Skip to main content Accessibility help
×
Hostname: page-component-68945f75b7-6rp8b Total loading time: 0 Render date: 2024-09-03T15:24:40.516Z Has data issue: false hasContentIssue false

1 - The origins and uses of complex signals

from Part I - Introduction

Published online by Cambridge University Press:  25 January 2011

Peter J. Schreier
Affiliation:
University of Newcastle, New South Wales
Louis L. Scharf
Affiliation:
Colorado State University
Get access

Summary

Engineering and applied science rely heavily on complex variables and complex analysis to model and analyze real physical effects. Why should this be so? That is, why should real measurable effects be represented by complex signals? The ready answer is that one complex signal (or channel) can carry information about two real signals (or two real channels), and the algebra and geometry of analyzing these two real signals as if they were one complex signal brings economies and insights that would not otherwise emerge. But ready answers beg for clarity. In this chapter we aim to provide it. In the bargain, we intend to clarify the language of engineers and applied scientists who casually speak of complex velocities, complex electromagnetic fields, complex baseband signals, complex channels, and so on, when what they are really speaking of is the x- and y-coordinates of velocity, the x- and y-components of an electric field, the in-phase and quadrature components of a modulating waveform, and the sine and cosine channels of a modulator or demodulator.

For electromagnetics, oceanography, atmospheric science, and other disciplines where two-dimensional trajectories bring insight into the underlying physics, it is the complex representation of an ellipse that motivates an interest in complex analysis. For communication theory and signal processing, where amplitude and phase modulations carry information, it is the complex baseband representation of a real bandpass signal that motivates an interest in complex analysis.

Type
Chapter
Information
Statistical Signal Processing of Complex-Valued Data
The Theory of Improper and Noncircular Signals
, pp. 3 - 29
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×