 1st IEEE Workshop on Computational Advances in Multi-sensor Adaptive Processing, Jalisco State, Mexico.Google Scholar
Haykin, S. (2006a). Cognitive dynamic systems, point-of-view article. Proceedings of the IEEE, 94, 1910–11.CrossRefGoogle Scholar
Haykin, S. (2006b). Cognitive radar: a way of the future. IEEE Signal Processing Magazine, 23, 30–41.CrossRefGoogle Scholar
Haykin, S. ed. (2007). Adaptive Radar Signal Processing. Wiley.Google Scholar
Haykin, S. (2009). Neural Networks and Learning Machines. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Haykin, S. and Thomson, D. J. (1998). Signal detection in a nonstationary environment reformulated as an adaptive pattern classification problem. Proceedings of the IEEE, 86, 2325–44.CrossRefGoogle Scholar
Haykin, S., Bakker, R., and Currie, B. (2002). Uncovering nonlinear dynamics: the case study of sea clutter. Proceedings of the IEEE, 90, 860–81.CrossRefGoogle Scholar
Haykin, S., Thomson, D. J., and Reed, J. H. (2009). Spectrum sensing for cognitive radio. Proceedings of the IEEE, 97, 849–77.CrossRefGoogle Scholar
Haykin, S., Zia, A., Xue, Y., and Arasaratnam, I. (2011). Control-theoretic approach to tracking radar: first step towards cognition. Digital Signal Processing 21, 576–85.CrossRefGoogle Scholar
Haykin, S. and Xue, Y. (2012). Cognitive Radar. To be published.
Hebb, D. O. (1949). The Organization of Behavior: A Neurosychological Theory. New York: Wiley.Google Scholar
Hecht-Nielsen, R. (1995). Replicator neural networks for universal optimal source and coding. Science, 269, 1860–63.CrossRefGoogle ScholarPubMed
Ho, Y. C. and Lee, R. C. K. (1964). A Bayesian approach to problems in stochastic estimation and control. IEEE Transactions on Automatic Control, AC-9, 333–9.CrossRefGoogle Scholar
Hurd, H. L. and Miamee, A. (2007). Periodically Correlated Random Sequences. New York: Wiley.CrossRefGoogle Scholar
Julier, S. J. and Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92, 401–422.CrossRefGoogle Scholar
Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. (2000). A new method for nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 45, 472–82.CrossRefGoogle Scholar
Kalman, R. (1960). A new approach to linear filtering and prediction problems. Transactions of the ASME, Journal of Basic Engineering, Series D, 82, 35–45.CrossRefGoogle Scholar
Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2008). Fast inference in sparse coding algorithms with applications to object recognition. Technical Report, CBLL, Courant Institute, NYU, CBLL-TR-2008-12-01.
Kershaw, D. J. and Evans, R. J. (1994). Optimal waveform selection for tracking systems. IEEE Transactions on Information Theory, 40, 1536–50.CrossRefGoogle Scholar
Kersten, D. (1990). Statistical limits to image understanding. In C., Blakemore, ed., Vision: Coding and Efficiency. Cambridge, UK: Cambridge University Press.Google Scholar
Khalil, H. K. (2002). Nonlinear Systems, third edition. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Khozeimeh, F. and Haykin, S. (2009). Dynamic spectrum management for cognitive radio: an overview. Wireless Communications and Mobile Computing, 9, 1447–59.CrossRefGoogle Scholar
Khozeimeh, F. and Haykin, S. (2010). Self-organizing dynamic spectrum management for cognitive radio networks. In The 8th Conference on Communication Networks and Services Research (CNSR-2010), pp. 1–8.Google Scholar
Knill, D. C. and Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation for action. Trends in Neuroscience, 12, 712–19.CrossRefGoogle Scholar
Knill, D. C. and Richards, W. eds. (1996). Perception as Bayesian Inference. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Krishnamurthy, V. and Djonin, D. V. (2009). Optimal threshold policies for POMDPs in radar resource management. IEEE Transactions on Signal Processing, 57, 3954–69.CrossRefGoogle Scholar
Kumarasan, R. and Tufts, D. W. (1983). Estimating the angles of arrival of multiple plane waves. IEEE Transactions on Aerospace and Electronic Systems, AES-19, 134–9.CrossRefGoogle Scholar
Li, Y. and Stüber, G. (2006). Orthogonal Frequency Division Multiplexing for Wireless Communications. Springer.CrossRefGoogle Scholar
Lo, J. T. and Bassu, D. (2001). Adaptive vs. accommodative neural networks for adaptive system identification. In Proceedings of the International Joint Conference on Neural Networks, Washington, DC, July, pp.1279–1284.Google Scholar
Lo, J. T. and Yu, L. (1995). Adaptive neural filtering by using the innovations approach. In Proceedings of the 1995 World Congress on Neural Networks, vol. 2, July, pp. 29–35.Google Scholar
Loève, M. (1946). Fonctions aléatoires de second ordrer. Revue Scientifique Paris, 84, 195–206.Google Scholar
Loève, M. (1963). Probability Theory. Van Nostrand.Google Scholar
Luo, Z. and Pang, J. (2006). Analysis of iterative waterfilling algorithm for multiuser power control in digital subscriber lines. EURASIP Journal of Applied Signal Processing, 2006, ID 24012, 1–10.Google Scholar
Maei, H. R. and Sutton, R. S. (2010). GQ(λ): a general gradient algorithm for temporal difference prediction learning with eligibility traces. In E., Baum, M., Hutter, and E., Kitzelmann, eds, AGI 2010. Atlantis Press, pp. 91–6.Google Scholar
Maei, H. R., Szepesva′ri, Cs., Bhatnagar, S., and Sutton, R. S. (2010). Toward off-policy learning control with function approximation. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel.Google Scholar
Marple, L. S. L. (1987). Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Maybeck, P. S. (1982). Stochastic Models, Estimation, and Control, vol. 2. New York: Academic Press.Google Scholar
Maynard Smith, J. (1974). The theory of games and the evolution of animal conflicts. Journal of Theoretical Biology, 47, 209–21.CrossRefGoogle Scholar
Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
McLaughlin, D., Payne, D., Chandrasekar, V., Philips, B., Kurose, J., Zink, M., et al. (2009). Short-wavelength technology and the potential for distributed networks of small radar systems. Bulletin of the American Meteorological Society, 90, 1797–1817.CrossRefGoogle Scholar
Mitola, J. (2000). Cognitive radio: an integrated agent architecture for software defined radio. Doctor of Technology Dissertation, Royal Institute of Technology, Sweden.
Mitola, J. and McGuire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRefGoogle Scholar
Molisch, A. F. (2005). Wireless Communications. Chichester, UK: IEEE Press/Wiley.Google Scholar
Molisch, A. F., Greenstein, L. J., and Shafi, M. (2009). Propogations issues for cognitive radio, Proceeding of the IEEE, 97, 787–804.CrossRefGoogle Scholar
Mooers, C. N. K. (1973). A technique for the cross-spectrum analysis of pairs of complex-valued time series, with emphasis on properties of polarized components and rotational invariants. Deep-Sea Research, 20, 1129–41.Google Scholar
Morrone, C. and Burr, D. (2009). Visual stability during saccadic eye movements. In M. S., Gazzaniga, editor-in-chief, The Cognitive Neurosciences, fourth edition. MIT Press, pp. 511–24.Google Scholar
Morse, P. M. and Feshbach, H. (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill.Google Scholar
Nagurney, A. and Zhang, D. (1996). Projected Dynamical Systems and Variational Inequalities with Applications. Springer.CrossRefGoogle Scholar
Narendra, K. S. and Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1, 4–27.CrossRefGoogle ScholarPubMed
Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences of the United States of America, 86, 48–9.CrossRefGoogle Scholar
Nash, J. F. (1951). Non-cooperative games. Annals of Mathematics, 54, 286–95.CrossRefGoogle Scholar
Nicolis, G. and Prigogine, I. (1989). Exploring Complexity: An Introduction. W. H. Freeman.Google Scholar
Olshausen, B. A. (2011). Personal communication.
Olshausen, B. A. and Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–9.CrossRefGoogle ScholarPubMed
Ortiz, S. (2008). The wireless industry begins to embrace femtocells. Computer, 41, 14–17.CrossRefGoogle Scholar
Parsons, J. (2000). The Mobile Radio Propagation Channel. New York: Wiley.CrossRefGoogle Scholar
Percival, D. B. and Walden, A. T. (1993). Spectral Analysis for Physical Applications. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Picinbone, B. (1996). Second-order complex random vectors and normal distributions. IEEE Transactions on Signal Processing, 44, 2637–40.CrossRefGoogle Scholar
Posner, M., ed. (1989). Foundations of Cognitive Science. Cambridge, MA: MIT Press.Google Scholar
Powell, W. B. (2007). Approximate Dynamic Programming: Solving the Curses of Dimensionality. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Press, W. and Teukolsky, S. (1990). Orthogonal polynomials and Gaussian quadrature with nonclassical weighting functions. Computers in Physics, 4, 423–26.CrossRefGoogle Scholar
Puskorius, G. V. and Feldkamp, L. A. (2001). Parameter-based Kalman filter training: theory and implementation. In S., Haykin, ed., Kalman Filtering and Neural Networks. Wiley.Google Scholar
Pylyshyn, Z. (1984). Computation and Cognition: Toward a Foundation for Cognitive Science. Cambridge, MA: MIT Press.Google Scholar
Ranzato, M., Boureau, Y., and LeCun, Y. (2007). Sparse feature learning for deep belief networks. In Neural Information Processing Systems (NIPS), Vancouver, B.C., Canada.Google Scholar
Reber, A. (1995). Dictionary of Psychology. London: Penguin Books.Google Scholar
Ristic, B., Arulampalam, S., and Gordon, N. (2004). Beyond the Kalman Filter: Particle Filters for Tracking Applications. Boston, MA: Artech House.Google Scholar
Robbins, H. and Monro, S. (1951). A stochastic approximation method. Annals of Mathematical Statistics, 22, 400–7.CrossRefGoogle Scholar
Robert, C. P. (2007). The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementations, second edition. Springer.Google Scholar
Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods, second edition. Springer.CrossRefGoogle Scholar
Rogers, T. and McLelland, J. L. (2004). Semantic Cognition: A Parallel Distributed Processing Approach. Cambridge, MA: MIT Press.Google Scholar
Ross, S. M. (1983). Introduction to Stochastic Dynamic Programming. New York: Academic Press.Google Scholar
Rumelhart, D. E. and McLelland, J. L. eds. (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1. Cambridge, MA: MIT Press.Google Scholar
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal representations by error propagation. In D. E., Rumelhart and J. L., McLelland, eds, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1. Cambridge, MA: MIT Press, pp. 318–62.Google Scholar
Saad, W., Han, Z., Debbah, M., Horungnes, A., and Basar, T. (2009). Coalitional game theory for communication networks. IEEE Signal Processing Magazine, 26, 77–97.CrossRefGoogle Scholar
Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks, 12, 459–73.CrossRefGoogle Scholar
Sarkka, S. (2007). On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Transactions on Automatic Control, 52, 1631–41.CrossRefGoogle Scholar
Schmidt, R. (1981). A signal subspace approach to multiple emitter of location and spectral estimation. Ph.D. dissertation, Stanford University, Stanford, CA.
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.CrossRefGoogle ScholarPubMed
Schuster, H. G. (2001). Complex Adaptive Systems: An Introduction. Springer-Verlag.Google Scholar
Sejnowski, T. J. (2010). Personal communication.
Selfridge, O. G. (1958). Pandamonium: a paradigm for learning. In Proceedings of a Symposium held at the National Physical Laboratory, November. London: HMSO.Google Scholar
Serpedin, E., Panduru, F., Sari, I., and Giannakis, G. B. (2005). Bibliography on cyclostationarity. Signal Processing, 85, 2233–303.CrossRefGoogle Scholar
Setoodeh, P. (2010). Dynamic models of cognitive radio networks Ph.D. thesis, McMaster University, Ontario.
Setoodeh, P. and Haykin, S. (2009). Robust transmit power control for cognitive radio. Proceedings of the IEEE, 97, 915–39.CrossRefGoogle Scholar
Seung, S. (2000). Half a century of Hebb. Nature Neuroscience, 3, 1166–1167.CrossRefGoogle ScholarPubMed
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423, 623–56.CrossRefGoogle Scholar
Shellhammer, S. J. (2008). Spectrum sensing in IEEE 802.22. In Cognitive Information Processing Workshop, Greece, June 2008.Google Scholar
Shellhammer, S. J. (2010). Personal communication.
Simmons, J. A., Saillant, P. A., and Dear, S. P. (1992). Through a bat's ear. IEEE Spectrum, 29(3), 46–8.CrossRefGoogle Scholar
Skolnik, M. I. (2008). Radar Handbook. McGraw-Hill.Google Scholar
Slepian, D. (1965). Some asymptotic expansions for prolate spheroidal wave functions. Journal of Mathematics and Physics, 44, 99–140.CrossRefGoogle Scholar
Slepian, D. (1978). Prolate spheroidal wave functions, Fourier analysis and uncertainty. Bell System Technical Journal, 57, 1371–1430.CrossRefGoogle Scholar
Stein, D. L., ed. (1989). Lectures in the Sciences of Complexity. Addison-Wesley.Google Scholar
Stevenson, C. R., Chouinand, G., Lei, Z., Hu, W., Shellhammer, S. J., and Caldwell, W. (2009). IEEE 802.22: the first cognitive radio wireless regional area network standard. IEEE Communications Magazine, 47(1), 130–38.CrossRefGoogle Scholar
Stroud, A. H. (1966). Gaussian Quadrature Formulas. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Stroud, A. H. (1971). Approximate Calculation of Multiple Integrals. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Subramanian, A. P. and Gupta, S. H. (2007). Fast spectrum allocation in coordinated spectrum access based cellular networks. In 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2007, Dubin, 17–20 April, pp. 320–330.CrossRefGoogle Scholar
Suga, N. (1990). Cortical computational maps for auditory imaging. Neural Networks, 3, 3–21.CrossRefGoogle Scholar
Sutton, R. S. (1984). Temporal credit assignment in reinforcement learning. Ph.D. dissertation, University of Massachusetts, Amherst, MA.
Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press.Google Scholar
Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3, 9–44.CrossRefGoogle Scholar
Teo, K. (2007). Nonconvex robust optimization. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70, 1055–96.CrossRefGoogle Scholar
Thomson, D. J., (2000). Multitaper analysis of nonstationary and nonlinear time series data. In Fitzgerald, W., Smith, R., Walden, A., and Young, P., eds, Nonlinear and Nonstationary Signal Processing, Cambridge, UK: Cambridge University Press.Google Scholar
Trappenberg, T. P. (2010). Fundamentals of Computational Neuroscience. Oxford University Press.Google Scholar
Utkin, V. I. (1992). Sliding Modes in Control and Optimization. Springer-Verlag.CrossRefGoogle Scholar
Utkin, V. I., Guldner, J., and Shi, J. (2009). Sliding Mode Control in Electro-Mechanical Systems, second edition. CRC Press.CrossRefGoogle Scholar
Van Trees, H. L. (1968). Detection, Estimation, and Modulation Theory, Part 1. Wiley, New York.Google Scholar
Van Trees, H. L. (1971). Detection, Estimation, and Modulation Theory, Part III. New York: Wiley.Google Scholar
Von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton, NJ: Princeton University Press.Google Scholar
Watkins, C. I. C. H. (1989). Learning from delayed rewards. Ph.D. thesis, Cambridge University, Cambridge, UK.
Watkins, C. I. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8, 279–92.CrossRefGoogle Scholar
Weisbunch, G. (1991). Complex System Dynamics. Addison-Wesley.Google Scholar
Welch, P. D. (1967). The use of fast Fourier transform for the estimation of power spectra: a method based on time-averaging over short modified periodograms. IEEE Transactions on Audio and Electroacoustics, AU-15, 70–3.CrossRefGoogle Scholar
Werbos, P. (2004). ADP: goals, opportunities and principles. In J., SiA. G., BartoW. B., Powell, and D., Wusch II, eds Handbook of Learning and Approximate Dynamic Programming. Wiley.Google Scholar
Wicks, M. C. (2010). Waveform diversity: the way forward. Keynote Lecture. In 5th International Waveform Diversity and Design Conference, Niagara Falls, Ontario, Canada, August.Google Scholar
Wicks, M. C., Mokole, E., Blunt, S., Schneible, R., and Amuso, V. (2010). Principles of Waveform Diversity and Design. SciTech.Google Scholar
Widrow, B. and Stearns, S. D. (1985). Adaptive Signal Processing. Prentice-Hall.Google Scholar
Wiener, N. (1948). Cybernetics: Or Control and Communication in the Animal and the Machine. Cambridge: MIT Press.Google Scholar
Williams, J. L., Fisher, J. W. III, and Wilsky, A. S. (2007). Approximate dynamic programming for communication-constrained sensor network management. IEEE Transactions on Signal Processing, 55, 4300–11.CrossRefGoogle Scholar
Wolfowitz, J. (1952). On the stochastic approximation method of Robbins and Monro. Annals of Mathematical Statistics, 22, 457–61.CrossRefGoogle Scholar
Woodward, P. (1953). Probability and Information Theory, with Applications to Radar, London: Pergamon Press.Google Scholar
Xue, Y. (2010). Cognitive radar: theory and simulations, Ph.D. thesis, McMaster University, Ontario.
Younger, S., Hockreiter, S., and Conwall, P. (2001). Meta-learning with backpropagation. In Proceedings of the Joint International Conference on Neural Networks, Washington, DC, pp. 2001–6.Google Scholar
Yu, W. (2002). Competition and cooperation in multi-user communication environments. Doctoral dissertation, Stanford University, Stanford, CA.
Yuille, A. L. and Clark, J. (1993). Bayesian models, deformable templates and competitive priors. In L., Harris and M., Jenkins, eds, Spatial Vision in Humans and Robots. Cambridge, UK: Cambridge University Press.Google Scholar
Zeng, Y., Liang, Y.-C., Hoang, A. T., and Zhang, R. (2010). A review on spectrum sensing for cognitive radio: challenges and solutions. EURASIP Journal on Advances in Signal Processing, 2010, Article ID 381465.CrossRefGoogle Scholar
Zhang, Q. T. (2011). Theoretical performance and thresholds of the multitaper method for spectrum sensing, IEEE transaction on Vehicular Technology, 60, 2128–38.CrossRefGoogle Scholar
Bellman, R. E. (1971). Introduction to the Mathematical Theory of Control Processes, vol. II. New York: Academic Press.Google Scholar
Debreu, G. (1952). A social equilibrium existence theorem. Proceedings of National Academy of Sciences of the United States of America, 38, 886–93.CrossRefGoogle ScholarPubMed
Dreyfus, S. E. and Law, A. (1977). The Art and Theory of Dynamic Programming. New York: Academic Press.Google Scholar
Facchinei, F. and Pang, J. S. (2003). Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer.Google Scholar
Jazwinski, H. (2007). Stochastic Processes and Filtering Theory. New York: Dover Publications.Google Scholar
Krazios., R. S. and. Stone, L. S (2003). Pursuit eye movements. In M. A., Arbib, ed., The Handbook of Brain Theory and Neural Networks, second edition, MIT Press, pp. 929–34.Google Scholar
Langoudakis, M. and Parr, R. (2003). Least-squares policy iteration. Journal of Machine Learning Research, 4, 1107–49.Google Scholar
Laplace, P. (1812). Théorie Analytique de Probabilités, Paris: Courcier.Google Scholar
Mumford, D. (1996). Pattern theory: a unifying perspective. In D. C., Knill and W., Richards, eds, Perception as Bayesian Inference. Cambridge, UK: Cambridge University Press.Google Scholar
Olshausen, B. A. and Field, D. J. (1997). Sparse coding with an overcomplete basis set: a strategy employed by VI?Vision Research, 37, 3311–25.CrossRefGoogle Scholar
Osborne, M. and Rubenstein, A.T. (1994). A Course in Game Theory. Cambridge, MA: MIT Press.Google Scholar
Pang, J. S. and Facchinei, F. (2003). Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer-Verlag.Google Scholar
Putterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming. New York: Wiley.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Simon Haykin, McMaster University, Ontario
  • Book: Cognitive Dynamic Systems
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511818363.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Simon Haykin, McMaster University, Ontario
  • Book: Cognitive Dynamic Systems
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511818363.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Simon Haykin, McMaster University, Ontario
  • Book: Cognitive Dynamic Systems
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511818363.011
Available formats
×