Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-02T07:08:55.181Z Has data issue: false hasContentIssue false

10 - The scaling of spatial turnover: pruning the thicket

Published online by Cambridge University Press:  05 August 2012

Kevin J. Gaston
Affiliation:
University of Sheffield
Karl L. Evans
Affiliation:
University of Sheffield
Jack J. Lennon
Affiliation:
The Macaulay Institute, Aberdeen
David Storch
Affiliation:
Charles University, Prague
Pablo Marquet
Affiliation:
Pontificia Universidad Catolica de Chile
James Brown
Affiliation:
University of New Mexico
Get access

Summary

Introduction

The level and pattern of spatial variation in the similarity (or dissimilarity) in composition of local or regional species assemblages is striking. Some pairs of areas have similar levels of richness but share no individual species in common (e.g. some local assemblages existing under similar environmental conditions on different continents), others have markedly different levels of richness but all the species in the less speciose area also occur in the other (e.g. some habitat patch or island systems), and there are all shades of patterns in between.

Such spatial turnover in species identities, or beta diversity (we will use the two terms interchangeably), lies at the heart of many important ecological issues and phenomena, including the magnitude of regional and global diversities, the determinants of those diversities, likely biotic responses to climate change, and the design of protected area networks (Cody, 1986; Magurran, 1988, 2004; Harrison, Ross & Lawton, 1992; Harrison, 1993; Oliver, Beattie & York, 1998; Groves, 2003; Koleff, Gaston & Lennon, 2003a). And yet, historically, spatial turnover has received notably less attention than has spatial variation in raw species numbers (i.e. species richness).

Type
Chapter
Information
Scaling Biodiversity , pp. 181 - 222
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, J. D. (1975). Components of diversity. Oecologia, 18, 359–367.CrossRefGoogle ScholarPubMed
Arellano, L. & Halffter, G. (2003). Gamma diversity: derived from a determinant of alpha diversity and beta diversity. An analysis of three tropical landscapes. Acta Zoologica Mexicana, 90, 27–76.Google Scholar
Arhennius, O. (1921). Species and area. Journal of Ecology, 9, 95–99.CrossRefGoogle Scholar
Arita, H. T. & Rodríguez, P. (2002). Geographic range, turnover rate and the scaling of species diversity. Ecography, 25, 541–550.CrossRefGoogle Scholar
Barrow, E., Hulme, M. & Jiang, T. (1993). A 1961–90 baseline climatology and future climatic change scenarios for Great Britain and Europe. Part 1: 1961–90 Great Britain baseline climatology. University of East Anglia Climatic Research Unit, Norwich.Google Scholar
Bell, G. (2001). Neutral macroecology. Science, 293, 2413–2418.CrossRefGoogle ScholarPubMed
Bini, L. M., Diniz-Filho, J. A. F., Bonfim, F. & Bastos, R. P. (2000). Local and regional species richness relationships in viperid snake assemblages from South America: unsaturated patterns at three different spatial scales. Copeia, 2000, 799–805.CrossRefGoogle Scholar
Blackburn, T. M. & Gaston, K. J. (1996). The distribution of bird species in the New World: patterns in species turnover. Oikos, 77, 146–152.CrossRefGoogle Scholar
Boelman, N. T., Stieglitz, M., Rueth, H. M., et al. (2003). Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra. Oecologia, 135, 414–421.CrossRefGoogle ScholarPubMed
Bonn, A., Storch, D. & Gaston, K. J. (2004). Structure of the species-energy relationship. Proceedings of the Royal Society of London, Series B, 271, 1685–1691.CrossRefGoogle ScholarPubMed
Brehm, G., Homeier, J. & Fiedler, K. (2003). Beta diversity of geometrid moths (Lepidoptera: Geometridae) in an Andean montane rainforest. Diversity and Distributions, 9, 351–366.CrossRefGoogle Scholar
Brown, J. H. (1984). On the relationship between abundance and distribution of species. American Naturalist, 124, 255–279.CrossRefGoogle Scholar
Brown, J. H. & Lomolino, M. V. (1998). Biogeography. Sunderland, MA: Sinauer Associates.Google Scholar
Burnham, R. J. (2004). Alpha and beta diversity of lianas in Yasuní, Ecuador. Forest Ecology and Management, 190, 43–55.CrossRefGoogle Scholar
Caley, M. J. & Schluter, D. (1997). The relationship between local and regional diversity. Ecology, 78, 70–80.CrossRefGoogle Scholar
Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T-J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 8, 148–159.CrossRefGoogle Scholar
Chase, J. M. & Leibold, M. A. (2003). Ecological Niches: Linking Classical and Contemporary Approaches. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Chave, J. & Leigh, Jr., , E. G. (2002). A spatially explicit neutral model of β-diversity in tropical forests. Theoretical Population Biology, 62, 153–168.CrossRefGoogle ScholarPubMed
Clarke, A. & Lidgard, S. (2000). Spatial patterns of diversity in the sea: bryozoan species richness in the North Atlantic. Journal of Animal Ecology, 69, 799–814.CrossRefGoogle ScholarPubMed
Cody, M. L. (1975). Towards a theory of continental species diversities: bird distributions over Mediterranean habitat gradients. In Ecology and Evolution of Communities, ed. Cody, M. L. & Diamond, J. M., pp. 214–257. Cambridge, MA: Belknap Press of Harvard University.Google Scholar
Cody, M. L. (1986). Diversity, rarity, and conservation in Mediterranean-climate regions. In Conservation Biology, ed. Soulé, M. E., pp. 122–152. Sunderland, MA: Sinauer Associates.Google Scholar
Cody, M. L. (1993). Bird diversity components within and between habitats in Australia. In Species Diversity in Ecological Communities: Historical and Geographical Perspectives, ed. Ricklefs, R. E. & Schluter, D., pp. 147–158. Chicago: University of Chicago Press.Google Scholar
Colwell, R. K. & Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London, Series B, 345, 101–118.CrossRefGoogle ScholarPubMed
Condit, R., Pitman, N., Leigh, E. G. Jr., et al. (2002). Beta-diversity in tropical forest trees. Science, 295, 666–669.CrossRefGoogle ScholarPubMed
Connor, E. F. & McCoy, E. D. (1979). The statistics and biology of the species-area relationship. American Naturalist, 113, 791–833.CrossRefGoogle Scholar
Cornell, H. V. (1999). Unsaturation and regional influences on species richness in ecological communities: a review of the evidence. Écoscience, 6, 303–315.CrossRefGoogle Scholar
Cornell, H. V. & Lawton, J. H. (1992). Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. Journal of Animal Ecology, 61, 1–12.CrossRefGoogle Scholar
Crawley, M. J. & Harral, J. E. (2001). Scale dependence in plant biodiversity. Science, 291, 864–868.CrossRefGoogle ScholarPubMed
Crist, T. O., Veech, J. A., Gering, J. C. & Summerville, K. S. (2003). Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. American Naturalist, 162, 734–743.CrossRefGoogle ScholarPubMed
Davis, A. L. V., Scholtz, C. H. & Chown, S. L. (1999). Species turnover, community boundaries and biogeographical composition of dung beetle assemblages across an altitudinal gradient in South Africa. Journal of Biogeography, 26, 1039–1055.CrossRefGoogle Scholar
Troch, M., Fiers, F. & Vincx, M. (2001). Alpha and beta diversity of harpacticoid copepods in a tropical seagrass bed: the relation between diversity and species' range size distribution. Marine Ecology Progress Series, 215, 225–236.CrossRefGoogle Scholar
Dice, L. R. (1945). Measures of the amount of ecological association between species. Ecology, 26, 297–302.CrossRefGoogle Scholar
Diniz-Filho, J. A. F., Rangel, T. F. L. V. B. & Hawkins, B. A. (2004). A test of multiple hypotheses for the species richness gradient of South American owls. Oecologia, 140, 633–638.CrossRefGoogle ScholarPubMed
Duivenvoorden, J. F., Svenning, J-C. & Wright, S. J. (2002). Beta diversity in tropical forests. Science, 295, 636–637.CrossRefGoogle ScholarPubMed
Ellingsen, K. E. (2001). Biodiversity of a continental shelf soft-sediment macrobenthos community. Marine Ecology Progress Series, 218, 1–15.CrossRefGoogle Scholar
Ellingsen, K. E. & Gray, J. S. (2002). Spatial patterns of benthic diversity: is there a latitudinal gradient along the Norwegian continental shelf? Journal of Animal Ecology, 71, 373–389.CrossRefGoogle Scholar
Evans, K. L. & Gaston, K. J. (2005). People, energy and avian species richness. Global Ecology & Biogeography, 14, 187–196.CrossRefGoogle Scholar
Evans, K. L., Warren, P. H. & Gaston, K. J. (2004). Species-energy relationships at the macroecological scale: a review of the mechanisms. Biological Reviews, 79, 1–25.Google Scholar
Felfili, M. C. & Felfili, J. M. (2001). Diversidade alfa e beta no cerrado sensu stricto da Chapada Pratinha, Brasil. Acta Botanica Brasilica, 15, 243–254.CrossRefGoogle Scholar
Fuller, R. M., Groom, G. B. & Jones, A. R. (1994). The land-cover map of Great Britain. An automated classification of Landsat Thematic Mapper data. Photogrammetric Engineering and Remote Sensing, 60, 553–562.Google Scholar
Garcillán, P. P. & Ezcurra, E. (2003). Biogeographic regions and β-diversity of woody dryland legumes in the Baja California peninsula. Journal of Vegetation Science, 14, 859–868.CrossRefGoogle Scholar
Gaston, K. J. & Williams, P. H. (1996). Spatial patterns in taxonomic diversity. In Biodiversity: a Biology of Numbers and Difference, ed. Gaston, K. J., pp. 202–229. Oxford: Blackwell Science.Google Scholar
Gaston, K. J., Blackburn, T. M. & Lawton, J. H. (1997). Interspecific abundance-range size relationships: an appraisal of mechanisms. Journal of Animal Ecology, 66, 579–601.CrossRefGoogle Scholar
Gaston, K. J., Blackburn, T. M., Greenwood, J. J. D., Gregory, R. D., Quinn, R. M. & Lawton, J. H. (2000). Abundance-occupancy relationships. Journal of Applied Ecology, 37 (Suppl. 1), 39–59.CrossRefGoogle Scholar
Gaston, K. J., Rodrigues, A. S. L., Rensburg, B. J., Koleff, P. & Chown, S. L. (2001). Complementary representation and zones of ecological transition. Ecology Letters, 4, 4–9.CrossRefGoogle Scholar
Genner, M. J., Taylor, M. I., Cleary, D. F. R., Hawkins, S. J., Knight, M. E. & Turner, G. F. (2004). Beta diversity of rock-restricted cichlid fishes in lake Malawi: importance of environmental and spatial factors. Ecography, 27, 601–610.CrossRefGoogle Scholar
Gering, J. C. & Crist, T. O. (2002). The alpha-beta-regional relationship: providing new insights into local-regional patterns of species richness and scale dependence of diversity components. Ecology Letters, 5, 433–444.CrossRefGoogle Scholar
Gering, J. C., Crist, T. O. & Veech, J. A. (2003). Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of biodiversity. Conservation Biology, 17, 488–499.CrossRefGoogle Scholar
Gibbons, D. W., Reid, J. B. & Chapman, R. A. (1993). The New Atlas of Breeding Birds in Britain and Ireland: 1988–1991. London: Poyser.Google Scholar
Gilbert, B. & Lechowicz, M. J. (2004). Neutrality, niches, and dispersal in a temperate forest understorey. Proceedings of the National Academy of Sciences of the U.S.A., 101, 7651–7656.CrossRefGoogle Scholar
Gleason, H. A. (1922). On the relation between species and area. Ecology, 3, 158–162.CrossRefGoogle Scholar
Green, J. L. & Ostling, A. (2003). Endemics-area relationships: the influence of species dominance and spatial aggregation. Ecology, 84, 3090–3097.CrossRefGoogle Scholar
Green, J. L., Harte, J. & Ostling, A. (2003). Species richness, endemism and abundance patterns: tests of two fractal models in a serpentine grassland. Ecology Letters, 6, 919–928.CrossRefGoogle Scholar
Gregory, R. D. & Blackburn, T. M. (1995). Abundance and body size in British birds: reconciling regional and ecological densities. Oikos, 72, 151–154.CrossRefGoogle Scholar
Gregory, R. D. & Gaston, K. J. (2000). Explanations of commonness and rarity in British breeding birds: separating resource use and resource availability. Oikos, 88, 515–526.CrossRefGoogle Scholar
Gregory, R. D., Greenwood, J. J. D. & Hagemeijer, E. J. M. (1998). The EBCC atlas of European breeding birds: a contribution to science and conservation. Biologia e Conservazione della Fauna, 102, 38–49.Google Scholar
Griffiths, D. (1997). Local and regional species richness in North American lacustrine fish. Journal of Animal Ecology, 66, 49–56.CrossRefGoogle Scholar
Groves, C. R. (2003). Drafting a Conservation Blueprint: a Practitioner's Guide to Planning for Biodiversity. Washington: Island Press.Google Scholar
Harrison, S. (1993). Species diversity, spatial scale, and global change. In Biotic Interactions and Global Change, ed. Kareiva, P. M., Kingsolver, J. G. & Huey, R. B., pp. 388–401. Sunderland, MA: Sinauer.Google Scholar
Harrison, S. (1999). Native and alien species diversity at the local and regional scales in a grazed California grassland. Oecologia, 121, 99–106.CrossRefGoogle Scholar
Harrison, S., Ross, S. J. & Lawton, J. H. (1992). Beta diversity on geographic gradients in Britain. Journal of Animal Ecology, 61, 151–158.CrossRefGoogle Scholar
Harte, J. & Kinzig, A. P. (1997). On the implications of species-area relationships for endemism, spatial turnover, and food web patterns. Oikos, 80, 417–427.CrossRefGoogle Scholar
Harte, J., McCarthy, S., Taylor, K., Kinzig, A. & Fischer, M. L. (1999a). Estimating species-area relationships from plot to landscape scale using spatial-turnover data. Oikos, 86, 45–54.CrossRefGoogle Scholar
Harte, J., Kinzig, A. & Green, J. (1999b). Self-similarity in the distribution and abundance of species. Science, 284, 334–336.CrossRefGoogle Scholar
Hawkins, B. A. (2004). Summer vegetation, deglaciation and the anomalous bird diversity gradient in eastern North America. Global Ecology and Biogeography, 13, 321–325.CrossRefGoogle Scholar
Hawkins, B. A., Field, R., Cornell, H. V., et al. (2003). Energy, water and broad-scale geographic patterns of species richness. Ecology, 84, 3105–3117.CrossRefGoogle Scholar
He, F., Gaston, K. J., Connor, E. F. & Srivastava, D. S. (2005). The local-regional relationship: immigration, extinction and scale. Ecology, 86, 360–365.CrossRefGoogle Scholar
Heegaard, E. (2004). Trends in aquatic macrophyte species turnover in Northern Ireland – which factors determine the spatial distribution of local species turnover? Global Ecology and Biogeography, 13, 397–408.CrossRefGoogle Scholar
Hillebrand, H. (2004). On the generality of the latitudinal diversity gradient. American Naturalist, 163, 192–211.CrossRefGoogle ScholarPubMed
Hillebrand, H. & Blenckner, T. (2002). Regional and local impact on species diversity – from pattern to process. Oecologia, 132, 479–491.CrossRefGoogle Scholar
Hubbell, S. P. (1979). Tree dispersion, abundance, and diversity in a tropical dry forest. Science, 203, 1299–1309.CrossRefGoogle Scholar
Hubbell, S. P. (1997). A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral Reefs, 16, S9–S21.CrossRefGoogle Scholar
Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton: Princeton University Press.Google Scholar
Hurlbert, A. H. (2004). Species-energy relationships and habitat complexity in bird communities. Ecology Letters, 7, 714–720.CrossRefGoogle Scholar
Jaccard, P. (1912). The distribution of the flora in the alpine zone. New Phytologist, 11, 37–50.CrossRefGoogle Scholar
Kaspari, M., Yuan, M. & Alonso, L. (2003). Spatial grain and the causes of regional diversity gradients in ants. American Naturalist, 161, 459–477.CrossRefGoogle ScholarPubMed
Kerr, J. T. & Ostrovsky, M. (2003). From space to species: ecological applications for remote sensing. Trends in Ecology and Evolution, 18, 299–305.CrossRefGoogle Scholar
Koleff, P. & Gaston, K. J. (2001). Latitudinal gradients in diversity: real patterns and random models. Ecography, 24, 341–351.CrossRefGoogle Scholar
Koleff, P. & Gaston, K. J. (2002). The relationships between local and regional species richness and spatial turnover. Global Ecology and Biogeography, 11, 363–375.CrossRefGoogle Scholar
Koleff, P., Gaston, K. J. & Lennon, J. J. (2003a). Measuring beta diversity for presence-absence data. Journal of Animal Ecology, 72, 367–382.CrossRefGoogle Scholar
Koleff, P., Lennon, J. J. & Gaston, K. J. (2003b). Are there latitudinal gradients in species turnover? Global Ecology and Biogeography, 12, 483–498.CrossRefGoogle Scholar
Lande, R. (1996). Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos, 76, 5–13.CrossRefGoogle Scholar
Lande, R., Engen, S. & Sæther, B-E. (2003). Stochastic Population Dynamics in Ecology and Conservation. Oxford: Oxford University Press.CrossRefGoogle Scholar
Lawton, J. H. (2000). Concluding remarks: a review of some open questions. In The Ecological Consequences of Environmental Heterogeneity, ed. Hutchings, M. J., John, E. A. & Stewart, A. J. A., pp. 401–424. Oxford: Blackwell Science.Google Scholar
Leitner, W. A. & Rosenzweig, M. L. (1997). Nested species-area curves and stochastic sampling: a new theory. Oikos, 79, 503–512.CrossRefGoogle Scholar
Lennon, J. J., Greenwood, J. J. D. & Turner, J. R. G. (2000). Bird diversity and environmental gradients in Britain: a test of the species-energy hypothesis. Journal of Animal Ecology, 69, 581–598.CrossRefGoogle Scholar
Lennon, J. J., Koleff, P., Greenwood, J. J. D. & Gaston, K. J. (2001). The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966–979.CrossRefGoogle Scholar
Lennon, J. J., Kunin, W. E. & Hartley, S. (2002). Fractal species distributions do not produce power-law species-area relationships. Oikos, 97, 378–386.CrossRefGoogle Scholar
Littell, R. C., Milliken, G. A., Stroup, W. W. & Wolfinger, R. D. (1996). SAS®system for mixed models. Cary, USA: SAS Institute Inc.Google Scholar
Loreau, M. (2000). Are communities saturated? On the relationship between α, β and γ diversity. Ecology Letters, 3, 73–76.CrossRefGoogle Scholar
Lorance, P., Souissi, S. & Uiblein, F. (2002). Point, alpha and beta diversity of carnivorous fish along a depth gradient. Aquatic Living Resources, 15, 263–271.CrossRefGoogle Scholar
Ludwig, J. A. & Reynolds, J. F. (1988). Statistical Ecology. New York: John Wiley.Google Scholar
Mac Nally, R., Fleishman, E., Bulluck, L. P. & Betrus, C. J. (2004). Comparative influence of spatial scale on beta diversity within regional assemblages of birds and butterflies. Journal of Biogeography, 31, 917–929.CrossRefGoogle Scholar
Maddux, R. D. (2004). Self-similarity and the species-area relationship. American Naturalist, 163, 616–626.CrossRefGoogle ScholarPubMed
Magurran, A. E. (1988). Ecological Diversity and its Measurement. London: Croom Helm.CrossRefGoogle Scholar
Magurran, A. E. (2004). Measuring Biological Diversity. Oxford: Blackwell Publishing.Google Scholar
Major, J. (1988). Endemism: a botanical perspective. In Analytical Biogeography: an Integrated Approach to the Study of Animal and Plant Distributions, ed. Myers, A. A. & Giller, P. S., pp. 117–146. London: Chapman & Hall.CrossRefGoogle Scholar
McGill, B. & Collins, C. (2003). A unified theory for macroecology based on spatial patterns of abundance. Evolutionary Ecology Research, 5, 469–492.Google Scholar
Moreno, C. E. & Halffter, G. (2001). Spatial and temporal analysis of α, β and γ diversities of bats in a fragmented landscape. Biodiversity and Conservation, 10, 367–382.CrossRefGoogle Scholar
Mouquet, N., Munguia, P., Kneitel, J. M. & Miller, T. E. (2003). Community assembly time and the relationship between local and regional species richness. Oikos, 103, 618–626.CrossRefGoogle Scholar
Mourelle, C. & Ezcurra, E. (1997). Differentiation diversity of Argentine cacti and its relationship to environmental factors. Journal of Vegetation Science, 8, 547–558.CrossRefGoogle Scholar
Naranjo, S., Carballo, J. L. & García-Gómez, J. C. (1998). Towards a knowledge of marine boundaries using ascidians as indicators: characterizing transition zones for species distribution along Atlantic-Mediterranean shores. Biological Journal of the Linnean Society, 64, 151–177.CrossRefGoogle Scholar
Nekola, J. C. & White, P. S. (1999). The distance decay of similarity in biogeography and ecology. Journal of Biogeography, 26, 867–878.CrossRefGoogle Scholar
Ney-Nifle, M. & Mangel, M. (1999). Species-area curves based on geographic range and occupancy. Journal of Theoretical Biology, 196, 327–342.CrossRefGoogle Scholar
Novotny, V. & Weiblen, G. D. (2005). From communities to continents: beta diversity of herbivorous insects. Annales Zoologici Fennici, 42, 463–475.Google Scholar
Økland, R. H., Eliertsen, O. & Økland, T. (1990). On the relationship between sample plot size and beta diversity in boreal coniferous forests. Vegetatio, 87, 187–192.CrossRefGoogle Scholar
Okuda, T., Noda, T., Yamamoto, T., Ito, N. & Nakaoka, M. (2004). Latitudinal gradient of species diversity: multi-scale variability in rocky intertidal sessile assemblages along the Northwestern Pacific coast. Population Ecology, 46, 159–170.CrossRefGoogle Scholar
Oliver, I., Beattie, A. J. & York, A. (1998). Spatial fidelity of plant, vertebrate, and invertebrate assemblages in multiple-use forest in eastern Australia. Conservation Biology, 12, 822–835.CrossRefGoogle Scholar
Ostling, A., Harte, J., Green, J. L. & Kinzig, A. P. (2004). Self-similarity, the power law form of the species-area relationship, and a probability rule: a reply to Maddux. American Naturalist, 163, 627–633.CrossRefGoogle Scholar
Palmer, M. W. & White, P. S. (1994). Scale dependence and the species-area relationship. American Naturalist, 144, 717–740.CrossRefGoogle Scholar
Pastor, J., Downing, A. & Erickson, H. E. (1996). Species-area curves and diversity-productivity relationships in beaver meadows of Voyageurs National Park, Minnesota, USA. Oikos, 77, 399–406.CrossRefGoogle Scholar
Pélissier, R., Couteron, P., Dray, S. & Sabatier, D. (2003). Consistency between ordination techniques and diversity measurements: two strategies for species occurrence data. Ecology, 84, 242–251.CrossRefGoogle Scholar
Pharo, E. J., Beattie, A. J. & Binns, D. (1999). Vascular plant diversity as a surrogate for bryophyte and lichen diversity. Conservation Biology, 13, 282–292.CrossRefGoogle Scholar
Pimm, S. L. & Brown, J. H. (2004). Domains of diversity. Science, 304, 831–833.CrossRefGoogle ScholarPubMed
Plotkin, J. B. & Muller-Landau, H. C. (2002). Sampling the species composition of a landscape. Ecology, 83, 3344–3356.CrossRefGoogle Scholar
Plotkin, J. B., Potts, M. D., Leslie, N., Manokaran, N., LaFrankie, J. & Ashton, P. S. (2000). Species-area curves, spatial aggregation, and habitat specialization in tropical forests. Journal of Theoretical Biology, 207, 81–99.CrossRefGoogle ScholarPubMed
Poynton, J. C. & Boycott, R. C. (1996). Species turnover between Afromontane and eastern African lowland faunas: patterns shown by amphibians. Journal of Biogeography, 23, 669–680.CrossRefGoogle Scholar
Price, A. R. G., Keeling, M. J. & O'Callaghan, C. J. (1999). Ocean-scale patterns of ‘biodiversity’ of Atlantic asteroids determined from taxonomic distinctness and other measures. Biological Journal of the Linnean Society, 66, 187–203.Google Scholar
Qian, H., Ricklefs, R. E. & White, P. S. (2005). Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecology Letters, 8, 15–22.CrossRefGoogle Scholar
Ricklefs, R. E. (1987). Community diversity: relative roles of local and regional processes. Science, 235, 167–171.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. (2004). A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7, 1–15.CrossRefGoogle Scholar
Ricklefs, R. E. & Lau, M. (1980). Bias and dispersion of overlap indices: results of some Monte Carlo simulations. Ecology, 61, 1019–1024.CrossRefGoogle Scholar
Rivadeneira, M. M., Fernández, M. & Navarrete, S. A. (2002). Latitudinal trends of species diversity in rocky intertidal herbivore assemblages: spatial scale and the relationship between local and regional species richness. Marine Ecology Progress Series, 245, 123–131.CrossRefGoogle Scholar
Rodríguez, P. & Arita, H. T. (2004). Beta diversity and latitude in North American mammals: testing the hypothesis of covariation. Ecography, 27, 547–556.CrossRefGoogle Scholar
Rosenzweig, M. L. (1995). Species Diversity in Space and Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Routledge, R. D. (1977). On Whittaker's components of diversity. Ecology, 58, 1120–1127.CrossRefGoogle Scholar
Ruggiero, A., Lawton, J. H. & Blackburn, T. M. (1998). The geographic ranges of mammalian species in South America: spatial patterns in environmental resistance and anisotropy. Journal of Biogeography, 25, 1093–1103.CrossRefGoogle Scholar
Scheiner, S. M. & Rey-Benayas, J. M. (1994). Global patterns of plant diversity. Evolutionary Ecology, 8, 331–347.CrossRefGoogle Scholar
Schluter, D. & Ricklefs, R. E. (1993). Species diversity: an introduction to the problem. In Species Diversity in Ecological Communities: Historical and Geographical Perspectives, ed. Ricklefs, R. E. & Schluter, D., pp. 1–12. Chicago: Chicago University Press.Google Scholar
Selmi, S. & Boulinier, T. (2004). Distribution-abundance relationship for passerines breeding in Tunisian oases: test of the sampling hypothesis. Oecologia, 139, 440–445.CrossRefGoogle ScholarPubMed
Simpson, G. G. (1943). Mammals and the nature of continents. American Journal of Science, 241, 1–31.CrossRefGoogle Scholar
Šizling, A. L. & Storch, D. (2004). Power-law species–area relationships and self-similar species distributions within finite areas. Ecology Letters, 7, 60–68.CrossRefGoogle Scholar
Sørensen, T. A. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter, 5, 1–34.Google Scholar
Southwood, T. R. E., Brown, V. K. & Reeder, P. M. (1979). The relationships of plant and insect diversities in succession. Biological Journal of the Linnean Society, 12, 327–348.CrossRefGoogle Scholar
Srivastava, D. S. (1999). Using local-regional richness plots to test for species saturation: pitfalls and potentials. Journal of Animal Ecology, 68, 1–16.CrossRefGoogle Scholar
Srivastava, D. S. & Lawton, J. H. (1998). Why more productive sites have more species, an experimental test of theory using tree-hole communities. American Naturalist, 152, 510–529.Google ScholarPubMed
Stevens, G. C. (1989). The latitudinal gradient in geographical range: how so many species coexist in the tropics. American Naturalist, 133, 240–256.CrossRefGoogle Scholar
Stevens, R. D. & Willig, M. R. (2002). Geographical ecology at the community level: perspectives on the diversity of New World bats. Ecology, 83, 545–560.CrossRefGoogle Scholar
Storch, D., Evans, K. L. & Gaston, K. J. (2005). The species-area-energy relationship. Ecology Letters, 8, 487–492.CrossRefGoogle ScholarPubMed
Summerville, K. S., Boulware, M. J., Veech, J. A. & Crist, T. O. (2003a). Spatial variation in species diversity and composition of forest Lepidoptera in eastern deciduous forests of North America. Conservation Biology, 17, 1045–1057.CrossRefGoogle Scholar
Summerville, K. S., Crist, T. O., Kahn, J. K. & Gering, J. C. (2003b). Community structure of arboreal caterpillars within and among four tree species of the eastern deciduous forest. Ecological Entomology, 28, 747–757.CrossRefGoogle Scholar
Sweeney, B. A. & Cook, J. E. (2001). A landscape-level assessment of understorey diversity in upland forests of North-Central Wisconsin, USA. Landscape Ecology, 16, 55–69.CrossRefGoogle Scholar
Tuomisto, H., Ruokolainen, K. & Yli-Haila, M. (2003). Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241–244.CrossRefGoogle ScholarPubMed
Turner, J. R. G., Lennon, J. J. & Lawrenson, J. A. (1988). British bird distributions and the energy theory. Nature, 335, 539–541.CrossRefGoogle Scholar
Ulrich, W. & Buszko, J. (2003). Self-similarity and the species-area relation of Polish butterflies. Basic and Applied Ecology, 4, 263–270.CrossRefGoogle Scholar
Rensburg, B. J., Koleff, P., Gaston, K. J. & Chown, S. L. (2004). Spatial congruence of ecological transition at the regional scale in South Africa. Journal of Biogeography, 31, 843–854.CrossRefGoogle Scholar
Vázquez, D. P. & Stevens, R. D. (2004). The latitudinal gradient in niche breadth: concepts and evidence. American Naturalist, 164, E1–E19.CrossRefGoogle ScholarPubMed
Veech, J. A., Summerville, K. S., Crist, T. O. & Gering, J. C. (2002). The additive partitioning of species diversity: recent revival of an old idea. Oikos, 99, 3–9.CrossRefGoogle Scholar
Veech, J. A., Crist, T. O. & Summerville, K. S. (2003). Intraspecific aggregation decreases local species diversity of arthropods. Ecology, 84, 3376–3383.CrossRefGoogle Scholar
Vellend, M. (2001). Do commonly used indices of β-diversity measure species turnover? Journal of Vegetation Science, 12, 545–552.CrossRefGoogle Scholar
Vormisto, J., Svenning, J-C., Hall, P. & Balslev, H. (2004). Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. Journal of Ecology, 92, 577–588.CrossRefGoogle Scholar
Wagner, H. H., Wildi, O. & Ewald, K. C. (2000). Additive partitioning of plant species diversity in an agricultural mosaic landscape. Landscape Ecology, 15, 219–227.CrossRefGoogle Scholar
Weiher, E. & Boylen, C. W. (1994). Patterns and prediction of α and β diversity of aquatic plants in Adirondack (New York) lakes. Canadian Journal of Botany, 72, 1797–1804.CrossRefGoogle Scholar
Whittaker, R. H. (1960). Vegetation of the Siskiyou mountains, Oregon and California. Ecological Monographs, 30, 279–338.CrossRefGoogle Scholar
Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 21, 213–251.CrossRefGoogle Scholar
Whittaker, R. J., Willis, K. J. & Field, R. (2001). Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography, 28, 453–470.CrossRefGoogle Scholar
Williams, P. H. (1996). Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proceedings of the Royal Society of London, Series B, 263, 579–588.CrossRefGoogle Scholar
Williams, S. E., Marsh, H. & Winter, J. (2002). Spatial scale, species diversity, and habitat structure: small mammals in Australian tropical rain forest. Ecology, 83, 1317–1329.CrossRefGoogle Scholar
Willig, M. R. & Gannon, M. R. (1997). Gradients of species density and turnover in marsupials: a hemispheric perspective. Journal of Mammalogy, 78, 756–765.CrossRefGoogle Scholar
Willig, M. R. & Sandlin, E. A. (1991). Gradients of species density and species turnover in New World bats: a comparison of quadrat and band methodologies. In Latin American Mammalogy: History, Biodiversity and Conservation, ed. Mares, M. A. & Schmidly, D. J., pp. 81–96. University of Oklahoma Press.Google Scholar
Willig, M. R., Kaufman, D. M. & Stevens, R. D. (2003). Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution and Systematics, 34, 273–309.CrossRefGoogle Scholar
Wilson, M. V. & Shmida, A. (1984). Measuring beta diversity with presence-absence data. Journal of Ecology, 72, 1055–1064.CrossRefGoogle Scholar
Wolda, H. (1981). Similarity indices, sample size and diversity. Oecologia, 50, 296–302.CrossRefGoogle ScholarPubMed
Worthen, W. B. (1996). Community composition and nested-subset analysis: basic descriptors for community ecology. Oikos, 76, 417–426.CrossRefGoogle Scholar
Wright, D. H. (1983). Species-energy theory, an extension of species-area theory. Oikos, 41, 496–506.CrossRefGoogle Scholar
Wright, D. H. & Reeves, J. H. (1992). On the meaning and measurement of nestedness of species assemblages. Oecologia, 92, 416–428.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×