Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T14:32:53.883Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

References

Anthony Philpotts
Affiliation:
Yale University, Connecticut
Jay Ague
Affiliation:
Yale University, Connecticut
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abart, R. (1995). Phase equilibrium and stable isotope constraints on the formation of metasomatic garnet-vesuvianite veins (SW Adamello, N Italy). Contributions to Mineralogy and Petrology, 122, 116–133.CrossRefGoogle Scholar
Abbott, R. N. (1978). Peritectic reactions in the system An–Ab–Or–Qz–H2O. Canadian Mineralogist, 16, 245–256.Google Scholar
Abe, T., Tsukamoto, K., and Sunagawa, I. (1991). Nucleation, growth and stability of CaAl2Si2O8 polymorphs. Physics and Chemistry of Minerals, 17, 473–484.CrossRefGoogle Scholar
Adams, N. K., Houghton, B. F., and Fagents, S. A. (2006). The transition from explosive to effusive eruptive regime: the example of the 1912 Novarupta eruption, Alaska. Geological Society of America Bulletin, 118, 620–634.CrossRefGoogle Scholar
Agee, C. B., and Walker, D. (1993). Olivine flotation in mantle melt. Earth and Planetary Science Letters, 114, 315–324.CrossRefGoogle Scholar
Ague, J. J. (1994a). Mass transfer during Barrovian metamorphism of pelites, south-central Connecticut: II. Channelized fluid flow and the growth of staurolite and kyanite. American Journal of Science, 294, 1061–1134.CrossRefGoogle Scholar
Ague, J. J. (1994b). Mass transfer during Barrovian metamorphism of pelites, south-central Connecticut: I. Evidence for changes in composition and volume. American Journal of Science, 294, 989–1057.CrossRefGoogle Scholar
Ague, J. J. (1995). Deep crustal growth of quartz, kyanite, and garnet into large-aperture, fluid-filled fractures, north-eastern Connecticut, USA. Journal of Metamorphic Geology, 13, 299–314.CrossRefGoogle Scholar
Ague, J. J. (1997). Crustal mass transfer and index mineral growth in Barrow's garnet zone, northeast Scotland. Geology, 25, 73–76.2.3.CO;2>CrossRefGoogle Scholar
Ague, J. J. (2000). Release of CO2 from carbonate rocks during regional metamorphism of lithologically heterogeneous crust. Geology, 28, 1123–1126.2.0.CO;2>CrossRefGoogle Scholar
Ague, J. J. (2002). Gradients in fluid composition across metacarbonate layers of the Wepawaug Schist, Connecticut, USA. Contributions to Mineralogy and Petrology, 143, 38–55.CrossRefGoogle Scholar
Ague, J. J. (2003a). Fluid infiltration and transport of major, minor, and trace elements during regional metamorphism of carbonate rocks, Wepawaug Schist, Connecticut, USA. American Journal of Science, 303, 753–816.CrossRefGoogle Scholar
Ague, J. J. (2003b). Fluid flow in the deep crust. In The Crust, ed. Rudnick, R. L., vol. 3 of Treatise on Geochemistry, ed. Holland, H. D., and Turekian, K. K.. Amsterdam: Elsevier, 195–228.Google Scholar
Ague, J. J. (2007). Models of permeability contrasts in subduction zone mélange: implications for gradients in fluid fluxes, Syros and Tinos Islands, Greece. Chemical Geology, 239, 217–227.CrossRefGoogle Scholar
Ague, J. J., and Baxter, E. F. (2007). Brief thermal pulses during mountain building recorded by Sr diffusion in apatite and multicomponent diffusion in garnet. Earth and Planetary Science Letters, 261, 500–516.CrossRefGoogle Scholar
Ague, J. J., and Brimhall, G. H (1988). Magmatic arc asymmetry and distribution of anomalous plutonic belts in the batholiths of California: effects of assimilation, crustal thickness, and depth of crystallization. Geological Society of America Bulletin, 100, 912–927.2.3.CO;2>CrossRefGoogle Scholar
Ague, J. J., and Rye, D. M. (1999). Simple models of CO2 release from metacarbonates with implications for interpretation of directions and magnitudes of fluid flow in the deep crust. Journal of Petrology, 40, 1443–1462.CrossRefGoogle Scholar
Ague, J. J., and Haren, J. L. M. (1996). Assessing metasomatic mass and volume changes using the bootstrap, with application to deep crustal hydrothermal alteration of marble. Economic Geology, 91, 1169–1182.CrossRefGoogle Scholar
Ague, J. J., Park, J., and Rye, D. M. (1998). Regional metamorphic dehydration and seismic hazard. Geophysical Research Letters, 25, 4221–4224.CrossRefGoogle Scholar
Ague, J. J., Baxter, E. F., and Eckert, J. O. (2001). High fO2 during sillimanite zone metamorphism of part of the Barrovian type locality, Glen Clova, Scotland. Journal of Petrology, 42, 1301–1320.CrossRefGoogle Scholar
Aitchison, J. (1986). The Statistical Analysis of Compositional Data. London: Chapman and Hall.CrossRefGoogle Scholar
Aki, K., and Koyanagi, R. (1981). Deep volcanic tremor and magma ascent mechanism under Kilauea, Hawaii. Journal of Geophysical Research, 86, 7095–7109.CrossRefGoogle Scholar
Albee, A. L. (1965). A petrogenetic grid for the Fe-Mg silicates of pelitic schists. American Journal of Science, 263, 512–536.CrossRefGoogle Scholar
Allègre, C. J., Hart, S. R., and Minster, J.-F. (1983). Chemical structure and evolution of the mantle and continents determined by inversion of Nd and Sr isotopic data: II. Numerical experiments and discussion. Earth and Planetary Science Letters, 66, 191–213.CrossRefGoogle Scholar
Allen, C. C. (1979). Volcano-ice interactions on Mars. Journal of Geophysical Research, 84, 8048–8059.CrossRefGoogle Scholar
Alt, J. C., and Teagle, D. A. H. (1999). The uptake of carbon during alteration of ocean crust. Geochimica Cosmochimica Acta, 63, 1527–1535.CrossRefGoogle Scholar
Alvarado, G. E., Denyer, P., and Sinton, C. W. (1997). The 89 Ma Tortugal komatiitic suite, Costa Rica: implications for a common geological origin of the Caribbean and East Pacific region from a mantle plume. Geology, 25, 439–442.2.3.CO;2>CrossRefGoogle Scholar
Amstutz, G. C. (1974). Spilites and Spilitic Rocks. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Andersen, O. (1915). The system anorthite–forsterite–silica. American Journal of Science, 39, 407–454.CrossRefGoogle Scholar
Anderson, A. T. (1975). Some basaltic and andesitic gases. Reviews of Geophysics and Space Physics, 13, 37–55.CrossRefGoogle Scholar
Anderson, A. T., and Morin, M. (1968). Two types of massif anorthosites and their implications regarding the thermal history of the crust. In Origin of Anorthosites and Related Rocks, ed. Isachsen, Y. W.. New York State Museum and Science Service Memoir, 18, 57–69.
Anderson, D. L. (1984). The earth as a planet: paradigms and paradoxes. Science, 223, 347–355.CrossRefGoogle ScholarPubMed
Anderson, D. L. (1998). The helium paradoxes. Proceedings of the National Academy of Sciences, 95, 4822–4827.CrossRefGoogle ScholarPubMed
Anderson, D. L. (2005). Scoring hotspots: the plume and plate paradigms. Geological Society of America Special Paper, 388, 31–54.Google Scholar
Anderson, E. M. (1936). The dynamics of the formation of cone-sheets, ring-dikes, and caldron-subsidences. Royal Society of Edinburgh Proceedings, 56, 128–163.CrossRefGoogle Scholar
Annen, C., Blundy, J. D., and Sparks, R. S. J. (2006). The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47, 505–539.CrossRefGoogle Scholar
Anovitz, L. M., and Essene, E. J. (1987). Phase equilibria in the system CaCO3-MgCO3-FeCO3. Journal of Petrology, 28, 389–414.CrossRefGoogle Scholar
Arndt, N. T., and Nisbet, E. G. (1982). What is a komatiite? In Komatiites, ed. Arnt, N. T. and Nisbet, E. G.. London: George Allen & Unwin, 19–27.Google Scholar
Arndt, N. T., Naldrett, A. J., and Pyke, D. R. (1977). Komatiite and iron-rich tholeiite lava of Munrow Township, northeast Ontario. Journal of Petrology, 18, 319–369.CrossRefGoogle Scholar
Aranovich, L. Y., and Newton, R. C. (1999). Experimental determination of CO2–H2O activity-composition relations at 600–1,000 °C and 6–14 kbar by reversed decarbonation and dehydration reactions. American Mineralogist, 84, 1319–1332.CrossRefGoogle Scholar
Asimow, P. D., and Ghiorso, M. S. (1998). Algorithm modifications extending MELTS to calculate subsolidus phase relations. American Mineralogist, 83, 1127–1131.CrossRefGoogle Scholar
Asimow, P. D., Hirschmann, M. M., Ghiorso, M. S., O'Hara, M. J., and Stolper, E. M. (1995). The effect of pressure-induced solid-solid phase transitions on decompression melting of the mantle. Geochimica et Cosmochimica Acta, 59, 4489–4506.CrossRefGoogle Scholar
Atherton, M. P. (1977). The metamorphism of the Dalradian rocks of Scotland. Scottish Journal of Geology, 13, 331–370.CrossRefGoogle Scholar
Austrheim, H. (1987). Eclogitization of lower crustal granulites by fluid migration through shear zones. Earth and Planetary Science Letters, 81, 221–232.CrossRefGoogle Scholar
Bailey, D. K. (1974). Continental rifting and alkaline magmatism. In The Alkaline Rocks, ed. Sørensen, H.. London: John Wiley, 148–159.Google Scholar
Baker, B. H., and Wohlenberg, J. (1971). Structure and evolution of the Kenya Rift Valley. Nature, 229, 538–542.CrossRefGoogle ScholarPubMed
Baker, B. H., Crossley, R., and Goles, G. G. (1978). Tectonic and magmatic evolution of the southern part of the Kenya Rift Valley. In Petrology and Geochemistry of Continental Rifts, ed. Neumann, E.-R., and Ramberg, I. B.. Dordrecht: D. Reidel, 29–50.CrossRefGoogle Scholar
Baker, P. E. (1968). Comparative volcanology and petrology of the Atlantic island-arcs. Bulletin of Volcanology, 32, 186–206.Google Scholar
Baldwin, S. L., Monteleone, B. D., Webb, L. E., Fitzgerald, P. G., Grove, M., and Hill, E. J. (2004). Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea. Nature, 431, 263–267.CrossRefGoogle ScholarPubMed
Barley, M. E. (1986). Incompatible-element enrichment in Archean basalts: a consequence of contamination by older sialic crust rather than mantle heterogeneity. Geology, 14, 947–950.2.0.CO;2>CrossRefGoogle Scholar
Barron, L. M. (1972). Thermodynamic multicomponent silicate equilibrium phase calculations. American Mineralogist, 57, 809–823.Google Scholar
Barrow, G. (1893). On an intrusion of muscovite-biotite gneiss in the southeast Highlands of Scotland, and its accompanying metamorphism. Quarterly Journal of the Geological Society of London, 49, 330–358.CrossRefGoogle Scholar
Barrow, G. (1912). On the geology of the lower Dee-side and the southern Highland border. Proceedings of the Geologist's Association, 23, 268–284.CrossRefGoogle Scholar
,Basaltic Volcanism Study Project (BVSP) (1981). Basaltic Volcanism on the Terrestrial Planets. New York: Pergamon Press, 1286 pp.Google Scholar
Bass, J. D. (1995). Elasticity of minerals, glasses, and melts. In Global Earth Physics: A Handbook of Physical Constants. ed. Ahrens, T. J., American Geophysical Union Reference Shelf 2, 45–63.CrossRef
Baumgartner, L. P., and Ferry, J. M. (1991). A model for coupled fluid-flow and mixed-volatile mineral reactions with applications to regional metamorphism. Contributions to Mineralogy and Petrology, 106, 273–285.CrossRefGoogle Scholar
Baxter, E. F., and DePaolo, D. J. (2002a). Field measurement of high temperature bulk reaction rates: I. Theory and technique. American Journal of Science, 302, 442–464.CrossRefGoogle Scholar
Baxter, E. F., and DePaolo, D. J. (2002b). Field measurement of high temperature bulk reaction rates: II. Interpretation of results from a field site near Simplon Pass, Switzerland. American Journal of Science, 302, 465–516.CrossRefGoogle Scholar
Baxter, E. F., Ague, J. J., and DePaolo, D. J. (2002). Prograde temperature-time evolution in the Barrovian type-locality constrained by Sm/Nd garnet ages from Glen Clova, Scotland. Journal of the Geological Society of London, 159, 71–82.CrossRefGoogle Scholar
Bear, J. (1988). Dynamics of Fluids in Porous Media. New York: Dover.Google Scholar
Bear, J. and Verruijt, A. (1987). Modeling groundwater flow and pollution. Dordrecht: D. Reidel.CrossRef
Beaumont, C., Jamieson, R. A., Nguyen, M. H., and Lee, B. (2001). Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414, 738–742.CrossRefGoogle ScholarPubMed
Bebout, G. E., and Barton, M. D. (1989). Fluid flow and metasomatism in a subduction zone hydrothermal system: Catalina Schist terrane, California. Geology, 17, 976–980.2.3.CO;2>CrossRefGoogle Scholar
Bebout, G. E., and Barton, M. D. (2002). Tectonic and metasomatic mixing in a high-T, subduction-zone mélange–insights into the geochemical evolution of the slab-mantle interface. Chemical Geology, 187, 79–106.CrossRefGoogle Scholar
Becker, U., and Prieto, M. (ed.) (2006). Solid solutions: from theory to experiment. Chemical Geology, 225, 173–175.CrossRefGoogle Scholar
Bédard, J. H. J., Marsh, B. D., Hersum, T. G., Naslund, H. R., and Mukasa, S. B. (2007). Large-scale mechanical redistribution of orthopyroxene and plagioclase in the Basement Sill, Ferrar dolerites, McMurdo Dry Valleys, Antarctica: petrological, mineral-chemical and field evidence for channelized movement of crystals and melt. Journal of Petrology, 48, 2289–2326.CrossRefGoogle Scholar
Bell, T. H., Rubenach, M. J., and Fleming, P. D. (1986). Porphyroblast nucleation, growth, and dissolution in regional metamorphic as a function of deformation partitioning during foliation development. Journal of Metamorphic Geology, 4, 37–67.CrossRefGoogle Scholar
Ben-Jacob, E., and Garik, P. (1990). The formation of patterns in non-equilibrium growth. Nature, 343, 523–530.CrossRefGoogle Scholar
Bergantz, G. W., and Ni, J. (1999). A numerical study of sedimentation by dripping instabilities in viscous fluids. International Journal of Multiphase Flow, 25, 307–320.CrossRefGoogle Scholar
Berman, R. G. (1988). Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. Journal of Petrology, 29, 445–522.CrossRefGoogle Scholar
Berman, R. G. (1990). Mixing properties of Ca–Mg–Fe–Mn garnets. American Mineralogist, 75, 328–344.Google Scholar
Berman, R. G. (1991). Thermobarometry using multi-equilibrium calculations: a new technique, with petrological applications. Canadian Mineralogist, 29, 833–855.Google Scholar
Berman, R. G. (2007). winTWQ (version 2.3): a software package for performing internally-consistent thermobarometric calculations. Geological Survey of Canada, Open File 5462, (edn. 2.34), 41 pp.
Berner, R. A. (1980). Early Diagenesis: A Theoretical Approach. Princeton, NJ: Princeton University Press.Google Scholar
Bickle, M. J. (1992). Transport mechanisms by fluid-flow in metamorphic rocks: oxygen and strontium decoupling in the Trois Seigneurs Massif – a consequence of kinetic dispersion? American Journal of Science, 292, 289–316.CrossRefGoogle Scholar
Bickle, M. J., and McKenzie, D. (1987). The transport of heat and matter by fluids during metamorphism. Contributions to Mineralogy and Petrology, 95, 384–392.CrossRefGoogle Scholar
Bickle, M. J., Chapman, H. J., Ferry, J. M., Rumble, D., Fallick, A. E. (1997). Fluid flow and diffusion in the Waterville Limestone, south-central Maine: constraints from strontium, oxygen, and carbon isotope profiles. Journal of Petrology, 38, 1489–1512.CrossRefGoogle Scholar
Bijwaard, H., and Spakman, W. (1999). Tomographic evidence for a narrow whole mantle plume below Iceland. Earth and Planetary Science Letters, 166, 121–126.CrossRefGoogle Scholar
Birch, F., Roy, R. F., and Decker, E. R. (1968). Heat flow and thermal history in New England and New York. In Studies of Appalachian Geology, Northern and Maritime, ed. Zen, E-an, White, W. S., Hadley, J. B., and Thompson, J. B.. New York: Interscience Publishers, 437–452.Google Scholar
Blacic, T. M., Ito, G., Canales, J. P., Detrick, R. S., and Sinton, J. (2004). Constructing the crust along the Galapagos spreading center 91.3°-95.5°: correlation of seismic layer 2A with axial magma lens and topographic characteristics. Journal of Geophysical Research, 109, B10310, doi:10.1029/2004JB003066.CrossRefGoogle Scholar
Blanckenburg, F. v., Villa, I. M., Baur, H., Morteani, G., and Steiger, R. H. (1989). Time calibration of a P-T-path from the western Tauern Window, eastern Alps: the problem of closure temperatures. Contributions to Mineralogy and Petrology, 101, 1–11.CrossRefGoogle Scholar
Boehler, R. (2000). High-pressure experiments and the phase diagram of lower mantle and core materials. Reviews of Geophysics, 38, 221–245.CrossRefGoogle Scholar
Bohlen, S. R. (1987). Pressure–temperature–time paths and a tectonic model for the evolution of granulites. Journal of Geology, 95, 617–632.CrossRefGoogle Scholar
Bohlen, S. R., and Mezger, K. (1989). Origin of granulite terranes and the formation of the lowermost continental crust. Science, 244, 326–329.CrossRefGoogle ScholarPubMed
Bohlen, S. R., Boettcher, A. L., and Wall, V. J. (1982). The system albite–H2O–CO2: a model for melting and activities of water at high pressures. American Mineralogist, 67, 451–462.Google Scholar
Bohlen, S. R., Wall, V. J., and Boettcher, A. L. (1983). Experimental investigations and geological applications of equilibria in the system FeO–TiO2–Al2O3–SiO2–H2O. American Mineralogist, 68, 1049–1058.Google Scholar
Bohlen, S. R., Valley, J. W., and Essene, E. J. (1985). Metamorphism in the Adirondacks: I. Petrology, pressure, and temperature. Journal of Petrology, 26, 971–992.CrossRefGoogle Scholar
Bolton, E. W., Lasaga, A. C., and Rye, D. M. (1999). Long-term flow/chemistry feedback in a porous medium with heterogeneous permeability: kinetic control of dissolution and precipitation. American Journal of Science, 299, 1–68.CrossRefGoogle Scholar
Boschi, L., and Dziewonski, A. M. (2000). Whole Earth tomography from delay times of P, PcP, and PKP phases: lateral heterogeneities in the outer core or radial anisotropy in the mantle? Journal of Geophysical Research, 105, 13 675–13 696.CrossRefGoogle Scholar
Bottinga, Y. and Javoy, M. (1975). Oxygen isotope partitioning among minerals in igneous and metamorphic rocks. Reviews of Geophysics and Space Physics, 13, 401–418.CrossRefGoogle Scholar
Bottinga, Y., and Weill, D. F. (1970). Density of liquid silicate systems calculated from partial molar volumes of oxide components. American Journal of Science, 269, 169–182.CrossRefGoogle Scholar
Bottinga, Y., and Weill, D. F. (1972). The viscosity of magmatic silicate liquids. American Journal of Science, 272, 438–475.CrossRefGoogle Scholar
Bottinga, Y., Weill, D. F., and Richet, P. (1982). Density calculations for silicate liquids: I. Revised method for aluminosilicate compositions. Geochimica et Cosmochimica Acta, 46, 909–919.CrossRefGoogle Scholar
Boucher, D. F., and Alves, G. E. (1959). Dimensionless numbers for fluid mechanics, heat transfer, mass transfer, and chemical reaction. Chemical Engineering Progress, 55, 55–64.Google Scholar
Boudreau, A. E. (1995). Crystal aging and the formation of fine-scale igneous layering. Mineralogy and Petrology, 54, 55–69.CrossRefGoogle Scholar
Boudreau, A. E. (1999). Fluid fluxing of cumulates: the J-M Reef and associated rocks of the Stillwater complex, Montana. Journal of Petrology, 40, 755–772.CrossRefGoogle Scholar
Boudreau, A. (2003). IRIDIUM: a program to model reaction of silicate liquid infiltrating a porous solid assemblage. Computers and Geosciences, 29, 423–429.CrossRefGoogle Scholar
Boudreau, A. E. (2004). PALLADIUM – A program to model the chromatographic separation of the platinum-group elements, base metals and sulfur in a solidifying igneous crystal pile. Canadian Mineralogist, 42, 393–403.CrossRefGoogle Scholar
Boudreau, A. E., and McBirney, A. E. (1997). The Skaergaard layered series: III. Non-dynamic layering. Journal of Petrology, 38, 1003–1020.CrossRefGoogle Scholar
Boudreau, A., and Philpotts, A. R. (2002). Quantitative modeling of compaction in the Holyoke flood basalt flow, Hartford Basin, Connecticut. Contributions to Mineralogy and Petrology, 144, 176–184.CrossRefGoogle Scholar
Bowden, P., and Turner, D. C. (1974). Peralkaline and associated ring complexes in the Nigeria–Niger province, West Africa. In The Alkaline Rocks, ed. Sørensen, H.. Chichester, West Sussex: John Wiley, 330–351.Google Scholar
Bowen, N. L. (1913). The melting phenomena of the plagioclase feldspars. American Journal of Science, 34, 577–599.CrossRefGoogle Scholar
Bowen, N. L. (1915a). The crystallization of haplobasaltic, haplodioritic, and related magmas. American Journal of Science, 40, 161–185.CrossRefGoogle Scholar
Bowen, N. L. (1915b). Crystallization-differentiation in silicate liquids. American Journal of Science, 39, 175–191.CrossRefGoogle Scholar
Bowen, N. L. (1928). The Evolution of the Igneous Rocks. Princeton, NJ: Princeton University Press, 334 pp.Google Scholar
Bowen, N. L. (1940). Progressive metamorphism of siliceous limestone and dolomite. Journal of Geology, 48, 225–274.CrossRefGoogle Scholar
Bowen, N. L., and Anderson, O. (1914). The binary system MgO–SiO2. American Journal of Science, 37, 487–500.CrossRefGoogle Scholar
Bowen, N. L., and Schairer, J. F. (1932). The system FeO–SiO2. American Journal of Science, 24, 177–213.CrossRefGoogle Scholar
Bowen, N. L., and Schairer, J. F. (1935). The system MgO–FeO–SiO2. American Journal of Science, 29, 151–217.CrossRefGoogle Scholar
Bowman, J. R., Willett, S. D., and Cook, S. J. (1994). Oxygen isotopic transport and exchange during fluid flow: one-dimensional models and applications. American Journal of Science 294, 1–55.CrossRefGoogle Scholar
Boyd, F. R. (1961). Welded tuffs and flows in the rhyolite plateau of Yellowstone Park, Wyoming. Geological Society of America Bulletin, 72, 387–426.CrossRefGoogle Scholar
Boyd, F. R., and Gurney, J. J. (1986). Diamonds and the African lithosphere. Science, 232, 472–477.CrossRefGoogle ScholarPubMed
Boyd, F. R., and Nixon, P. H. (1975). Origins of the ultramafic nodules from some kimberlites of northern Lesotho and the Monastery Mine, South Africa. In Physics and Chemistry of the Earth, vol. 9, ed. Ahrens, L. H., Dawson, J. B., Duncan, A. R., and Erlank, A. J.. Oxford: Pergamon Press, 431–454.CrossRefGoogle Scholar
Brady, J. B. (1983). Intergranular diffusion in metamorphic rocks. American Journal of Science, 283A, 181–200.Google Scholar
Brady, J. B. (1988). The role of volatiles in the thermal history of metamorphic terranes. Journal of Petrology, 29, 1187–1213.CrossRefGoogle Scholar
Brady, J. B. (1995). Diffusion data for silicate minerals, glasses and liquids. Mineral Physics and Crystallography: A Handbook of Physical Constants, ed. Ahrens, T. J.. American Geophysical Union Reference Shelf 2, 269–290.CrossRefGoogle Scholar
Brady, J. B., and McCallister, R. H. (1982). Diffusion data for clinopyroxenes from homogenization and self-diffusion experiments. American Mineralogist, 68, 95–105.Google Scholar
Brady, J. B., and Yund, R. A. (1983). Interdiffusion of K and Na in alkali feldspars: homogenization experiments. American Mineralogist, 68, 106–111.Google Scholar
Brandeis, G., and Jaupart, C. (1986). On the interaction between convection and crystallization in cooling magma chambers. Earth and Planetary Science Letters, 77, 345–361.CrossRefGoogle Scholar
Brandeis, G., and Jaupart, C. (1987). Crystal sizes in intrusions of different dimensions: constraints on the cooling regime and the crystallization kinetics. In Magmatic Processes: Physicochemical Principles, ed. Mysen, B. O.. Geochemical Society Special Publication, 1, 307–318.Google Scholar
Brandeis, G., Jaupart, C., and Allègre, C. J. (1984). Nucleation, crystal growth and the thermal regime of cooling magmas. Journal of Geophysical Research, 89, 10161–10177.CrossRefGoogle Scholar
Braun, M. G., and Kelemen, P. B. (2002). Dunite distribution in the Oman ophiolite: implications for melt flux through porous dunite conduits. Geochemistry Geophysics Geosystems, 3(11), 8603, doi:10.1029/2001GC000289.CrossRefGoogle Scholar
Breeding, C. M., and Ague, J. J. (2002). Slab-derived fluids and quartz-vein formation in an accretionary prism, Otago Schist, New Zealand. Geology, 30, 499–502.2.0.CO;2>CrossRefGoogle Scholar
Breeding, C. M., Ague, J. J., and Bröcker, M. (2004). Fluid-metasedimentary rock interactions and the chemical composition of arc magmas. Geology, 32, 1041–1044.CrossRefGoogle Scholar
Brey, G. P., and Köhler, T. (1990). Geothermobarometry in four-phase lherzolites: II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31, 1353–1378.CrossRefGoogle Scholar
Bridgwater, D., and Coe, K. (1970). The role of stoping in the emplacement of the giant dikes of Isortoq, South Greenland. In Mechanism of Igneous Intrusion, ed. Newall, G., and Rast, H.. Liverpool, Lancashire: Liverpool Geological Society, Geological Journal Special Issue, 2, 67–78.Google Scholar
Brimhall, G. H (1977). Early fracture-controlled disseminated mineralization at Butte, Montana. Economic Geology, 72, 37–59.CrossRefGoogle Scholar
Brimhall, G. H (1979). Lithologic determination of mass transfer mechanisms of multiple-stage porphyry copper mineralization at Butte, Montana: Vein formation by hypogene leaching and enrichment of potassium-silicate protore. Economic Geology, 74, 556–589.CrossRefGoogle Scholar
Brimhall, G. H, Lewis, C. J., Ague, J. J., et al. (1988). Metal enrichment in bauxites by deposition of chemically mature aeolian dust. Nature, 333, 819–824.CrossRefGoogle Scholar
Bröcker, M., and Enders, M. (2001). Unusual bulk-rock compositions in eclogite-facies rocks from Syros and Tinos (Cyclades, Greece): implications for U-Pb zircon geochronology. Chemical Geology, 175, 581–603.CrossRefGoogle Scholar
Brøgger, W. G. (1921). Die Eruptivegestein des Kristianiagebietes, IV. Das Fengebiet in Telemark, Norvegen. Vid ensk. Skr. I Mat.-Naturv. Klasse, 1920(9), 150–167.Google Scholar
Brophy, J. G., Whittington, C. S., and Park, Y.-R. (1999). Sector-zoned augite megacrysts in Aleutian high alumina basalts: implications for the conditions of basalt crystallization and the generation of calc-alkaline series magmas. Contributions to Mineralogy and Petrology, 135, 277–290.Google Scholar
Brown, G. C., and Mussett, A. E. (1981). The Inaccessible Earth. London: George Allen and Unwin.Google Scholar
Brown, J. M., and McQueen, R. G. (1986). Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. Journal of Geophysical Research, 91, 7485–7494.CrossRefGoogle Scholar
Brown, M. (2006). Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology, 34, 961–964.CrossRefGoogle Scholar
Brown, M. A., Brown, M., Carlson, W. D., and Denison, C. (1999). Topology of syntectonic melt-flow networks in the deep crust: inferences from three-dimensional images of leucosome geometry in migmatites. American Mineralogist, 84, 1793–1818.CrossRefGoogle Scholar
Brunelli, D., Seyler, M., Cipriani, A., Ottolini, L., and Bonatti, E. (2006). Discontinuous melt extraction and weak refertilization of mantle peridotites at the Vema lithospheric section (mid-Atlantic ridge). Journal of Petrology, 47, 745–771.CrossRefGoogle Scholar
Bryan, W. B. (1972). Morphology of quench crystals in submarine basalts. Journal of Geophysical Research, 77, 5812–5819.CrossRefGoogle Scholar
Buck, W. R., Carbotte, S. M., and Mutter, C. (1997). Controls on extrusion at mid-ocean ridges. Geology, 25, 935–938.2.3.CO;2>CrossRefGoogle Scholar
Buddington, A. F. (1959). Granite emplacement with special reference to North America. Geological Society of America Bulletin, 70, 671–748.CrossRefGoogle Scholar
Buddington, A. F., and Lindsley, D. H. (1964). Iron-titanium oxide minerals and synthetic equivalents. Journal of Petrology, 5, 310–357.CrossRefGoogle Scholar
Bunch, T. E., Dence, M. R., and Cohen, A. J. (1967). Natural terrestrial maskelynite. American Mineralogist, 52, 244–253.Google Scholar
Bundy, F. P., Bovenkerk, H. P., Strong, H. M., and Wentorf, R. H. (1961). Diamond graphite equilibrium line from growth and graphitization of diamond. Journal of Chemical Physics, 35, 383.CrossRefGoogle Scholar
Bunsen, R. (1851). Über die Processe der vulkanischen Gesteinsbildung Islands. Annalen der Physik und Chemie, 83(6), 197–272.CrossRefGoogle Scholar
Burg, J. P., and Vigneresse, J. L. (2002). Non-linear feedback loops in the rheology of cooling-crystallizing felsic magma and heating-melting felsic rock. In Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives, ed. Meer, S., Drury, M. R., Bresser, J. H. P., and Pennock, G. M.. London: Geological Society, Special Publications, 200, 275–292.Google Scholar
Burlini, L., Vinciguerra, S., Di Toro, G., et al. (2007). Seismicity preceding volcanic eruptions: new experimental insights. Geology, 35, 183–186.CrossRefGoogle Scholar
Burnham, C. W. (1979). The importance of volatile constituents. In The Evolution of the Igneous Rocks: Fiftieth Anniversary Perspectives, ed. Yoder, Jr. H. S.Princeton, NJ: Princeton University Press, 439–482.Google Scholar
Burnham, C. W., and Davis, N. F. (1974). The role of H2O in silicate melts, II: thermodynamic and phase relations in the system NaAlSiO3O8–H2O to 10 kilobars, 700 to 1100 °C. American Journal of Science, 274, 902–940.CrossRefGoogle Scholar
Burnham, C. W., Holloway, J. R., and Davis, N. F. (1969). Thermodynamic properties of water to 1000 °C and 10,000 bars. Geological Society of America Special Paper, 32, 1–96.Google Scholar
Calas, G., Henderson, G. S., and Stebbins, J. F. (2006). Glasses and melts: linking geochemistry and materials science. Elements, 2, 265–268.CrossRefGoogle Scholar
Camacho, A., Lee, J. K. W., Hensen, B. J., and Braun, J. (2005). Short-lived orogenic cycles and the eclogitization of cold crust by spasmodic hot fluids. Nature, 435, 1191–1196.CrossRefGoogle ScholarPubMed
Cameron, E. N., Jahns, R. H., McNair, A. H., and Page, L. R. (1949). The internal structure of granitic pegmatites. Economic Geology Monograph, 2, 115 pp.Google Scholar
Campbell, I. H. (1985). The difference between oceanic and continental tholeiites: a fluid dynamic explanation. Contributions to Mineralogy and Petrology, 91, 37–43.CrossRefGoogle Scholar
Campbell, I. H. (2007). Testing the plume theory. Chemical Geology, 241, 153–176.CrossRefGoogle Scholar
Campbell, I. H., and Turner, J. S. (1986). The influence of viscosity on fountains in magma chambers. Journal of Petrology, 27, 1–30.CrossRefGoogle Scholar
Candela, P. A. (2003). Ores in the Earth's crust. In The Crust, ed. Rudnick, R. L., vol. 3 of Treatise on Geochemistry, ed. Holland, H. D., and Turekian, K. K.. Amsterdam: Elsevier, 411–431.Google Scholar
Canup, R. M., and Asphaug, E. (2001). Origin of the Moon in a giant impact near the end of the Earth's formation. Nature, 412, 708–712.CrossRefGoogle Scholar
Carena, S., Suppe, J., and Kao, H. (2002). Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography. Geology, 30, 935–938.2.0.CO;2>CrossRefGoogle Scholar
Carlson, W. D. (2002). Scales of disequilibrium and rates of equilibration during metamorphism. American Mineralogist, 87, 185–204.CrossRefGoogle Scholar
Carlson, W. D. (2006). Rates of Fe, Mg, Mn, and Ca diffusion in garnet. American Mineralogist, 91, 1–11.CrossRefGoogle Scholar
Carman, M. F., Cameron, M., Gunn, B., Cameron, K. L., and Butler, J. C. (1975). Petrology of Rattlesnake Mountain Sill, Big Bend National Park, Texas. Geological Society of America Bulletin, 86, 177–193.2.0.CO;2>CrossRefGoogle Scholar
Carmichael, D. M. (1969). On the mechanism of prograde metamorphic reactions in quartz-bearing pelitic rocks. Contributions to Mineralogy and Petrology, 20, 244–267.CrossRefGoogle Scholar
Carmichael, D. M. (1978). Metamorphic bathozones and bathograds: a measure of post-metamorphic uplift and erosion on a regional scale. American Journal of Science, 278, 769–797.CrossRefGoogle Scholar
Carmichael, I. S. E., and Ghiorso, M. S. (1986). Oxidation-reduction relations in basic magma: a case for homogeneous equilibria. Earth and Planetary Science Letters, 78, 200–210.CrossRefGoogle Scholar
Carmichael, I. S. E., Nicholls, J., and Smith, A. L. (1970). Silica activity in igneous rocks. American Mineralogist, 55, 246–263.Google Scholar
Caro, G., Bourdon, B., Birck, J.-L., and Moorbath, S. (2003). 146Sm–142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth's mantle. Nature, 423, 428–432.CrossRefGoogle ScholarPubMed
Carslaw, H. S., and Jaeger, J. C. (1959). Conduction of Heat in Solids, 2nd edn. Oxford: Oxford University Press, 510 pp.Google Scholar
Carson, C. J., Powell, R., and Clarke, G. L. (1999). Calculated mineral equilibria for eclogites in CaO-Na2O-FeO-MgO-Al2O3-SiO2-H2O: application to the Pouébo terrane, Pam Peninsula, New Caledonia. Journal of Metamorphic Geology, 17, 9–24.CrossRefGoogle Scholar
Carter, J. L. (1970). Mineralogy and chemistry of the Earth's upper mantle based on the partial fusion – partial crystallization model. Geological Society of America Bulletin, 81, 2021–2034.CrossRefGoogle Scholar
Carter, S. R., Evenson, N. M., Hamilton, P. J., and O'Nions, R. K. (1978). Neodymium and strontium isotope evidence for crustal contamination of continental volcanics. Science, 202, 743–747.CrossRefGoogle ScholarPubMed
Cashman, K. V. (1990). Textural constraints on the kinetics of crystallization of igneous rocks. In Modern Methods of Igneous Petrology, ed. Nicholls, J., and Russell, J. K., vol. 24 of Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, 259–314.Google Scholar
Cashman, K. V., and Ferry, J. M. (1988). Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization: III. Metamorphic crystallization. Contributions to Mineralogy and Petrology, 99, 401–415.CrossRefGoogle Scholar
Cashman, K. V., and Marsh, B. D. (1988). Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization: II. Makaopuhi lava lake. Contributions to Mineralogy and Petrology, 99, 292–305.CrossRefGoogle Scholar
Castellan, G. W. (1983). Physical Chemistry, 3rd edn. Reading, MA: Addison-Wesley.Google Scholar
Catlos, E. J., and Sorensen, S. S. (2003). Phengite-based chronology of K- and Ba-rich fluid flow in two paleosubduction zones. Science, 299, 92–95.CrossRefGoogle ScholarPubMed
Cawood, P. A., Kroner, A., and Pisarevsky, S. (2006). Precambrian plate tectonics: criteria and evidence. GSA Today, 16(7), 4–11.CrossRefGoogle Scholar
Cawthorn, R. G. (ed.) (1996). Layered Intrusions. Amsterdam: Elsevier, 542 pp.
Chadwick, W. W., Geist, D. J., Jónsson, S., et al. (2006). A volcano bursting at the seams: inflation, faulting, and eruption at Sierra Negra volcano, Gálapagos. Geology, 34, 1025–1028.CrossRefGoogle Scholar
Chamberlain, C. P., and Rumble, D. (1988). Thermal anomalies in a regional metamorphic terrane: an isotopic study of the role of fluids. Journal of Petrology, 29, 1215–1232.CrossRefGoogle Scholar
Chamberlain, C. P., and Rumble, D. (1989). The influence of fluids on the thermal history of a metamorphic terrain: New Hampshire, USA. In Evolution of Metamorphic Belts, ed. Daly, J. S., Cliff, R. A., and Yardley, B. W. D.. Geological Society Special Publication, 43, 203–213.Google Scholar
Chapin, C. E., and Elston, W. E. (eds.) (1979). Ash-flow Tuffs. Geological Society of America Special Paper, 180, 211 pp.
Chapman, C. A. (1962). Diabase-granite composite dikes, with pillow-like structure, Mount Desert Island, Maine. Journal of Geology, 70, 539–564.CrossRefGoogle Scholar
Chappell, B. W., and White, A. J. R. (1992). I- and S-type granites in the Lachlan fold belt. Transactions of the Royal Society of Edinburgh, Earth Science, 83, 1–26.CrossRefGoogle Scholar
Cheadle, M. J., Elliott, M. T., and McKenzie, D. (2004). Percolation threshold and permeability of crystallizing igneous rocks: the importance of textural equilibrium. Geology, 32, 757–760.CrossRefGoogle Scholar
Cherniak, D. J. (2002). Ba diffusion in feldspar. Geochimica et Cosmochimica Acta, 66, 1641–1650.CrossRefGoogle Scholar
Cherniak, D. J., and Ryerson, F. J. (1993). A study of strontium diffusion in apatite using Rutherford backscattering spectroscopy and ion implantation. Geochimica et Cosmochimica Acta, 57, 4653–4662.CrossRefGoogle Scholar
Cherniak, D. J., Watson, E. B., and Wark, D. A. (2007). Ti diffusion in quartz. Chemical Geology, 236, 65–74.CrossRefGoogle Scholar
Chinner, G. A. (1961). The origin of sillimanite in Glen Clova, Angus. Journal of Petrology, 2, 312–323.CrossRefGoogle Scholar
Chopin, C. (1984). Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contributions to Mineralogy and Petrology, 86, 107–118.CrossRefGoogle Scholar
Chopin, C. (2003). Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth and Planetary Science Letters, 212, 1–14.CrossRefGoogle Scholar
Christensen, J. N., Rosenfeld, J. L., and DePaolo, D. J. (1989). Rates of tectonometamorphic processes from rubidium and strontium isotopes in garnet. Science, 244, 1465–1469.CrossRefGoogle Scholar
Christiansen, R. L. (1979). Cooling units and composite sheets in relation to caldera structure. In Ash-flow Tuffs, ed. Chapin, C. E. and Elston, W. E.. Geological Society of America Special Paper, 180, 29–42.CrossRefGoogle Scholar
Christiansen, R. L., and Lipman, P. W. (1966). Emplacement and thermal history of a rhyolite lava flow near Fortymile Canyon, southern Nevada. Geological Society of America Bulletin, 77, 671–684.CrossRefGoogle Scholar
Clayton, R. N. (1977). Genetic relations among meteorites and planets. In Comets, Asteroids, Meteorites: Interrelations, Evolution, and Origins, ed. Delsemme, A. H.. Toledo: University of Toledo Press, 545–550.Google Scholar
Clemens, J. D., and Wall, V. J. (1981). Origin and crystallization of some peraluminous (S-type) granitic magmas. Canadian Mineralogist, 19, 111–131.Google Scholar
Clough, C. T., Maufe, H. B., and Bailey, E. B. (1909). The cauldron-subsidence of Glen-Coe, and the associated igneous phenomena. Quarterly Journal of the Geological Society of London, 65, 611–678.CrossRefGoogle Scholar
Coe, K. (1966). Intrusive tuff of West Cork, Ireland. Quarterly Journal of the Geological Society of London, 122, 1–28.CrossRefGoogle Scholar
Coffin, M. F., and Eldholm, O. (1994). Large igneous provinces: structure; crustal structure, dimensions and external consequences. Reviews of Geophysics, 32, 1–36.CrossRefGoogle Scholar
Coggon, R., and Holland, T. J. B. (2002). Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. Journal of Metamorphic Geology, 20, 683–696.CrossRefGoogle Scholar
Coleman, R. G. (1977). Ophiolites. New York: Springer-Verlag, 229 pp.CrossRefGoogle Scholar
Condie, K. C. (2005). Earth as an Evolving Planetary System. Boston: Elsevier Academic Press, 447 pp.Google Scholar
Connolly, J. A. D. (1997). Devolatilization-generated fluid pressure and deformation-propagated fluid flow during prograde regional metamorphism. Journal of Geophysical Research, 102, 18149–18173.CrossRefGoogle Scholar
Connolly, J. A. D., and Petrini, K. (2002). An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. Journal of Metamorphic Geology, 20, 697–708.CrossRefGoogle Scholar
Conrad, W. K., and Kay, R. W. (1984). Ultramafic and mafic inclusions from Adak Island: crystallization history, and implications for the nature of primary magmas and crustal evolution in the Aleutian arc. Journal of Petrology, 25, 88–125.CrossRefGoogle Scholar
Cooper, R. F., and Kohlstedt, D. L. (1984). Solution-precipitation enhanced diffusional creep of partially molten olivine-basalt aggregates during hot-pressing. Tectonophysics, 107, 207–233.CrossRefGoogle Scholar
Cox, K. G. (1978). Kimberlite pipes. Scientific American, 238, 120–130.CrossRefGoogle Scholar
Cox, K. G. (1980). A model for flood basalt vulcanism. Journal of Petrology, 21, 629–650.CrossRefGoogle Scholar
Crank, J. (1975). The Mathematics of Diffusion, 2nd Edn. Oxford: Oxford University Press, 414 pp.Google Scholar
Crank, J., and Nicolson, P. (1947). A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proceedings of the Cambridge Philosophical Society, 43, 50–67.CrossRefGoogle Scholar
Crawford, M. L., and Hollister, L. S. (1986). Metamorphic fluids, the evidence from fluid inclusions. In Fluid-rock Interactions During Metamorphism, ed. Walther, J. V., and Wood, B. J.. New York: Springer, 1–35.Google Scholar
Crough, S. T., and Jurdy, D. M. (1980). Subducted lithosphere, hot-spots, and the geoid. Earth and Planetary Science Letters, 48, 15–22.CrossRefGoogle Scholar
Cruden, A. R. (1990). Flow and fabric development during the diapiric rise of magma. Journal of Geology, 98, 681–698.CrossRefGoogle Scholar
Curie, P. (1885). Sur la formation des cristaux et sur les constantes capillaires de leurs différentes faces. Société Minéralogique de France Bulletin, 8, 145–150.Google Scholar
Cui, X., Nabelek, P. I., and Liu, M. (2001). Heat and fluid flow in contact metamorphic aureoles with layered and transient permeability, with application to the Notch Peak aureole, Utah. Journal of Geophysical Research, 106, 6477–6492.CrossRefGoogle Scholar
Dalrymple, G. B. (2004). Ancient Earth, Ancient Skies. Stanford, CA: Stanford University Press.Google Scholar
Dalrymple, G. B., Gromme, C. S., and White, R. W. (1975). Potassium-argon age and paleomagnetism of diabase dikes in Liberia: initiation of central Atlantic rifting. Geological Society of America Bulletin, 86, 399–411.2.0.CO;2>CrossRefGoogle Scholar
Daly, R. A. (1933). Igneous Rocks and the Depths of the Earth. New York: Hafner, 598 pp. (reprinted, 1968).Google Scholar
Danckwerth, P. A., and Newton, R. C. (1978). Experimental determination of the spinel peridotite to garnet peridotite reaction in the system MgO–Al2O3–SiO2 in the range 900°--1100 °C and Al2O3 isopleths of enstatite in the spinel field. Contributions to Mineralogy and Petrology, 66, 189–201.CrossRefGoogle Scholar
Danes, Z. F. (1972). Dynamics of lava flows. Journal of Geophysical Research, 77, 1430–1432.CrossRefGoogle Scholar
Darcy, H. P. G. (1856). Les Fontaines Publiques de la Ville de Dijon. Paris: Victor Dalmont, 647 pp.Google Scholar
Darken, L. S., and Gurry, R. W. (1945). The system iron – oxygen: I. The wüstite field and related equilibria. Journal of the American Chemical Society, 67, 1398–1412.CrossRefGoogle Scholar
Dasgupta, R., Hirschmann, M. M., and Stalker, K. (2006). Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas. Journal of Petrology, 47, 647–671.CrossRefGoogle Scholar
Davidson, J. P., Morgan, D. J., Charlier, B. L. A., Harlou, R., and Hora, J. M. (2007). Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems. Annual Review of Earth and Planetary Sciences, 35, 273–311.CrossRefGoogle Scholar
Davies, G. F. (1999). Dynamic Earth Plates, Plumes and Mantle Convection. Cambridge: Cambridge University Press, 458 pp.CrossRefGoogle Scholar
Davis, A. M. (2003). Introduction to volume 1. In Meteorites, Comets, and Planets, ed. Davis, A. M., vol. 1 of Treatise on Geochemistry, ed. Holland, H. D., and Turekian, K. K.. Amsterdam: Elsevier, xv–xvii.Google Scholar
Davis, B. T. C., and Schairer, J. F. (1965). Melting relations in the join diopside–forsterite–pyrope at 40 kilobars and at one atmosphere. Carnegie Institution Washington Yearbook, 64, 123–126.Google Scholar
Davis, E., and Elderfield, H. (eds.) (2004). Hydrogeology of the Oceanic Lithosphere. Cambridge: Cambridge University Press, 640 pp.
Dawson, J. B. (1962). The geology of Oldoinyo Lengai. Bulletin of Volcanology, 24, 349–387.CrossRefGoogle Scholar
Dawson, J. B., and Hawthorne, J. B. (1973). Magmatic sedimentation and carbonatite differentiation in kimberlite sills at Benfontein, South Africa. Journal of the Geological Society London, 129, 61–85.CrossRefGoogle Scholar
Boer, J. Z., and Sanders, D. S. (2004). Volcanoes in Human History. Princeton, NJ: Princeton University Press, 320 pp.Google Scholar
DeGraff, J. M., and Aydin, A. (1987). Surface morphology of columnar joints and its significance to mechanics and direction of joint growth. Geological Society of America Bulletin, 99, 605–617.2.0.CO;2>CrossRefGoogle Scholar
Delaney, P. T. and Pollard, D. D. (1981). Deformation of host rocks and flow of magma during growth of minette dykes and breccia-bearing intrusions near Ship Rock, New Mexico. U.S. Geological Survey Professional Paper, 1202, 61 pp.Google Scholar
Delaney, P. T., and Pollard, D. D. (1982). Solidification of basaltic magma during flow in a dike. American Journal of Science, 282, 856–885.CrossRefGoogle Scholar
Demouchy, S., Jacobsen, S. D., Gaillard, F., and Stern, C. R. (2006). Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology, 34, 429–432.CrossRefGoogle Scholar
Denbigh, K. (1957). The Principles of Chemical Equilibrium. Cambridge: Cambridge University Press, 491 pp.Google Scholar
Dence, M. R. (1971). Impact melts. Journal of Geophysical Research, 76, 5552–5565.CrossRefGoogle Scholar
DePaolo, D. J. (1981a). Nd isotopic studies: some new perspectives on Earth structure and evolution. EOS, 62, 137–140.CrossRefGoogle Scholar
DePaolo, D. J. (1981b). Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53, 189–202.CrossRefGoogle Scholar
DePaolo, D. J. (1985). Isotopic studies of processes in mafic magma chambers, I: the Kiglapait Intrusion, Labrador. Journal of Petrology, 26, 925–951.CrossRefGoogle Scholar
DePaolo, D. J., and Johnson, R. W. (1979). Magma genesis in the New Britain island-arc: constraints from Nd and Sr isotopes and trace-element patterns. Contributions to Mineralogy and Petrology, 70, 367–379.CrossRefGoogle Scholar
DePaolo, D. J., and Wasserburg, G. J. (1979). Petrogenetic mixing models in Nd-Sr isotopic patterns. Geochimica et Cosmochimica Acta, 43, 615–627.CrossRefGoogle Scholar
Dickin, A. P. (1995). Radiogenic Isotope Geology. Cambridge: Cambridge University Press, 490 pp.Google Scholar
Dickson, L. D. (2006). Detailed textural analysis of the Palisades Sill, New Jersey. Unpublished Ph.D. thesis, University of Connecticut, 181 pp.
Diener, J. F. A., Powell, R., White, R. W., and Holland, T. J. B. (2007). A new thermodynamic model for clino- and orthoamphiboles in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25, 631–656.CrossRefGoogle Scholar
Dietz, R. S. (1961). Vredefort ring structure: meteorite impact scar. Journal of Geology, 69, 499–516.CrossRefGoogle Scholar
Dietz, R. S. (1964). Sudbury structure as an astrobleme. Journal of Geology, 72, 412–434.CrossRefGoogle Scholar
Dingwell, D. B. (1995). Viscosity and anelasticity of melts. In Mineral Physics and Crystallography: A Handbook of Physical Constants, ed. Ahrens, T. J.. American Geophysical Union Reference Shelf 2, 209–217.CrossRefGoogle Scholar
Dingwell, D. B. (2006). Transport properties of magmas: diffusion and rheology. Elements, 2, 281–286.CrossRefGoogle Scholar
Dingwell, D. B., Hess, K.-U., Knoche, R. (1996). Granite and granitic pegmatite melts: volumes and viscosities. Transactions of the Royal Society of Edinburgh: Earth Science, 87, 65–72.CrossRefGoogle Scholar
Dipple, G. M., and Ferry, J. M. (1992a). Metasomatism and fluid flow in ductile fault zones. Contributions to Mineralogy and Petrology, 112, 149–164.CrossRefGoogle Scholar
Dipple, G. M., and Ferry, J. M. (1992b). Fluid flow and stable isotopic alteration in rocks at elevated temperatures with applications to metamorphism. Geochimica et Cosmochimica Acta, 56, 3539–3550.CrossRefGoogle Scholar
Dixon, J. E. (1997). Degassing of alkalic basalt. American Mineralogist, 82, 368–378.CrossRefGoogle Scholar
Dixon, J. E., and Ridley, J. R. (1987). Syros. In Chemical Transport in Metasomatic Processes, ed. Helgeson, H. C.. Dordrecht: D. Reidel, NATO ASI series and Berlin: Springer-Verlag, 489–501.Google Scholar
Dixon, J. E., Stolper, E. M., and Holloway, J. R. (1995). An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids: I. Calibration and solubility models. Journal of Petrology, 36, 1607–1631.Google Scholar
Dixon, J. M. (1975). Finite strain and progressive deformation in models of diapiric structures. Tectonophysics, 28, 89–124.CrossRefGoogle Scholar
Dixon, S., and Rutherford, M. J. (1979). Plagiogranites as late stage immiscible liquids in ophiolite and mid-ocean ridge suites; an experimental study. Earth and Planetary Science Letters, 45, 45–60.CrossRefGoogle Scholar
Dobran, F., Neri, A., and Todesco, M. (1994). Assessing the pyroclastic flow hazard at Vesuvius. Nature, 367, 551–554.CrossRefGoogle Scholar
Dohmen, R., and Chakraborty, S. (2003). Mechanism and kinetics of element and isotopic exchange mediated by a fluid phase. American Mineralogist, 88, 1251–1270.CrossRefGoogle Scholar
Dowty, E. (1980). Crystal growth and nucleation theory and the numerical simulation of igneous crystallization. In Physics of Magmatic Processes, ed. Hargraves, R. B.. Princeton, NJ: Princeton University Press, 420–485.Google Scholar
Doyle, C. D. (1987). The relationship between activities of divalent cation oxides and the solution of sulfide in silicate and aluminosilicate liquids. In Physical Chemistry of Magma, ed. Kushiro, I. and Perchuk, I. L.. Advances in Physical Geochemistry Series, vol. 7, Chap. 9. New York: Springer-Verlag.Google Scholar
Duchesne, J.-C. (1984). Massif anorthosites: another partisan review. In Feldspars and feldspathoids, ed. Brown, W. L.. Dordrecht: D. Reidel, 411–433.CrossRefGoogle Scholar
Duffield, W. A. (1972). A naturally occurring model of global plate tectonics. Journal of Geophysical Research, 73, 619–634.Google Scholar
Dziewonski, A. M. (1984). Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. Journal of Geophysical Research, 89, 5929–5952.CrossRefGoogle Scholar
Eby, G. N. (1980). Minor and trace element partitioning between immiscible ocelli-matrix pairs from lamprophyric dikes and sills, Monteregian hills petrographic province, Quebec. Contributions to Mineralogy and Petrology, 75, 269–278.CrossRefGoogle Scholar
Eby, G. N. (1984). Geochronology of the Monteregian Hills alkaline igneous province, Quebec. Geology, 12, 468–470.2.0.CO;2>CrossRefGoogle Scholar
Eckert, J. O., Newton, R. C., and Kleppa, O. J. (1991). The H of reaction and recalibration of garnet-pyroxene-plagioclase-quartz geobarometers in the CMAS system by solution calorimetry. American Mineralogist, 76, 148–160.Google Scholar
Eggler, D. H. (1973). Role of CO2 in melting processes in the mantle. Carnegie Institution of Washington Yearbook, 72, 457–467.Google Scholar
Eggler, D. H. (1974). Effect of CO2 on the melting of peridotite. Carnegie Institution of Washington Yearbook, 73, 215–224.Google Scholar
Eggler, D. H. (1976). Composition of the partial melt of carbonated peridotite in the system CaO–MgO–SiO2–CO2. Carnegie Institution of Washington Yearbook, 75, 623–626.Google Scholar
Eggler, D. H., and Burnham, C. W. (1973). Crystallization and fractionation trends in the system andesite-H2O-CO2-O2 at pressures to 10 Kb. Geological Society of America Bulletin, 84, 2517–2532.2.0.CO;2>CrossRefGoogle Scholar
Eichelberger, J. C. (1975). Origin of andesite and dacite; evidence of mixing at Glass Mountain in California and at other circum-Pacific volcanoes. Geological Society of America Bulletin, 86, 1381–1391.2.0.CO;2>CrossRefGoogle Scholar
Eiler, J. M., Valley, J. W., and Baumgartner, L. P. (1993). A new look at stable isotope thermometry. Geochimica et Cosmochimica Acta, 57, 2571–2583.CrossRefGoogle Scholar
Elliott, M. T., Cheadle, M. J., and Jerram, D. A. (1997). On the identification of textural equilibrium in rocks using dihedral angle measurements. Geology, 25, 355–358.2.3.CO;2>CrossRefGoogle Scholar
Ellis, D. J., and Green, D. H. (1979). An experimental study of the effect of Ca upon garnet-clinopyroxene Fe–Mg exchange equilibria. Contributions to Mineralogy and Petrology, 71, 13–22.CrossRefGoogle Scholar
Elo, S., and Korja, A. (1993). Geophysical interpretation of the crustal and upper mantle structure in the Wiborg rapakivi granite area, southeastern Finland. Precambrian Research, 64, 273–288.CrossRefGoogle Scholar
Emeleus, C. H. (1987). The Rhum layered complex, Inner Hebrides, Scotland. In Origins of Igneous Layering, ed. Parsons, I.. Dordrecht: D. Reidel, 263–286.CrossRefGoogle Scholar
Emeleus, C. H. (1997). Geology of Rum and the adjacent islands. British Geological Survey Sheet Memoir, 60 (Scotland), 170 pp.Google Scholar
Emeleus, C. H., Cheadle, M. J., Hunter, R. H., Upton, B. G. J., and Wadsworth, W. J. (1996). The Rum layered suite. In Layered Intrusions, ed. Cawthorn, R. G.. Amsterdam: Elsevier, 403–440.CrossRefGoogle Scholar
Emslie, R. F. (1985). Proterozoic anorthosite massifs. In The Deep Proterozoic Crust in the North Atlantic Provinces, ed. Tobi, A. C., and Touret, J. L. R.. Dordrecht: D. Reidel, 39–60.CrossRefGoogle Scholar
Engel, A. E. J., Itson, S. P., Engel, C. G., Stickney, D. M., and Cray, E. J. (1974). Crustal evolution and global tectonics: a petrogenetic view. Geological Society of America Bulletin, 85, 843–858.2.0.CO;2>CrossRefGoogle Scholar
England, P. C., and Molnar, P. (1990). Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 18, 1173–1177.2.3.CO;2>CrossRefGoogle Scholar
England, P. C., and Richardson, S. W. (1977). The influence of erosion upon the mineral facies of rocks from different metamorphic environments. Journal of the Geological Society of London, 134, 201–213.CrossRefGoogle Scholar
England, P. C., and Thompson, A. B. (1984). Pressure-temperature-time paths of regional metamorphism: I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology, 25, 894–928.CrossRefGoogle Scholar
England, P. C., Molnar, P., and Richter, F. (2007). John Perry's neglected critique of Kelvin's age for the Earth: a missed opportunity in geodynamics. GSA Today, 17, No. 1, 4–9.CrossRefGoogle Scholar
Epp, D. (1984). Possible perturbations to hotspot traces and implications for the origin and structure of the Line Islands. Journal of Geophysical Research, 89, 11273–11286.CrossRefGoogle Scholar
Ernst, R. E., and Buchan, K. L. (2003). Recognizing mantle plumes in the geological record. Annual Review of Earth and Planetary Sciences, 31, 469–523.CrossRefGoogle Scholar
Ernst, R. E., Grosfils, E. B., and Mège, D. (2001). Giant dike swarms: Earth, Venus, and Mars. Annual Review of Earth and Planetary Sciences, 29, 489–534.CrossRefGoogle Scholar
Ernst, W. G. (1976). Petrologic Phase Equilibria. San Francisco: W. H. Freeman, 333 pp.Google Scholar
Ernst, W. G. (1988). Tectonic history of subduction zones inferred from retrograde blueschist P–T paths. Geology, 16, 1081–1084.2.3.CO;2>CrossRefGoogle Scholar
Ernst, W. G., and Banno, S. (1991). Neoblastic jadeitic pyroxene in Franciscan metagraywackes from Pacheco Pass, central Diablo Range, California, and implications for the inferred metamorphic P–T trajectory. New Zealand Journal of Geology and Geophysics, 34, 285–292.CrossRefGoogle Scholar
Eskola, P. (1920). The mineral facies of rocks. Norsk Geolologisk Tidsskrift, 6, 143–194.Google Scholar
Essene, E. J. (1982). Geologic thermometry and barometry. In Characterization of Metamorphism through Mineral Equilibria, ed. Ferry, J. M., vol. 10 of Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, 153–206.Google Scholar
Etheridge, M. A., Wall, V. J., Cox, S. F., and Vernon, R. H. (1984). High fluid pressures during regional metamorphism and deformation: implications for mass transport and deformation mechanisms. Journal of Geophysical Research, 89, 4344–4358.CrossRefGoogle Scholar
Evans, B. W. (2007a). Metamorphism of limestone and the petrogenetic grid. In Landmark Papers: Metamorphic Petrology, ed. Evans, B. W., and Wood, B. J., (executive ed.). Twickenham, Middlesex: Mineralogical Society of Great Britain and Ireland, L63–L66.Google Scholar
Evans, B. W. (2007b). Thermal models of collision belts. In Landmark Papers: Metamorphic Petrology, ed. Evans, B., and Wood, B. J.. Twickenham, Middlesex: Mineralogical Society of Great Britain and Ireland, L199–L203.Google Scholar
Evans, B. W., and Davidson, G. F. (1999). Kinetic control of metamorphic imprint during synplutonic loading of batholiths: an example from Mount Stuart, Washington. Geology, 27, 415–418.2.3.CO;2>CrossRefGoogle Scholar
Evans, B. W., and Trommsdorff, V. (1974). Stability of enstatite + talc, CO2-metasomatism of metaperidotite, Val d'Efra, Lepontine Alps. American Journal of Science, 274, 274–296.CrossRefGoogle Scholar
Evans, K. A., and Bickle, M. J. (1999). Determination of time-integrated metamorphic fluid fluxes from the reaction progress of multivariant assemblages. Contributions to Mineralogy and Petrology, 134, 277–293.CrossRefGoogle Scholar
Ewart, A. (1976). Mineralogy and chemistry of modern orogenic lavas – some statistics and implications. Earth and Planetary Science Letters, 31, 417–432.CrossRefGoogle Scholar
Falloon, T. J., Danyushevsky, L. V., Ariskin, A., Green, D. H., and Ford, C. E. (2007). The application of olivine geothermometry to infer crystallization temperatures of parental liquids: implications for the temperature of MORB magmas. Chemical Geology, 241, 207–233.CrossRefGoogle Scholar
Farnetani, C. G., and Samuel, H. (2005). Beyond the thermal plume paradigm. Geophysical Research Letters, 32, L07311, doi:10.10029/2005GL022360.CrossRefGoogle Scholar
Faryad, S. W., and Chakraborty, S. (2005). Duration of Eo-Alpine metamorphic events obtained from multicomponent diffusion modeling of garnet: a case study from the eastern Alps. Contributions to Mineralogy and Petrology, 150, 306–318.CrossRefGoogle Scholar
Faure, G. (1986). Principles of Isotope Geology, 2nd edn. New York: John Wiley.Google Scholar
Faure, G., and Mensing, T. M. (2004). Isotopes: Principles and Applications, 3rd edn. New York: John Wiley, 464 pp.Google Scholar
Feehan, J. G., and Brandon, M. T. (1999). Contribution of ductile flow to exhumation of low-temperature, high-pressure metamorphic rocks: San Juan-Cascade nappes, NW Washington State. Journal of Geophysical Research, 104, 10883–10902.CrossRefGoogle Scholar
Feineman, M. D., and DePaolo, D. J. (2003). Steady-state 226Ra/230Th disequilibrium in mantle minerals: implications for melt transport rates in island arcs. Earth and Planetary Science Letters, 215, 339–355.CrossRefGoogle Scholar
Ferry, J. M. (1980). A comparative study of geothermometers and geobarometers in pelitic schists from south-central Maine. American Mineralogist, 65, 720–732.Google Scholar
Ferry, J. M. (1983). On the control of temperature, fluid composition, and reaction progress during metamorphism. American Journal of Science, 283-A, 201–232.Google Scholar
Ferry, J. M. (1992). Regional metamorphism of the Waits River Formation, eastern Vermont: delineation of a new type of giant metamorphic hydrothermal system. Journal of Petrology, 33, 45–94.CrossRefGoogle Scholar
Ferry, J. M., and Dipple, G. M. (1991). Fluid flow, mineral reactions, and metasomatism. Geology, 19, 211–214.2.3.CO;2>CrossRefGoogle Scholar
Ferry, J. M., and Spear, F. S. (1978). Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology, 66, 113–117.CrossRefGoogle Scholar
Fincham, C. J. B., and Richardson, F. D. (1954). The behaviour of sulfur in silicate and aluminate melts. Royal Society of London Philosophical Transactions, A233, 40–62.Google Scholar
Fisher, G. W. (1973). Nonequilibrium thermodynamics as a model for diffusion-controlled metamorphic processes. American Journal of Science, 273, 897–924.CrossRefGoogle Scholar
Fisher, G. W., and Schminke, H. V. (1984). Pyroclastic Rocks. New York: Springer-Verlag, 339 pp.CrossRefGoogle Scholar
Fisler, D. K., and Cygan, R. T. (1999). Diffusion of Ca and Mg in calcite. American Mineralogist, 84, 1392–1399.CrossRefGoogle Scholar
Fleischer, R. L., and Price, R. B. (1964). Techniques for geological dating of minerals by chemical etching of fission fragment tracks. Geochimica et Cosmochimica Acta, 28, 1705–1714.CrossRefGoogle Scholar
Fleischer, R. L., Price, R. B., and Walker, R. M. (1975). Nuclear Tracks in Solids: Principles and Applications. Berkeley, CA: University of California Press, 605 pp.Google Scholar
Fletcher, R. C., and Hofmann, A. W. (1974). Simple models of diffusion and combined diffusion-infiltration metasomatism. In Geochemical Transport and Kinetics, ed. Hofmann, A. W., Giletti, B. J., Yoder, H. S., and Yund, R. A.. Washington, DC: Carnegie Institution, 243–259.Google Scholar
Foland, K. A., and Faul, H. (1977). Ages of the White Mountain intrusives – New Hampshire, Vermont, and Maine. American Journal of Science, 277, 888–904.CrossRefGoogle Scholar
Foulger, G. R., Natland, J. H., and Anderson, D. L. (2005). A source for Icelandic magmas in remelted Iapetus crust. Journal of Volcanology and Geothermal Research, 141, 23–44.CrossRefGoogle Scholar
Francis, P., Horrocks, L., and Oppenheimer, C. (2000). Monitoring gases from andesitic volcanoes. Philosophical Transactions of the Royal Society of London, A 358, 1567–1584.CrossRefGoogle Scholar
Freestone, I. C. (1978). Liquid immiscibility in alkali-rich magmas. Chemical Geology, 23, 115–123.CrossRefGoogle Scholar
French, B. M. (1972). Shock-metamorphism features in the Sudbury structure: a review. In New Developments in Sudbury Geology, ed. Guy-Bray, J.. Geological Association of Canada Special Paper, 10, 19–28.
French, B. M. (1998). Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Contribution No. 954. Houston: Lunar and Planetary Institute, 120 pp.Google Scholar
Frost, B. R., and Frost, C. D. (1987). CO2, melts and granulite metamorphism. Nature, 327, 503–506.CrossRefGoogle Scholar
Fuhrman, M. L., and Lindsley, D. H. (1988). Ternary feldspar modeling and thermometry. American Mineralogist, 73, 201–215.Google Scholar
Fujii, N., and Osamura, K. (1986). Effect of water saturation on the distribution of partial melt in the olivine–pyroxene–plagioclase system. Journal of Geophysical Research, 91, 9253–9259.CrossRefGoogle Scholar
Fyfe, W. S., Price, N. J., and Thompson, A. B. (1978). Fluids in the Earth's Crust. Amsterdam: Elsevier.Google Scholar
Gallagher, K., Brown, R., Johnson, C. (1998). Fission track analysis and its application to geological problems. Annual Review of Earth and Planetary Sciences, 26, 519–572.CrossRefGoogle Scholar
Ganguly, J. (2005). Adiabatic decompression and melting of mantle rocks: an irreversible thermodynamic analysis. Geophysical Research Letters, 32, L06312, doi:1029/2005GL022365.CrossRefGoogle Scholar
Ganguly, J., Cheng, W., and Chakraborty, S. (1998). Cation diffusion in aluminosilicate garnets: experimental determinations in pyrope-almandine diffusion couples. Contributions to Mineralogy and Petrology, 131, 171–180.CrossRefGoogle Scholar
Garcia, M. O., Pietruszka, A. J., Rhodes, J. M., and Swanson, K. (2000). Magmatic processes during the prolonged Pu‘u ‘O‘o eruption of Kilauea volcano, Hawaii. Journal of Petrology, 41, 967–990.CrossRefGoogle Scholar
Gardner, J. E., Thomas, R. M. E., Jaupart, C., and Tait, S. (1996). Fragmentation of magma during Plinian volcanic eruptions. Bulletin of Volcanology, 58, 144–162.CrossRefGoogle Scholar
Garnero, E. J. (2000). Heterogeneity of the lowermost mantle. Annual Review of Earth and Planetary Sciences, 28, 509–537.CrossRefGoogle Scholar
Garven, G., and Freeze, A. R. (1984). Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits: 2. Quantitative results. American Journal of Science, 284, 1085–1174.CrossRefGoogle Scholar
Gass, I. G. (1970). Tectonic and magmatic evolution of the Afro-Arabian dome. In African Magmatism and Tectonics, ed. Clifford, T. N., and Gass, I. G.. Edinburgh: Oliver & Boyd, 285–300.Google Scholar
Gebauer, D., Schertl, H. P., Brix, M., and Schreyer, W. (1997). 35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira massif, Western Alps. Lithos, 41, 5–24.CrossRefGoogle Scholar
Geiser, P. A., and Sansone, S. (1981). Joints, microfractures, and the formation of solution cleavage in limestone. Geology, 9, 280–285.2.0.CO;2>CrossRefGoogle Scholar
Ghent, E. D. (1976). Plagioclase–garnet–Al2SiO5–quartz: a potential geobarometer/geothermometer. American Mineralogist, 61, 710–714.Google Scholar
Ghent, E. D., and Simony, P. S. (2005). Geometry of isogradic, isothermal, and isobaric surfaces: interpretation and application. The Canadian Mineralogist, 43, 295–310.CrossRefGoogle Scholar
Ghent, E. D., and Stout, M. Z. (1981). Geobarometry and geothermometry of plagioclase-biotite-garnet-muscovite assemblages. Contributions to Mineralogy and Petrology, 76, 92–97.CrossRefGoogle Scholar
Ghent, E. D., Robins, D. B., and Stout, M. Z. (1979). Geothermometry, geobarometry, and fluid compositions of metamorphosed calcsilicates and pelites, Mica Creek, British Columbia. American Mineralogist, 64, 874–885.Google Scholar
Ghiorso, M. S. (1997). Thermodynamic models of igneous processes. Annual Review of Earth and Planetary Sciences, 25, 221–241.CrossRefGoogle Scholar
Ghiorso, M. S., and Sack, R. O. (1995). Chemical mass transfer in magmatic processes: IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology, 119, 197–212.CrossRefGoogle Scholar
Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W., and Kress, V. C., III (2002). A revision of MELTS aimed at improving calculation of phase relations and major element partitioning involved in partial melting of the mantle at pressures up to 3 GPa. Geochemistry, Geophysics, Geosystems, 3(5), 10.1029/2001GC000217.CrossRefGoogle Scholar
Gibb, F. G. F., and Henderson, C. M. B. (1992). Convection and crystal settling in sills. Contributions to Mineralogy and Petrology, 109, 538–545.CrossRefGoogle Scholar
Gibb, F. G. F., and Henderson, C. M. B. (2006). Chemistry of the Shiant Isles Main Sill, NW Scotland, and wider implications for the petrogenesis of mafic sills. Journal of Petrology, 47, 191–230.CrossRefGoogle Scholar
Gibbs, J. W. (1875). On the equilibrium of heterogeneous substances. Connecticut Academy of Arts and Sciences Transactions, 3, 108–248.Google Scholar
Gilbert, G. K. (1877). Report on the Geology of the Henry Mountains. Washington, DC: U.S. Geographical and Geological Survey of the Rocky Mountain Region (Powell), 160 pp.CrossRefGoogle Scholar
Gill, J. B. (1981). Orogenic Andesites and Plate Tectonics. New York: Springer-Verlag.CrossRefGoogle Scholar
Goff, F. (1996). Vesicle cylinders in vapor-differentiated basalt flows. Journal of Volcanology and Geothermal Research, 71, 167–185.CrossRefGoogle Scholar
Goldschmidt, V. M. (1911). Die Kontaktmetamorphose im Kristianiagebiet. Norske Videnskabers Selskabs Skrifter I, Mat.-Naturv. Klasse, no. 1.
Goranson, R. W. (1938). Silicate–water systems: phase equilibria in the NaAlSi3O8–H2O and KAlSi3O8–H2O systems at high temperatures and pressures. American Journal of Science, 35A, 71–91.Google Scholar
Graham, C. M., and England, P. C. (1976). Thermal regimes and regional metamorphism in the vicinity of overthrust faults: an example of shear heating and inverted metamorphic zonation from southern California. Earth and Planetary Science Letters, 31, 142–152.CrossRefGoogle Scholar
Grant, J. A. (1986). The isocon diagram: a simple solution to Gresens' equation for metasomatic alteration. Economic Geology, 81, 1976–1982.CrossRefGoogle Scholar
Gray, C. M., Cliff, R. A., and Goode, A. D. T. (1981). Neodymium-strontium isotopic evidence for extreme contamination in a layered basic intrusion. Earth and Planetary Science Letters, 56, 189–198.CrossRefGoogle Scholar
Gray, N. H. (1971). A parabolic hourglass structure in titanaugite. American Mineralogist, 56, 952–958.Google Scholar
Gray, N. H. (1973). Estimation of parameters in petrologic materials balance equations. Mathematical Geology, 5, 225–236.CrossRefGoogle Scholar
Gray, N. H. (1978). Crystal growth and nucleation in flash-injected diabase dikes. Canadian Journal of Earth Science, 15, 1904–1923.CrossRefGoogle Scholar
Gray, N. H., Philpotts, A. R., and Dickson, L. D. (2003). Quantitative measures of textural anisotropy resulting from magmatic compaction illustrated by a sample from the Palisades sill, New Jersey. Journal of Volcanology and Geothermal Research, 121, 293–312.CrossRefGoogle Scholar
,Great Plume Debate (2007). A series of papers based on the 2005 Chapman Conference on the “Great Plume Debate.”Chemical Geology, 241, 149–374.Google Scholar
Green, D. H. (1972). Archean greenstone belts may include terrestrial equivalents of lunar maria?Earth and Planetary Science Letters, 15, 263–270.CrossRefGoogle Scholar
Green, D. H. (1975). Genesis of Archean peridotitic magmas and constraints on Archean geothermal gradients and tectonics. Geology, 3, 15–18.2.0.CO;2>CrossRefGoogle Scholar
Greenwood, H. J. (1967a). Mineral equilibria in the system MgO-SiO2-H2O-CO2. In Researches in Geochemistry, vol. 2, ed. Abelson, P. H.. New York: John Wiley, 542–567.Google Scholar
Greenwood, H. J. (1967b). Wollastonite: stability in H2O-CO2 mixtures and occurrence in a contact metamorphic aureole near Salmo, British Columbia, Canada. American Mineralogist, 52, 1669–1680.Google Scholar
Greenwood, H. J. (1975). Buffering of pore fluids by metamorphic reactions. American Journal of Science, 275, 573–593.CrossRefGoogle Scholar
Greenwood, H. J. (1976). Metamorphism at moderate temperatures and pressures. In The Evolution of the Crystalline Rocks, ed. Bailey, D. K., and MacDonald, R.. London: Academic Press, 187–259.Google Scholar
Greig, J. W., and Barth, T. F. W. (1938). The system Na2O·Al2O3·5SiO2 (nephelite, carnegieite) – Na2O·Al2O3·6SiO2 (albite). American Journal of Science, 35A, 93–112.Google Scholar
Gresens, R. L. (1967). Composition-volume relations of metasomatism. Chemical Geology, 2, 47–65.CrossRefGoogle Scholar
Grieve, R., and Therriault, A. (2000). Vredefort, Sudbury, Chicxulub: three of a kind?Annual Review of Earth and Planetary Sciences, 28, 305–338.CrossRefGoogle Scholar
Griffin, W. L., Wass, S. Y., and Hollis, J. D. (1984). Ultramafic xenoliths from Bullenmerri and Gnotuk maars, Victoria, Australia: petrology of a subcontinental crust–mantle transition. Journal of Petrology, 25, 53–87.CrossRefGoogle Scholar
Grove, T. L., Donnelly-Nolan, J. M., and Housh, T. B. (1997). Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake Volcano, N. California. Contributions to Mineralogy and Petrology, 127, 205–223.CrossRefGoogle Scholar
Grover, J. E. (1980). Thermodynamics of pyroxenes. In Pyroxenes, ed. Prewitt, C. T., vol. 7 of Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, 341–418.Google Scholar
Gudmundsson, A. (2000). Dynamics of volcanic systems in Iceland: example of tectonism and volcanism at juxtaposed hot spot and mid-ocean ridge systems. Annual Review of Earth and Planetary Sciences, 28, 107–140.CrossRefGoogle Scholar
Gudmundsson, S., Gudmundsson, M. T., Björnsson, H., et al. (2002). Three-dimensional glacier surface motion maps at the Gja'lp eruption site, Iceland, inferred from combining InSAR and other ice-displacement data. Annals of Glaciology, 34, 315–322.CrossRefGoogle Scholar
Guéguen, Y., and Palciauskas, V. (1994). Introduction to the Physics of Rocks. Princeton, NJ: Princeton University Press, 294 pp.Google Scholar
Guilbaud, M. N., Self, S., Thordarson, T., and Blake, S. (2005). Morphology, surface structures and emplacement of lavas produced by Laki, A. D. 1783–1784. Geological Society of America, Special Paper, 396, 81–102.Google Scholar
Guy-Bray, J., and ,Geological Staff, International Nickel Co. (1966). Shatter cones at Sudbury. Journal of Geology, 74, 243–245.CrossRefGoogle Scholar
Haapala, I., and Rämö, O. T. (1999). Rapakivi granites and related rocks: an introduction. Precambrian Research, 95, 1–7.CrossRefGoogle Scholar
Haase, R. (1990). Thermodynamics of Irreversible Processes. New York: Dover.Google Scholar
Hacker, B. R., Kirby, S. H., and Bohlen, S. R. (1992). Time and metamorphic petrology: calcite to aragonite experiments. Science, 258, 110–112.CrossRefGoogle ScholarPubMed
Hacker, B. R., Peacock, S. M., Abers, G. A., and Holloway, S. D. (2003). Subduction factory: 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?Journal of Geophysical Research, 108, no. B1, doi:10.1029/2001JB001129.CrossRefGoogle Scholar
Hakli, T. A., and Wright, T. L. (1967). The fractionation of nickel between olivine and augite as a geothermometer. Geochimica et Cosmochimica Acta, 31, 877–884.CrossRefGoogle Scholar
Hall, J. (1805). Experiments on whinstone and lava. Transactions of the Royal Society of Edinburgh, 5, 43–74.CrossRefGoogle Scholar
Hamilton, W. B. (2003). An alternative Earth. GSA Today, 13(11), 4–12.2.0.CO;2>CrossRefGoogle Scholar
Handley, H. K., Macpherson, C. G., Davidson, J. P., Berlo, K., and Lowry, D. (2007). Constraining fluid sediment contributions to subduction-related magmatism in Indonesia: Ijen volcanic complex. Journal of Petrology, 48, 1155–1183.CrossRefGoogle Scholar
Hanson, R. B. (1992). Effects of fluid production on fluid flow during regional and contact metamorphism. Journal of Metamorphic Geology, 10, 87–97.CrossRefGoogle Scholar
Hanson, R. B. (1997). Hydrodynamics of regional metamorphism due to continental collision. Economic Geology, 92, 880–891.CrossRefGoogle Scholar
Hargraves, R. B., Johnson, D., Chan, C. Y. (1991). Distribution anisotropy: the cause of AMS in igneous rocks?Geophysical Research Letters, 18, 2193–2196.CrossRefGoogle Scholar
Harker, R. I., and Tuttle, O. F. (1956). Experimental data on the PCO2-T curve for the reaction calcite + quartz = wollastonite + CO2. American Mineralogist, 265, 239–256.Google Scholar
Harley, S. L. (1989). The origins of granulites – a metamorphic perspective. Geological Magazine, 126, 215–247.CrossRefGoogle Scholar
Harley, S. L. (2004). Extending our understanding of ultrahigh temperature crustal metamorphism. Journal of Mineralogical and Petrological Sciences, 99, 140–158, doi: 10.2465/jmps.99.140.CrossRefGoogle Scholar
Harlov, D. E., Wirth, R., and Forster, H. J. (2005). An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology, 150, 268–286.CrossRefGoogle Scholar
Harrison, T. M., Lovera, O. M., and Grove, M. (1997). New insights into the origin of two contrasting Himalayan granite belts. Geology, 25, 899–902.2.3.CO;2>CrossRefGoogle Scholar
Hart, S. R., and Allègre, C. J. (1980). Trace-element constraints on magma genesis. In Physics of Magmatic Processes, ed. Hargraves, R. B.. Princeton, NJ: Princeton University Press, 121–151.Google Scholar
Hart, S. R., Hauri, E. H., Oschmann, L. A., Whitehead, J. A. (1992). Mantle plumes and entrainment: isotopic evidence. Science, 256, 517–520.CrossRefGoogle ScholarPubMed
Harte, B., and Hudson, N. F. C. (1979). Pelite facies series and temperatures and pressures of Dalradian metamorphism in Eastern Scotland. In The Caledonides of the British Isles – Reviewed, ed. Harris, A. L., Holland, C. H., and Leake, B. E.. Geological Society of London, Special Publication, 8. Edinburgh: Scottish Academic Press, 323–337.Google Scholar
Hatherton, T., and Dickinson, W. R. (1969). The relationship between andesitic volcanism and seismicity in Indonesia, the Lesser Antilles and other island arcs. Journal of Geophysical Research, 74, 5301–5310.CrossRefGoogle Scholar
Haughton, D. R., Roeder, P. L., and Skinner, B. J. (1974). Solubility of sulfur in mafic magmas. Economic Geology, 69, 451–467.CrossRefGoogle Scholar
Hauzenberger, C. A., Baumgartner, L. P., and Pak, T. M. (2001). Experimental study on the solubility of the “model”-pelite mineral assemblage albite + K-feldspar + andalusite + quartz in supercritical chloride-rich aqueous solutions at 0.2 GPa and 600 °C. Geochimica et Cosmochimica Acta, 65, 4493–4507.CrossRefGoogle Scholar
Hawkesworth, C. J., and Kemp, A. I. S. (2006). Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226, 144–162.CrossRefGoogle Scholar
Hawkesworth, C. J., Norry, M. J., Roddick, J. C., et al. (1979). 143Nd/144Nd, 87Sr/86Sr, and incompatible element variations in calc-alkaline andesites and plateau lavas from South America. Earth and Planetary Science Letters, 42, 45–57.CrossRefGoogle Scholar
Hawkesworth, C. J., Erlank, A. J., Marsh, J. S., Menzies, M. A., and Calsteren, P. (1983). Evolution of the continental lithosphere: evidence from volcanics and xenoliths in southern Africa. In Continental Basalts and Mantle Xenoliths, ed. Hawkesworth, C. J., and Norry, M. J.. Nantwich, Cheshire: Shiva Publishing, 111–138.Google Scholar
Hawkesworth, C. J., Blake, S., Evans, P.et al. (2000). Time scales of crystal fractionation in magma chambers – integrating physical, isotopic and geochemical perspectives. Journal of Petrology, 41, 991–1006.CrossRefGoogle Scholar
Hay, R. S., and Evans, B. (1988). Intergranular distribution of pore fluid and the nature of high-angle grain boundaries in limestone and marble. Journal of Geophysical Research, 93, B8, 8959–8974.CrossRefGoogle Scholar
Head, J. W., and Wilson, L. (1992). Lunar mare volcanism: stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochimica et Cosmochimica Acta, 56, 2155–2175.CrossRefGoogle Scholar
Heald, E. F., Naughton, J. J., and Barnes, I. L. (1963). The chemistry of volcanic gases. 2. Use of equilibrium calculations in the interpretation of volcanic gas samples. Journal of Geophysical Research, 68, 545–557.CrossRefGoogle Scholar
Heath, E., Turner, S. P., Macdonald, R., Hawkesworth, C. J., and Calsteren, P. (1998). Long magma residence times at an island arc volcano (Soufrière, St. Vincent) in the Lesser Antilles: evidence from 238U–230Th isochron dating. Earth and Planetary Science Letters, 160, 49–63.CrossRefGoogle Scholar
Heiken, G., Goff, F., Gardner, J. N., et al. (1990). The Valles/Toledo caldera complex, Jemez volcanic field, New Mexico. Annual Review of Earth and Planetary Sciences, 18, 27–53.CrossRefGoogle Scholar
Heinrich, E. W. (1966). The Geology of Carbonatites. Chicago: Rand-McNally.Google Scholar
Hekinian, R. (1982). Petrology of the Ocean Floor. Amsterdam: Elsevier Science.Google Scholar
Helgason, J. (1999). Formation of Olympus Mons and the aureole-escarpment problem on Mars. Geology, 27, 231–234.2.3.CO;2>CrossRefGoogle Scholar
Helgeson, H. C. (1967). Solution chemistry and metamorphism. In Researches in Geochemistry, ed. Abelson, P. H.. New York: John Wiley, 362–404.Google Scholar
Helgeson, H. C., Delany, J. M., Nesbitt, H. W., and Bird, D. K. (1978). Summary and critique of the thermodynamic properties of rock forming minerals. American Journal of Science, 278A, 1–229.Google Scholar
Henderson, P. (1982). Inorganic Geochemistry. Oxford: Pergamon Press, 353 pp.Google Scholar
Hergt, J. M., Peate, D. W., and Hawkesworth, C. J. (1991). The petrogenesis of Mesozoic Gondwana low-Ti flood basalts. Earth and Planetary Science Letters, 105, 134–148.CrossRefGoogle Scholar
Hersum, T., Hilpert, M., and Marsh, B. (2005). Permeability and melt flow in simulated and natural partially molten basaltic magmas. Earth and Planetary Science Letters, 237, 798–814.CrossRefGoogle Scholar
Herzberg, C. T. (1987). Magma density at high pressure. 2: A test of the olivine flotation hypothesis. In Magmatic Processes: Physicochemical Principles, ed., Mysen, B. O.. Washington, DC: Geochemical Society Special Publication, 1, 47–58.Google Scholar
Herzberg, C. T., Fyfe, W. S., and Carr, M. J. (1983). Density constraints on the formation of the continental Moho and crust. Contributions to Mineralogy and Petrology, 84, 1–5.CrossRefGoogle Scholar
Hess, H. H. (1960). Stillwater igneous complex, Montana. Geological Society of America Memoir, 80, 230 pp.Google Scholar
Hess, P. C. (1969). The metamorphic paragenesis of cordierite in pelitic rocks. Contributions to Mineralogy and Petrology, 24, 191–207.CrossRefGoogle Scholar
Hess, P. C. (1980). Polymerization model for silicate melts. In Physics of Magmatic Processes, ed. Hargraves, R. B.. Princeton, NJ: Princeton University Press, 3–48.Google Scholar
Hewitt, D. A. (1973). The metamorphism of micaceous limestones from south-central Connecticut. American Journal of Science, 273-A, 444–469.Google Scholar
Higgins, M. D. (1991). The origin of laminated and massive anorthosite, Sept Iles layered intrusion, Quebec, Canada. Contributions to Mineralogy and Petrology, 106, 340–354.CrossRefGoogle Scholar
Higgins, M. D. (1996). Magma dynamics beneath Kameni volcano, Thera, Greece, as revealed by crystal size and shape measurements. Journal of Volcanology and Geothermal Research, 70, 37–48.CrossRefGoogle Scholar
Higgins, M. D. (1998). Origin of anorthosite by textural coarsening: quantitative measurements of a natural sequence of textural development. Journal of Petrology, 39, 1307–1323.CrossRefGoogle Scholar
Higgins, M. D. (2000). Measurement of crystal size distributions. American Mineralogist, 85, 1105–1116.CrossRefGoogle Scholar
Higgins, M. D. (2006). Quantitative Textural Measurements in Igneous and Metamorphic Rocks. Cambridge: Cambridge University Press, 276 pp.CrossRefGoogle Scholar
Higgins, M. W. (1971). Cataclastic rocks. United States Geological Survey, Professional Paper, 687.Google Scholar
Hildreth, W. (1981). Gradients in silicic magma chambers: implications for lithospheric magmatism. Journal of Geophysical Research, 86, 10153–10192.CrossRefGoogle Scholar
Hildreth, W., and Wilson, C. J. N. (2007). Compositional zoning of the Bishop Tuff. Journal of Petrology, 48, 951–999.CrossRefGoogle Scholar
Hiraga, T., Osamu, N., Nagase, T., and Akizuki, M. (2001). Morphology of intergranular pores and wetting angles in pelitic schists studied by transmission electron microscopy. Contributions to Mineralogy and Petrology, 141, 613–622.CrossRefGoogle Scholar
Ho, A. M., and Cashman, K. V. (1997). Temperature constraints on the Ginko flow of the Columbia River Basalt Group. Geology, 25, 403–406.2.3.CO;2>CrossRefGoogle Scholar
Hobbs, B. E., Means, W. D., and Williams, P. F. (1976). An Outline of Structural Geology. New York: John Wiley.Google Scholar
Hodges, K. V., and Crowley, P. (1985). Error estimation and empirical geothermobarometry for pelitic systems. American Mineralogist, 70, 702–709.Google Scholar
Hodges, K. V., and Royden, L. (1984). Geologic thermobarometry of retrograded metamorphic rocks: an indication of the uplift trajectory of a portion of the northern Scandinavian Caledonides. Journal of Geophysical Research, 89, 7077–7090.CrossRefGoogle Scholar
Hodges, K. V., and Spear, F. S. (1982). Geothermometry, geobarometry, and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire. American Mineralogist, 67, 1118–1134.Google Scholar
Hofmann, A. W. (1980). Diffusion in natural silicate melts: a critical review. In Physics of Magmatic Processes, ed. Hargraves, R. B.. Princeton, NJ: Princeton University Press, 385–417.Google Scholar
Hofmann, A. W. (1997). Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219–229.CrossRefGoogle Scholar
Hofmann, A. W., Giletti, B. J., Yoder, H. S., and Yund, R. A. (eds.) (1974). Geochemical Transport and Kinetics. London: Academic Press.
Hofmeister, A. M., and Criss, R. E. (2005). Earth's heat flux revised and linked to chemistry. Tectonophysics, 395, 159–177.CrossRefGoogle Scholar
Hoisch, T. D. (1987). Heat transport by fluids during Late Cretaceous regional metamorphism in the Big Maria Mountains, southeastern California. Geological Society of America Bulletin, 98, 549–553.2.0.CO;2>CrossRefGoogle Scholar
Holdaway, M. J. (1971). Stability of andalusite and the aluminum silicate phase diagram. American Journal of Science, 271, 97–131.CrossRefGoogle Scholar
Holister, L. S. (1966). Garnet zoning: an interpretation based on the Rayleigh fractionation model. Science, 154, 1647–1651.CrossRefGoogle Scholar
Holister, L. S. (1970). Origin, mechanism and consequences of compositional sector zoning in staurolite. American Mineralogist, 55, 742–766.Google Scholar
Holland, T. J. B. (1980). The reaction albite = jadeite + quartz determined experimentally in the range 600–1200 °C. American Mineralogist, 65, 129–134.Google Scholar
Holland, T. J. B., and Powell, R. (1998). An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309–343.CrossRefGoogle Scholar
Holness, M. B. (1993). Temperature and pressure dependence of quartz-aqueous fluid dihedral angles: the control of adsorbed H2O on the permeability of quartzites. Earth and Planetary Science Letters, 117, 363–377.CrossRefGoogle Scholar
Holness, M. B. (2006). Melt-solid dihedral angles of common minerals in natural rocks. Journal of Petrology, 47, 791–800.CrossRefGoogle Scholar
Holness, M. B., Cheadle, M. J., and McKenzie, D. (2005). On the use of changes in dihedral angle to decode late-stage textural evolution in cumulates. Journal of Petrology, 46, 1565–1583.CrossRefGoogle Scholar
Holtz, F., Behrens, H., Dingwell, D. B., and Johannes, W. (1995). H2O solubility in haplogranitic melts: compositional, pressure, and temperature dependence. American Mineralogist, 80, 94–108.CrossRefGoogle Scholar
Holtzman, B. K., and Kohlstedt, D. L. (2007). Stress-driven melt segregation and strain partitioning in partially molten rocks: effects of stress and strain. Journal of Petrology, 48, 2379–2406.CrossRefGoogle Scholar
Holtzman, B. K., Groebner, N. J., Zimmerman, M. E., Ginsberg, S. B., and Kohlstedt, D. L. (2003). Stress-driven melt segregation in partially molten rocks. Geochemistry Geophysics Geosystems, 4(5), 8607, doi:10.1029/2001GC000258.CrossRefGoogle Scholar
Holtzman, B. K., Kohlstedt, D. L., and Phipps Morgan, J. (2005). Viscous energy dissipation and strain partitioning in partially molten rocks. Journal of Petrology, 46, 2569–2592.CrossRefGoogle Scholar
Hort, M., Marsh, B. D., Resmini, R. G., and Smith, M. K. (1999). Convection and crystallization in a liquid cooled from above: an experimental and theoretical study. Journal of Petrology, 40, 1271–1300.CrossRefGoogle Scholar
Hoskuldsson, A., and Sparks, R. S. J. (1997). Thermodynamics and fluid dynamics of effusive subglacial eruptions. Bulletin of Volcanology, 59, 219–230.CrossRefGoogle Scholar
Huang, W. L., and Wyllie, P. J. (1973). Melting of muscovite-granite to 35 kbar as a model for fusion of metamorphosed subducted oceanic sediments. Contributions to Mineralogy and Petrology, 42, 1–14.CrossRefGoogle Scholar
Hudon, P., Yung, I., and Baker, D. R. (2005). Experimental investigation and optimization of thermodynamic properties and phase diagrams in the system CaO–SiO2, MgO–SiO2, CaMgSi2O6–SiO2 and CaMgSi2O6–Mg2SiO4. Journal of Petrology, 46, 1859–1880.CrossRefGoogle Scholar
Huppert, H. E., and Sparks, R. S. J. (1980). The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma. Contributions to Mineralogy and Petrology, 75, 279–289.CrossRefGoogle Scholar
Huppert, H. E., and Sparks, R. S. J. (1985). Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust. Earth and Planetary Science Letters, 74, 371–386.CrossRefGoogle Scholar
Huppert, H. E., and Sparks, R. S. J. (1988). The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology, 29, 599–624.CrossRefGoogle Scholar
Huppert, H. E., Sparks, R. S. J., Turner, J. S., and Arndt, N. T. (1984). Emplacement and cooling of komatiite lavas. Nature, 309, 19–22.CrossRefGoogle Scholar
Huppert, H. E., Sparks, R. S. J., Wilson, J. R., and Hallworth, M. A. (1986). Cooling and crystallization at an inclined plane. Earth and Planetary Science Letters, 79, 319–328.CrossRefGoogle Scholar
Huppert, H. E., Sparks, R. S. J., Wilson, J. R., Hallworth, M. A., and Leitch, A. M. (1987). Laboratory experiments with aqueous solutions modelling magma chamber processes: II. Cooling and crystallization along inclined planes. In Origins of Igneous Layering, ed. Parsons, I.. Dordrecht: D. Reidel, 539–568.CrossRefGoogle Scholar
Hussenoeder, S. A., Collins, J. A., Kent, G.M., Detrick, R. S., and the TERA Group (1996). Seismic analysis of the axial magma chamber reflector along the southern East Pacific Rise from conventional reflection profiling. Journal of Geophysical Research, 101, 22087–22105.CrossRefGoogle Scholar
Ildefonse, J.-P., and Gabis, V. (1976). Experimental study of silica diffusion during metasomatic reactions in the presence of water at 550 °C and 1000 bars. Geochimica et Cosmochimica Acta, 40, 297–303.CrossRefGoogle Scholar
Ingebritsen, S. E., and Manning, C. E. (1999). Geological implications of a permeability-depth curve for the continental crust. Geology, 27, 1107–1110.2.3.CO;2>CrossRefGoogle Scholar
Ingersoll, L. R., Zobel, O. J., and Ingersoll, A. C. (1954). Heat Conduction. University of Wisconsin Press, 325 pp.Google Scholar
Irvine, T. N. (1974). Petrology of the Duke Island Ultramafic Complex, southeastern Alaska. Geological Society of America Memoir, 138.CrossRefGoogle Scholar
Irvine, T. N. (1977). Chromite crystallization in the join Mg2SiO4–CaMgSi2O6–CaAl2Si2O8–MgCr2O4–SiO2. Carnegie Institution of Washington Yearbook, 76, 465–472.Google Scholar
Irvine, T. N. (1979). Rocks whose composition is determined by crystal accumulation and sorting. In The Evolution of the Igneous Rocks: Fiftieth Anniversary Perspectives, ed. Yoder, Jr. H. S.Princeton, NJ: Princeton University Press, 245–306.Google Scholar
Irvine, T. N. (1980). Magmatic infiltration metasomatism, double-diffusive fractional crystallization, and adcumulus growth in the Muskox Intrusion and other layered intrusions. In Physics of Magmatic Processes, ed. Hargraves, R. B.. Princeton, NJ: Princeton University Press, 325–385.Google Scholar
Irvine, T. N. (1982). Terminology for layered intrusions. Journal of Petrology, 23, 127–162.CrossRefGoogle Scholar
Irvine, T. N. (1987). Layering and related structures in the Duke Island and Skaergaard Intrusions: similarities, differences, and origins. In Origins of Igneous Layering, ed. Parsons, I.. Dordrecht: D. Reidel, 185–246.CrossRefGoogle Scholar
Irvine, T. N., and Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science, 8, 523–548.CrossRefGoogle Scholar
Irvine, T. N., and Smith, C. H. (1967). The ultramafic rocks of the Muskox Intrusion, Northwest Territories, Canada. In Ultramafic and Related Rocks, ed. Wyllie, P. J.. New York: John Wiley, 38–49.Google Scholar
Irvine, T. N., Keith, D. W., and Todd, S. G. (1983). The J-M platinum reef of the Stillwater Complex, Montana: II. Origin by double-diffusive convective magma mixing and implications for the Bushveld Complex. Economic Geology, 78, 1287–1334.CrossRefGoogle Scholar
Irvine, T. N., Andersen, J. C.Ø., and Brooks, C. K. (1998). Included blocks (and blocks within blocks) in the Skaergaard Intrusion: geological relations and the origins of rhythmic modally graded layers. Geological Society of America Bulletin, 110, 1398–1447.2.3.CO;2>CrossRefGoogle Scholar
Isachsen, Y. W. (ed.) (1968). Origin of Anorthosites and Related Rocks. New York State Museum and Science Service Memoir, 18.
Jackson, E. D. (1967). Ultramafic cumulates in the Stillwater, Great Dyke, and Bushveld Intrusion. In Ultramafic and Related Rocks, ed. Wyllie, P. J.. New York: John Wiley, 20–38.Google Scholar
Jacobsen, S. B. (2003). How old is planet Earth?Science, 300, 1513–1514.CrossRefGoogle ScholarPubMed
Jacobsen, S. B. (2005). The Hf–W isotopic system and the origin of the Earth and Moon. Annual Review of Earth and Planetary Sciences, 33, 531–570.CrossRefGoogle Scholar
Jaeger, J. C. (1968). Cooling and solidification of igneous rocks. In Basalts, vol. 2, ed. Hess, H. H. and Poldervaart, A.. New York: John Wiley, 503–536.Google Scholar
Jager, E., and Hunziker, J. C., (ed.) (1979). Lectures in Isotope Geology. Berlin: Springer-Verlag, 329 pp.CrossRef
Jahns, R. H., and Burnham, C. W. (1969). Experimental studies of pegmatite genesis, I: a model for the derivation and crystallization of granitic pegmatites. Economic Geology, 64, 843–864.CrossRefGoogle Scholar
Jakobsen, J. D., Veksler, I. V., Tegner, C., and Brooks, C. K. (2005). Immiscible iron- and silica-rich melt in basalt petrogenesis documented in the Skaergaard intrusion. Geology, 33, 885–888.CrossRefGoogle Scholar
Jamtveit, B., Bucher-Nurminen, K., and Austrheim, H. (1989). Fluid controlled eclogitization of granulites in deep crustal shear zones, Bergen Arcs, Western Norway. Contributions to Mineralogy and Petrology, 104, 184–193.CrossRefGoogle Scholar
Jaupart, C., and Tait, S. (1995). Dynamics of differentiation in magma reservoirs. Journal of Geophysical Research, 100, 17615–17636.CrossRefGoogle Scholar
Javoy, M., Fourcade, S., and Allègre, C. J. (1970). Graphical method for examination of 18O/16O fractionations in silicate rocks. Earth and Planetary Science Letters, 10, 12–16.CrossRefGoogle Scholar
Jerram, D. A., and Higgins, M. D. (2007). 3D analysis of rock textures: quantifying igneous rock textures. Elements, 3, 239–245.CrossRefGoogle Scholar
Joesten, R. L. (1974). Local equilibrium and metasomatic growth of zoned calc-silicate nodules in a contact aureole, Christmas Mountains, Big Bend Region, Texas. American Journal of Science, 274, 876–901.CrossRefGoogle Scholar
Joesten, R. (1976). High-temperature contact metamorphism of carbonate rocks in a shallow crustal environment, Christmas Mountains, Big Bend Region, Texas. American Mineralogist, 61, 776–781.Google Scholar
Joesten, R. (1977). Evolution of mineral assemblage zoning in diffusion metasomatism. Geochimica et Cosmochimica Acta, 41, 649–670.CrossRefGoogle Scholar
Joesten, R. (1979). Kinetics of diffusion-controlled mineral growth in the Christmas Mountains, Texas, contact aureole. Mineralogical Society of London Bulletin, 42, 3.Google Scholar
Joesten, R. L. (1983). Grain growth and grain-boundary diffusion in quartz from the Christmas Mountains (Texas) contact aureole. American Journal of Science, 283-A, 233–254.Google Scholar
Joesten, R. L., and Fisher, G. (1988). Kinetics of diffusion-controlled mineral growth in the Christmas Mountains (Texas) contact aureole. Geological Society of America Bulletin, 100, 714–732.2.3.CO;2>CrossRefGoogle Scholar
Johannsen, A. (1931). A Descriptive Petrography of the Igneous Rocks: vol. I. Introduction, Textures, Classification and Glossary. Chicago: University of Chicago Press, 267 pp.Google Scholar
Johnson, A. M. (1970). Physical Processes in Geology. San Francisco, CA: Freeman, Cooper, 577 pp.Google Scholar
Johnson, A. M., and Pollard, D. D. (1973). Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah: I. Tectonophysics, 18, 261–309.CrossRefGoogle Scholar
Johnson, M. C., and Plank, T. (1999). Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics and Geosystems, 1, paper number 1999GC000014.Google Scholar
Jónsson, S., Zebker, H., and Amelung, F. (2005). On trapdoor faulting at Sierra Negra volcano, Galápagos. Journal of Volcanology and Geothermal Research, 144, 59–71.CrossRefGoogle Scholar
Josephsen, K. (2003). Magmakammerprocesser i Fongen-Hyllingen Intrusionen, Norge – et detaljestudie af modal lagdeling. (Magma chamber process in the Fongen-Hyllingen Intrusion, Norway – a detailed study of modal layering). Unpublished MSc thesis, University of Aarhus, 120 pp.
Jurewicz, S. R., and Watson, E. B. (1985). The distribution of partial melt in a granitic system: the application of liquid phase sintering theory. Geochimica et Cosmochimica Acta, 49, 1109–1121.CrossRefGoogle Scholar
Kalsbeek, F., and Jepsen, H. F. (1984). The late Proterozoic Zig-Zag Dal basalt formation of eastern North Greenland. Journal of Petrology, 25, 644–664.CrossRefGoogle Scholar
Karabinos, P., and Ketcham, R. (1988). Thermal structure of active thrust belts. Journal of Metamorphic Geology, 6, 559–570.CrossRefGoogle Scholar
Kattenhorn, S. A., and Watkeys, M. K. (1995). Blunt-ended dyke segments. Journal of Structural Geology, 17, 1535–1542.CrossRefGoogle Scholar
Katz, R. F., Spiegelman, M., and Holtzman, B. (2006). The dynamics of melt and shear localization in partially molten aggregates. Nature, 442, 676–679.CrossRefGoogle ScholarPubMed
Kay, R. W., and Kay, S. M. (1993). Delamination and delamination magmatism. Tectonophysics, 219, 177–189.CrossRefGoogle Scholar
Kelemen, P. B., Whitehead, J. A., Aharonov, E., and Jordahl, K. A. (1995). Experiments on flow focusing in partially soluble porous media, with applications to melt extraction from the mantle. Journal of Geophysical Research, 100, 475–496.CrossRefGoogle Scholar
Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, N., and Dick, H. J. B. (1997). A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philosophical Transactions of the Royal Society of London, A 355, 1–35.Google Scholar
Kelemen, P. B., Hanghøj, K. and Greene, A. R. (2003). One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In The Crust, ed. Rudnick, R. L., vol. 3 of Treatise on Geochemistry, ed. Holland, H. D., and Turekian, K. K.. Amsterdam: Elsevier, 593–659.Google Scholar
Kelsey, C. H. (1965). Calculation of the CIPW norm. Mineralogical Magazine, 34, 276–282.Google Scholar
Kelsey, D. E. (2008). On ultrahigh-temperature crustal metamorphism. Gondwana Research, 13, 1–29.CrossRefGoogle Scholar
Kennedy, C. S., and Kennedy, G. C. (1976). The equilibrium boundary between graphite and diamond. Journal of Geophysical Research, 81, 2467–2470.CrossRefGoogle Scholar
Kepezhinskas, K. B., and Khlestov, V. V. (1977). The petrogenetic grid and subfacies for middle-temperature metapelites. Journal of Petrolology, 18, 114–143.CrossRefGoogle Scholar
Kern, R, and Weisbrod, A. (1967). Thermodynamics for Geologists. San Francisco: Freeman, Cooper, 304 pp.Google Scholar
Kerr, A. C., and Mahoney, J. J. (2007). Oceanic plateaus: problematic plumes, potential paradigms. Chemical Geology, 241, 332–353.CrossRefGoogle Scholar
Kerrick, D. M. (1972). Experimental determination of the muscovite + quartz stability with PH2O< Ptotal. American Journal of Science, 272, 946–958.CrossRefGoogle Scholar
Kerrick, D. M., and Connolly, J. A. D. (2001a). Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature, 411, 293–296.CrossRefGoogle ScholarPubMed
Kerrick, D. M., and Connolly, J. A. D. (2001b). Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth and Planetary Science Letters, 189, 19–29.CrossRefGoogle Scholar
Kerrick, D. M., and Jacobs, G. K. (1981). A modified Redlich-Kwong equation for H2O, CO2, and H2O–CO2 mixtures at elevated pressures and temperatures. American Journal of Science, 281, 735–767.CrossRefGoogle Scholar
Kieffer, S. W. (1981). Blast dynamics at Mount St Helens on 18 May 1980. Nature, 291, 568–570.CrossRefGoogle Scholar
King, R. L., Kohn, M. J., and Eiler, J. M. (2003). Constraints on the petrologic structure of the slab-mantle interface from Franciscan Complex exotic ultramafic blocks. Geological Society of America Bulletin, 115, 1097–1109.CrossRefGoogle Scholar
King, S. D. (1995). Models of mantle viscosity. In Mineral Physics and Crystallography: A Handbook of Physical Constants, ed. Ahrens, T. J.. American Geophysical Union Reference Shelf, 2, 227–236.CrossRef
Kingery, W. D. (1960). Introduction to Ceramics, New York: John Wiley, 781 pp.Google Scholar
Kingsley, L. (1931). Cauldron subsidence of the Ossipee Mountains. American Journal of Science, 222, 139–168.CrossRefGoogle Scholar
Kirkpatrick, R. J. (1974). Kinetics of crystal growth in the system CaMgSi2O6–CaAl2SiO6. American Journal of Science, 274, 215–242.CrossRefGoogle Scholar
Kirkpatrick, R. J. (1975). Crystal growth from the melt: a review. American Mineralogist, 60, 798–814.Google Scholar
Kirkpatrick, R. J. (1977). Nucleation and growth of plagioclase, Makaopuhi and Alae lava lakes, Kilauea. Geological Society of America Bulletin, 88, 78–84.2.0.CO;2>CrossRefGoogle Scholar
Kirkpatrick, R. J. (1981). Kinetics of crystallization of igneous rocks. In Kinetics of Geochemical Processes, ed. Lasaga, A. C. and Kirkpatrick, R. J., vol. 8 of Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, 321–398.Google Scholar
Kirkpatrick, R. J., Klein, L., Uhlmann, D. R., and Hays, J. F. (1979). Rates and processes of crystal growth in the system anorthite–albite. Journal of Geophysical Research, 84, 3671–3676.CrossRefGoogle Scholar
Kjarsgaard, B. A., and Hamilton, D. L. (1988). Liquid immiscibility and the origin of alkali-poor carbonatites. Mineralogical Magazine, 52, 43–55.CrossRefGoogle Scholar
Klein, C. (2005). Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. American Mineralogist, 90, 1473–1499.CrossRefGoogle Scholar
Klein, F. W. (1984). Eruption forecasting at Kilauea Volcano, Hawaii. Journal of Geophysical Research, 89, 3059–3073.CrossRefGoogle Scholar
Kohn, M. J. (2003). Geochemical zoning in metamorphic minerals. In The Crust, ed. Rudnick, R. L., vol. 3 of Treatise on Geochemistry, ed. Holland, H. D., and Turekian, K. K.. Amsterdam: Elsevier, 229–261.Google Scholar
Kohn, M. J., and Spear, F. S. (1990). Two new geobarometers for garnet amphibolites, with application to southeastern Vermont. American Mineralogist, 75, 89–96.Google Scholar
Kohn, M. J., and Spear, F. S. (2000). Retrograde net transfer insurance for pressure-temperature estimates. Geology, 28, 1127–1130.2.0.CO;2>CrossRefGoogle Scholar
Komar, P. D. (1972). Flow differentiation in igneous dikes and sills: profiles of velocity and phenocryst concentration. Geological Society of America Bulletin, 83, 3443–3448.CrossRefGoogle Scholar
Korenaga, J. (2007). Thermal cracking and the deep hydration of oceanic lithosphere: a key to the generation of plate tectonics?Journal of Geophysical Research, 112, B05408, doi:10.1029/2006JB004502.CrossRefGoogle Scholar
Korja, A., Heikkinen, P., and Aaro, S. (2001). Crustal structure of the northern Baltic Sea paleorift. Tectonophysics, 331, 341–358.CrossRefGoogle Scholar
Korzhinskii, D. S. (1970). Theory of Metasomatic Zoning. Oxford: Clarendon Press.Google Scholar
Koster Van Groos, A. F., and Wyllie, P. J. (1966). Liquid immiscibility in the system Na2O–Al2O3–SiO2–CO2 at pressures to 1 kilobar. American Journal of Science, 264, 234–255.CrossRefGoogle Scholar
Kretz, R. (1966). Interpretation of the shape of mineral grains in metamorphic rocks. Journal of Petrology, 7, 68–94.CrossRefGoogle Scholar
Kretz, R. (1973). Kinetics of the crystallization of garnet at two localities near Yellowknife. Canadian Mineralogist, 12, 1–20.Google Scholar
Kuno, H. (1960). High alumina basalt. Journal of Petrology, 1, 125–145.CrossRefGoogle Scholar
Kurszlaukis, S, Büttner, R., Zimanowski, B., and Lorenz, V. (1998). On the first experimental phreatomagmatic explosion of a kimberlite melt. Journal of Volcanology and Geothermal Research, 80, 323–326.CrossRefGoogle Scholar
Kushiro, I. (1969). The system forsterite–diopside–silica with and without water at high pressures. American Journal of Science, 267-A, 269–294.Google Scholar
Kushiro, I. (1970). Stability of amphibole and phlogopite in the upper mantle. Carnegie Institution of Washington Yearbook, 68, 245–247.Google Scholar
Kushiro, I. (1972). Effect of water on the composition of magmas formed at high pressures. Journal of Petrology, 13, 311–334.CrossRefGoogle Scholar
Kushiro, I. (1980). Viscosity, density, and structure of silicate melts at high pressures, and their petrological applications. In Physics of Magmatic Processes, ed. Hargraves, R. B.. Princeton: Princeton University Press, 93–120.Google Scholar
Kushiro, I., and Yoder, H. S. (1966). Anorthite–forsterite and anorthite–enstatite reactions and their bearing on the basalt–eclogite transformation. Journal of Petrology, 7, 337–362.CrossRefGoogle Scholar
Kushiro, I., Syong, Y., and Akimoto, S. (1968). Melting of a peridotite nodule at high pressures and high water pressures. Journal of Geophysical Research, 73, 6023–6029.CrossRefGoogle Scholar
Lachenbruch, A. H. (1968). Preliminary geothermal model of the Sierra Nevada. Journal of Geophysical Research, 73, 6977–6990.CrossRefGoogle Scholar
Lachenbruch, A. H., and Sass, J. H. (1977). Heat flow in the United States and the thermal regime of the crust. In The Earth's Crust, ed. Heacock, J. G.. American Geophysical Union Monograph, 20. Washington, DC: AGU, 626–675.Google Scholar
Landtwing, M. R., Dillenbeck, E. D., Leake, M. H., and Heinrich, C. A. (2002). Evolution of breccia-hosted porphyry Cu-Mo-Au deposit at Agua Rica, Argentina: progressive unroofing of a magmatic hydrothermal system. Economic Geology, 97, 1273–1292.CrossRefGoogle Scholar
Langmuir, C. H., Klein, E. M. and Plank, T. (1992). Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. In Mantle Flow and Melt Generation at Mid-ocean Ridges, ed. Phipps Morgan, J.et al. Geophysical Monograph, 71. Washington, DC: American Geophysical Union, 183–280.Google Scholar
Lassey, K. R., and Blattner, P. (1988). Kinetically controlled oxygen istotope exchange between fluid and rock in one-dimensional advective flow. Geochimica et Cosmochimica Acta, 52, 2169–2175.CrossRefGoogle Scholar
Latypov, R. M. (2003a). The origin of marginal compositional reversals in basic–ultrabasic sills and layered intrusions by Soret fractionation. Journal of Petrology, 44, 1579–1618.CrossRefGoogle Scholar
Latypov, R. M. (2003b). The origin of basic–ultrabasic sills with S-, D-, and I-shaped compositional profiles by in situ crystallization of a single input of phenocryst-poor parental magma. Journal of Petrology, 44, 1619–1656.CrossRefGoogle Scholar
Lay, T., Garnero, E. J., and Williams, Q. (2004). Partial melting in a thermo-chemical boundary layer at the base of the mantle. Physics of the Earth and Planetary Interiors, 146, 441–467.CrossRefGoogle Scholar
Bas, M. J., Maitre, R. W., Streckeisen, A., and Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745–750.CrossRefGoogle Scholar
Lee, K. K. M., and Jeanloz, R. (2003). High-pressure alloying of potassium and iron: radioactivity in the Earth's core. Geophysical Research Letters, 30(23), 2212, doi:10.1029/2003GL018515.CrossRefGoogle Scholar
Léger, A., and Ferry, J. M. (1993). Fluid infiltration and regional metamorphism of the Waits River Formation, northeast Vermont, USA. Journal of Metamorphic Geology, 11, 3–29.CrossRefGoogle Scholar
Lesher, C. E., and Walker, D. (1991). Thermal diffusion in petrology. In Diffusion, Atomic Ordering, and Mass Transport: Selected Topics in Geochemistry, ed. Ganguly, J.. Advances in Physical Chemistry, 8. New York: Springer, 396–451.CrossRefGoogle Scholar
Levin, E. M., Robbins, C. R., and McMurdie, H. F. (1964). Phase Diagrams for Ceramists. Columbus, OH: American Ceramic Society.Google Scholar
Lindsley, D. H. (1983). Pyroxene thermometry. American Mineralogist, 68, 477–493.Google Scholar
Lister, G. S., and Baldwin, S. L. (1993). Plutonism and the origin of metamorphic core complexes. Geology, 21, 607–610.2.3.CO;2>CrossRefGoogle Scholar
Lister, J. R., and Kerr, R. C. (1991). Fluid-mechanical models of crack propagation and their application to magma transport in dykes. Journal of Geophysical Research, 96, 10049–10077.CrossRefGoogle Scholar
Liu, X., O'Neill, H.C, and Berry, A. J. (2006). The effects of small amounts of H2O, CO2 and Na2O on the partial melting of spinel lherzolite in the system CaO–MgO–Al2O3–SiO2 ± H2O ± CO2 ± Na2O at 1.1 GPa. Journal of Petrology, 47, 409–434.CrossRefGoogle Scholar
Lofgren, G. (1974). An experimental study of plagioclase crystal morphology: isothermal crystallization. American Journal of Science, 274, 243–273.CrossRefGoogle Scholar
Lofgren, G. (1980). Experimental studies on the dynamic crystallization of silicate melts. In Physics of Magmatic Processes, ed. Hargraves, R. B.Princeton, NJ: Princeton University Press, 487–551.Google Scholar
London, D. (1987). Internal differentiation of rare-element pegmatites: effects of boron, phosphorous, and fluorine. Geochimica et Cosmochimica Acta, 51, 403–420.CrossRefGoogle Scholar
London, D. (2005). Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos, 80, 281–303.CrossRefGoogle Scholar
Long, P. E., and Wood, B. J. (1986). Structures, textures, and cooling histories of Columbia River basalt flows. Geological Society of America Bulletin, 97, 1144–1155.2.0.CO;2>CrossRefGoogle Scholar
Lonsdale, P. (1985). Nontransform offsets of the Pacific-Cocos plate boundary and their traces on the rise flank. Geological Society of America Bulletin, 96, 313–327.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, V. (1975). Formation of phreatomagmatic maar-diatreme volcanoes and its relevance to kimberlite diatremes. Physics and Chemistry of the Earth, 9, 17–27.CrossRefGoogle Scholar
Luth, W. C., Jahns, R. H., and Tuttle, O. F. (1964). The granite system at pressures of 4 to 10 kilobars. Journal of Geophysical Research, 69, 759–773.CrossRefGoogle Scholar
Lüttge, A., Bolton, E. W., and Rye, D. M. (2004). A kinetic model of metamorphism: an application to siliceous dolomites. Contributions to Mineralogy and Petrology, 146, 546–565.Google Scholar
Lux, D. R., DeYoreo, J. J., and Guidotti, C. V., and Decker, E. R. (1986). Role of plutonism in low-pressure metamorphic belt evolution. Nature, 323, 794–797.CrossRefGoogle Scholar
Lyle, P. (2000). The eruption environment of multi-tiered columnar basalt lava flows. Journal of the Geological Society of London, 157, 715–722.CrossRefGoogle Scholar
Lynn, H. B., Hale, L. D., and Thompson, G. A. (1981). Seismic reflections from the basal contacts of batholiths. Journal of Geophysical Research, 86, 10633–10638.CrossRefGoogle Scholar
Maaløe, S. (2003). Melt dynamics of a partially molten mantle with randomly oriented fractures. Journal of Petrology, 44, 1193–1210.CrossRefGoogle Scholar
Maaløe, S., and Printzlau, I. (1979). Natural partial melting of spinel lherzolite. Journal of Petrology, 20, 727–741.CrossRefGoogle Scholar
MacDonald, G. A. (1972). Volcanoes. Englewood Cliffs, NJ: Prentice-Hall, 510 pp.Google Scholar
Macgregor, A. M. (1951). Some milestones in the Precambrian of southern Rhodesia. Proceedings of the Geological Society of South Africa Transactions, 54, 27–71.Google Scholar
Mackwell, S. J., and Kohlstedt, D. L. (1990). Diffusion of hydrogen in olivine: implications for water in the mantle. Journal of Geophysical Research, 95, 5079–5088.CrossRefGoogle Scholar
MacLean, W. H. (1969). Liquidus phase relations in the FeS–FeO–Fe3O4–SiO2 system, and their application in geology. Economic Geology, 64, 865–884.CrossRefGoogle Scholar
Mahon, K. I., Harrison, T. M., and Drew, D. A. (1988). Ascent of a granitoid diapir in a temperature varying medium. Journal of Geophysical Research, 93, 1174–1188.CrossRefGoogle Scholar
Manning, C. E. (1994). The solubility of quartz in the lower crust and upper mantle. Geochimica et Cosmochimica Acta, 58, 4831–4839.CrossRefGoogle Scholar
Manning, C. E. (1997). Coupled reaction and flow in subduction zones: silica metasomatism in the mantle wedge. In Fluid Flow and Transport in Rocks, ed. Jamtveit, B., and Yardley, B. W. D.. London: Chapman-Hall, 139–148.CrossRefGoogle Scholar
Manning, C. E. (2001). Experimental studies of fluid-rock interaction at high-pressure: the role of polymerization and depolymerization of solutes. Hot Springs, VA, 11th Annual V. M. Goldschmidt Conference. Washington, DC: Mineralogical Society of America.
Manning, C. E. (2007). Solubility of corundum + kyanite in H2O at 700 °C and 10 kbar: evidence for Al-Si complexing at high pressure and temperature. Geofluids, 7, 258–269.CrossRefGoogle Scholar
Manning, D. A. C., and Pichavant, M. (1983). The role of fluorine and boron in the generation of granitic melts. In Migmatites, Melting, and Metamorphism, ed. Atherton, M. P., and Gribble, C. D.. Cambridge, MA: Birkhauser Boston, 94–109.Google Scholar
Markl, G., Ferry, J., and Bucher, K. (1998). Formation of saline brines and salt in the lower crust by hydration reactions in partially retrogressed granulites from the Lofoten Islands, Norway. American Journal of Science, 298, 705–757.CrossRefGoogle Scholar
Marsh, B. D. (1979). Island arc volcanism. American Scientist, 67, 161–172.Google Scholar
Marsh, B. D. (1981). On the crystallinity, probability of occurrence, and rheology of lava and magma. Contributions to Mineralogy and Petrology, 78, 85–98.CrossRefGoogle Scholar
Marsh, B. D. (1982). On the mechanism of igneous diapirism, stoping, and zone melting. American Journal of Science, 282, 808–855.CrossRefGoogle Scholar
Marsh, B. D. (1988a). Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization: I. Theory. Contributions to Mineralogy and Petrology, 99, 277–291.CrossRefGoogle Scholar
Marsh, B. D. (1988b). Crystal capture, sorting, and retention in convecting magma. Geological Society of America Bulletin, 100, 1720–1737.2.3.CO;2>CrossRefGoogle Scholar
Marsh, B. D. (1989). On convective style and vigor in sheet-like magma chambers. Journal of Petrology, 30, 479–530.CrossRefGoogle Scholar
Marsh, B. D. (1998). On the interpretation of crystal size distributions in magmatic systems. Journal of Petrology, 39, 553–599.CrossRefGoogle Scholar
Marsh, B. D., and Carmichael, I. S. E. (1974). Benioff zone magmatism. Journal of Geophysical Research, 79, 1196–1206.CrossRefGoogle Scholar
Marsh, B. D., and Kantha, L. H. (1978). On the heat and mass transfer from an ascending magma. Earth and Planetary Science Letters, 39, 435–443.CrossRefGoogle Scholar
Marsh, B. D., and Maxey, M. R. (1985). On the distribution and separation of crystals in convecting magma. Journal of Volcanology and Geothermal Research, 24, 95–150.CrossRefGoogle Scholar
Martel, C., Ali, A. R., Poussineau, S., Gourgaud, A., and Pichavant, M. (2006). Basalt-inherited microlites in silicic magmas: evidence from Mount Pelée (Martinique, French West Indies). Geology, 34, 905–908.CrossRefGoogle Scholar
Martin, D., Griffiths, W., and Campbell, I. H. (1987). Compositional and thermal convection in magma chambers. Contributions to Mineralogy and Petrology, 96, 465–475.CrossRefGoogle Scholar
Martin, H. (1987). Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from eastern Finland: major and trace element geochemistry. Journal of Petrology, 28, 921–953.CrossRefGoogle Scholar
Martini, J. E. J. (1991). The nature, distribution and genesis of the coesite and stishovite associated with the pseudotachylite of the Vredefort Dome, South Africa. Earth and Planetary Science Letters, 103, 285–300.CrossRefGoogle Scholar
Maruyama, S., and Liou, J. G. (1998). Initiation of ultrahigh-pressure metamorphism and its significance on the Proterozoic-Phanerozoic boundary. The Island Arc, 7, 6–35.CrossRefGoogle Scholar
Masaitis, V. L., Shafranovsky, G. I., Grieve, R. A. F., et al. (1999). Impact diamonds in the suevitic breccias of the Black Member of the Onaping Formation, Sudbury Structure, Ontario, Canada. In Large Meteorite Impacts and Planetary Evolution: II, ed. Dressler, B. O., and Sharpton, V. L.. Geological Society of America Special Paper, 339, 317–321.CrossRef
Massone, H. (2001). First find of coesite in the ultrahigh-pressure metamorphic area of the central Erzgebirge, Germany. European Journal of Mineralogy, 13, 565–570.CrossRefGoogle Scholar
Masters, R. L., and Ague, J. J. (2005). Regional-scale fluid flow and element mobility in Barrow's metamorphic zones, Stonehaven, Scotland. Contributions to Mineralogy and Petrology, 150, 1–18.CrossRefGoogle Scholar
Masters, T. G., and Shearer, P. M. (1995). Seismic models of the Earth: elastic and anelastic. In Global Earth Physics: A Handbook of Physical Constants, ed. Ahrens, T. J.. American Geophysical Union Reference Shelf, 1, 188–103.CrossRef
Mathias, M. (1974). Alkaline rocks of southern Africa. In The Alkaline Rocks, ed. Sørensen, H.. NY: Wiley-Interscience, 189–202.Google Scholar
McBirney, A. R. (1975). Differentiation of the Skaergaard intrusion. Nature, 253, 691–694.CrossRefGoogle Scholar
McBirney, A. R. (1985). Further considerations of double-diffusive stratification and layering in the Skaergaard Intrusion. Journal of Petrology, 26, 993–1001.CrossRefGoogle Scholar
McBirney, A. R., and Nicolas, A. (1997). The Skaergaard layered series: II. Magmatic flow and dynamic layering. Journal of Petrology, 38, 569–580.CrossRefGoogle Scholar
McBirney, A. R., and Noyes, R. M. (1979). Crystallization and layering of the Skaergaard intrusion. Journal of Petrology, 20, 487–554.CrossRefGoogle Scholar
McBirney, A. R., Taylor, H. P., and Armstrong, R. L. (1987). Paricutin re-examined: a classic example of crustal assimilation in calc-alkaline magma. Contributions to Mineralogy and Petrology, 95, 4–20.CrossRefGoogle Scholar
McCaffrey, K. J. W., and Petford, N. (1997). Are granitic intrusions scale invariant?Journal of the Geological Society of London, 154, 1–4.CrossRefGoogle Scholar
McDonough, W. F., and Sun, S.–s. (1995). The composition of the Earth. Chemical Geology, 120, 223–253.CrossRefGoogle Scholar
McGee, K. A., and Jefferson Sutton, A. (1994). Eruptive activity at Mount St Helens, Washington, USA, 1984–1988: a gas geochemistry perspective. Bulletin of Volcanology, 56, 435–446.CrossRefGoogle Scholar
McGetchin, T. R., and Ullrich, G. W. (1973). Xenoliths and maars and diatremes with inferences for the Moon, Mars, and Venus. Journal of Geophysical Research, 78, 1833–1853.CrossRefGoogle Scholar
McGuire, A. V., and Bohannon, R. G. (1989). Timing of mantle upwelling: evidence for a passive origin for the Red Sea rift. Journal of Geophysical Research, 94, 1677–1682.CrossRefGoogle Scholar
McKenzie, D. (1967). Some remarks on heat flow and gravity anomalies. Journal of Geophysical Research, 72, 6261–6273.CrossRefGoogle Scholar
McKenzie, D. (1984). The generation and compaction of partially molten rock. Journal of Petrology, 25, 713–765.CrossRefGoogle Scholar
McKenzie, D., and Bickle, M. J. (1988). The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29, 625–679.CrossRefGoogle Scholar
McKenzie, D., and Brune, J. N. (1972). Melting on fault planes during large earthquakes. Royal Astronomical Society Geophysical Journal, 29, 65–78.CrossRefGoogle Scholar
McKenzie, D., and Weiss, N. (1975). Speculations on the thermal and tectonic history of the Earth. Geophysics Journal of the Royal Astronomical Society, 42, 131–174.CrossRefGoogle Scholar
McMullin, D. W. A., Berman, R. G., and Greenwood, H. J. (1991). Calibration of the SGAM thermobarometer for pelitic rocks using data from phase-equilibrium experiments and natural assemblages. The Canadian Mineralogist, 29, 889–908.Google Scholar
McNutt, S. R. (2005). Volcanic seismology. Annual Review of Earth and Planetary Sciences, 32, 461–491.CrossRefGoogle Scholar
McTaggart, K. C. (1960). The mobility of nuées ardentes. American Journal of Science, 258, 369–382.CrossRefGoogle Scholar
Melnik, O., and Sparks, R. S. J. (2005). Controls on conduit magma flow dynamics during lava dome building eruptions. Journal of Geophysical Research, 110, B02209, doi:10.1029/2004JB003183.CrossRefGoogle Scholar
Mel'nik, Y. P. (1972). Thermodynamic parameters of compressed gases and metamorphic reactions involving water and carbon dioxide. Geochemistry International, 9, 419–426.Google Scholar
,MELT Seismic Team (1998). Imaging the deep seismic structure beneath a mid-ocean ridge: the MELT experiment. Science, 280, 1215–1218.CrossRefGoogle Scholar
Menneken, M., Nemchin, A. A., Geisler, T., Pidgeon, R. T., and Wilde, S. A. (2007). Hadean diamonds in zircon from Jack Hills, Western Australia. Nature, 448, 917–920.CrossRefGoogle ScholarPubMed
Menzies, M. A., and Hawkesworth, C. J., eds. (1987). Mantle Metasomatism. London: Academic Press, 477 pp.
Meurer, W. P., and Boudreau, A. E. (1998). Compaction of igneous cumulates: part II. Compaction and the development of igneous foliations. Journal of Geology, 106, 293–304.CrossRefGoogle Scholar
Meyer, H. O. A. (1979). Kimberlites and the mantle. Reviews of Geophysics and Space Physics, 17, 776–788.CrossRefGoogle Scholar
Mitchell, R. H. (1986). Kimberlites: Mineralogy, Geochemistry, and Petrology, New York: Plenum Press, 460 pp.CrossRefGoogle Scholar
Miyashiro, A. (1961). Evolution of metamorphic belts. Journal of Petrology, 2, 277–311.CrossRefGoogle Scholar
Miyashiro, A. (1973). Metamorphism and Metamorphic Belts. New York: John Wiley.CrossRefGoogle Scholar
Moecher, D. P., Essene, E. J., and Anovitz, L. M. (1988). Calculation and application of clinopyroxene-garnet-plagioclase-quartz geobarometers. Contributions to Mineralogy and Petrology, 100, 92–106.CrossRefGoogle Scholar
Molyneux, S. J., and Hutton, D. H. W. (2000). Evidence for significant granite space creation by the ballooning mechanism: the example of the Ardara pluton, Ireland. Geological Society of America Bulletin, 112, 1543–1558.2.0.CO;2>CrossRefGoogle Scholar
Montelli, R., Nolet, G., Dahlen, F. A., Masters, G., Engdahl, E. R., and Hung, S.-H. (2004). Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–343.CrossRefGoogle ScholarPubMed
Moorbath, S. (1977). Ages, isotopes and evolution of Precambrian continental crust. Chemical Geology, 20, 151–187.CrossRefGoogle Scholar
Moore, G., Vennemann, T., and Carmichael, I. S. E. (1995). Solubility of water in magmas to 2 kbar. Geology, 23, 1099–1102.2.3.CO;2>CrossRefGoogle Scholar
Moore, G., Vennemann, T., and Carmichael, I. S. E. (1998). An empirical model for the solubility of water in magmas to 3 kilobars. American Mineralogist, 83, 36–42.CrossRefGoogle Scholar
Morgan, D. J., Blake, S., Rogers, N. W., et al. (2006). Magma chamber recharge at Vesuvius in the century prior to the eruption of A.D. 79. Geology, 34, 845–848.CrossRefGoogle Scholar
Morgan, W. J. (1971). Convective plumes in the lower mantle. Nature, 230, 42–43.CrossRefGoogle Scholar
Morris, J. D., Leeman, W. P., and Tera, F. (1990). The subducted component in island arc lavas: constraints from Be isotopes and B-Be systematics. Nature, 344, 31–36.CrossRefGoogle ScholarPubMed
Morse, S. A. (1969). The Kiglapait layered intrusion, Labrador. Geological Society of America Memoir, 112.CrossRefGoogle Scholar
Morse, S. A. (1970). Alkali feldspars with water at 5 kb pressure. Journal of Petrology, 11, 221–253.CrossRefGoogle Scholar
Morse, S. A. (1980). Basalts and Phase Diagrams. New York: Springer-Verlag.CrossRefGoogle Scholar
Morse, S. A. (1982). A partisan review of Proterozoic anorthosites. American Mineralogist, 67, 1087–1100.Google Scholar
Morse, S. A. (1986). Convection in aid of adcumulus growth. Journal of Petrology, 27, 1183–1214.CrossRefGoogle Scholar
Muan, A. (1955). Phase equilibria in the system FeO–Fe2O3–SiO2. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 203, 965–976.Google Scholar
Muan, A. (1958). Phase equilibria at high temperatures in oxide systems involving changes in oxidation states. American Journal of Science, 256, 171–207.CrossRefGoogle Scholar
Müller, T., Baumgartner, L. P., Foster, C. T., and Vennemann, T. W. (2004). Metastable prograde reactions in contact aureoles. Geology, 32, 821–824.CrossRefGoogle Scholar
Murakami, M., Hirose, K., Kawamura, K., Sata, N., and Ohishi, Y. (2004). Post-perovskite phase transition in MgSiO3. Science, 304, 855–858.CrossRefGoogle ScholarPubMed
Myers, J. S. (1975). Cauldron subsidence and fluidizaton: mechanisms of intrusion of the coastal batholith of Peru into its own volcanic ejecta. Geological Society of America Bulletin, 86, 1209–1220.2.0.CO;2>CrossRefGoogle Scholar
Myers, J. S. (1993). Precambrian history of the West Australian Craton and adjacent orogens. Annual Review of Earth and Planetary Sciences, 21, 453–485.CrossRefGoogle Scholar
Nabelek, P. I. (2007). Fluid evolution and kinetics of metamorphic reactions in calc-silicate contact aureoles – from H2O to CO2 and back. Geology, 35, 927–930.CrossRefGoogle Scholar
Naldrett, A. J. (1969). A portion of the system Fe–S–O between 900 and 1080 °C and its application to sulfide ore magmas. Journal of Petrology, 10, 171–201.CrossRefGoogle Scholar
Naldrett, A. J. (1989). Magmatic Sulfide Deposits. New York: Oxford University Press, 186 pp.Google Scholar
Naldrett, A. J. (2003). From impact to riches: evolution of geological understanding as seen at Sudbury, Canada. GSA Today, 13, 4–9.2.0.CO;2>CrossRefGoogle Scholar
Naslund, H. R., and McBirney, A. R. (1996). Mechanisms of formation of igneous layering. In Layered Intrusions, ed. Cawthorn, R. G.. Amsterdam: Elsevier, 1–43.Google Scholar
Nataf, H.-C. (2000). Seismic imaging of mantle plumes. Annual Review of Earth and Planetary Sciences, 28, 391–417.CrossRefGoogle Scholar
Navrotsky, A., Hon, R., Weill, D. F., and Henry, D. J. (1980). Thermo-chemistry of glasses and liquids in the systems CaMgSi2O6–CaAl2Si2O8–NaAlSi3O8, SiO2–CaAl2Si2O8–NaAlSi3O8 and SiO2–Al2O3–CaO–Na2O. Geochimica et Cosmochimica Acta, 44, 1409–1423.CrossRefGoogle Scholar
Nelson, K. D. (1981). A simple thermal mechanical model for mid-ocean ridge topographic variation. Geophysical Journal of the Royal Astronomical Society, 65, 19–30.CrossRefGoogle Scholar
Nesbitt, B. E. (1988). Gold deposit continuum: a genetic model for lode Au mineralization in the continental crust. Geology, 16, 1044–1048.2.3.CO;2>CrossRefGoogle Scholar
Newman, S., and Lowenstern, J. B. (2002). VolatileCalc: a silicate melt–H2O–CO2 solution model written in Visual Basic for Excel. Computers & Geosciences, 28, 597–604.CrossRefGoogle Scholar
Newton, R. C. (1995). Simple-system mineral reactions and high-grade metamorphic fluids. European Journal of Mineralogy, 7, 861–881.CrossRefGoogle Scholar
Newton, R. C., and Manning, C. E. (2000). Quartz solubility in H2O-NaCl and H2O-CO2 solutions at deep crust-upper mantle pressures and temperatures: 2–15 kbar and 500–900 °C. Geochimica et Cosmochimica Acta, 64, 2993–3005.CrossRefGoogle Scholar
Newton, R. C., Smith, J. V., and Windley, B. (1980). Carbonic metamorphism, granulites and crustal growth. Nature, 288, 45–50.CrossRefGoogle Scholar
Nicolas, A. (1986). A melt extraction model based on structural studies in mantle peridotites. Journal of Petrology, 27, 999–1022.CrossRefGoogle Scholar
Nicolas, A., and Jackson, M. (1982). High temperature dikes in peridotites: origin by hydraulic fracturing. Journal of Petrology, 23, 568–582.CrossRefGoogle Scholar
Nicolas, A., and Prinzhofer, A. (1983). Cumulative or residual origin for the transition zone in ophiolites: structural evidence. Journal of Petrology, 24, 188–206.CrossRefGoogle Scholar
Nielsen, T. F. D. (2004). The shape and volume of the Skaergaard Intrusion, Greenland: implications for mass balance and bulk composition. Journal of Petrology, 45, 507–530.CrossRefGoogle Scholar
Nolet, G., Allen, R., and Zhao, D. (2007). Mantle plume tomography. Chemical Geology, 241, 248–263.CrossRefGoogle Scholar
Nordlie, B. E. (1971). The composition of the magmatic gas of Kilauea and its behavior in the near-surface environment. American Journal of Science, 271, 417–463.CrossRefGoogle Scholar
Norry, M. J., and Fitton, J. G. (1983). Compositional differences between oceanic and continental basic lavas and their significance. In Continental Basalts and Mantle Xenoliths, ed. Hawkesworth, C. J., and Norry, M. J.. Nantwich, Cheshire: Shiva Publishing, 5–19.Google Scholar
Norton, D. L., and Dutrow, B. L. (2001). Complex behavior of magma-hydrothermal processes: role of supercritical fluid. Geochimica et Cosmochimica Acta, 65, 4009–4017.CrossRefGoogle Scholar
Norton, D., and Knapp, R. (1977). Transport phenomena in hydrothermal systems: the nature of porosity. American Journal of Science, 277, 913–936.CrossRefGoogle Scholar
Norton, D., and Taylor, H. P. (1979). Quantitative simulation of the hydrothermal systems of crystallizing magmas on the basis of transport theory and oxygen isotope data: an analysis of the Skaergaard intrusion. Journal of Petrology, 20, 421–486.CrossRefGoogle Scholar
Obayashi, M., and Fukao, Y. (1997). P and PcP travel time tomography for the core-mantle boundary. Journal of Geophysical Research, 102, 17825–17841.CrossRefGoogle Scholar
O'Driscoll, B., Donaldson, C. H., Troll, V. R., Jerram, D. A., and Emeleus, C. H. (2007). An origin for harrisitic and granular olivine in the Rum layered suite, NW Scotland: a crystal size distribution study. Journal of Petrology, 48, 253–270.CrossRefGoogle Scholar
Oftedahl, C. (1960). Permian rocks and structures of the Oslo region. In Geology of Norway, ed. Holtedahl, O.. Norges Geologiske Undersøkelse, 208, 298–343.
Ogata, A., and Banks, R. B. (1961). A solution of the differential equations of longitudinal dispersion in porous media. U.S. Geological Survey Professional Paper, 411-A.Google Scholar
Ohtani, E., and Maeda, M. (2001). Density of basaltic melt at high pressure and stability of melt at the base of the lower mantle. Earth and Planetary Science Letters, 193, 69–75.CrossRefGoogle Scholar
Okubo, P. G., Benz, H. M., and Chouet, B. A. (1997). Imaging the crustal magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii. Geology, 25, 867–870.2.3.CO;2>CrossRefGoogle Scholar
Oliver, G. J. H., Chen, F., Buchwaldt, R., and Hegner, E. (2000). Fast tectonometmorphism and exhumation in the type area of the Barrovian and Buchan zones. Geology, 28, 459–462.2.0.CO;2>CrossRefGoogle Scholar
Oliver, N. H. S., Dipple, G. M., Cartwright, I., and Schiller, J. (1998). Fluid flow and metasomatism in the genesis of the amphibolite-facies, pelite-hosted Kanmantoo copper deposit, south Australia. American Journal of Science, 298, 181–218.CrossRefGoogle Scholar
O'Neill, H. St. C. (1981). The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contributions to Mineralogy and Petrology, 77, 185–194.CrossRefGoogle Scholar
O'Nions, R. K. (1984). Isotopic abundances relevant to the identification of magma sources. Philosophical Transactions of the Royal Society of London, A310, 591–603.CrossRefGoogle Scholar
O'Nions, R. K., Hamilton, P. J., and Evensen, N. M. (1977). Variations in 143Nd/144Nd and 87Sr/86Sr ratios in oceanic basalts. Earth and Planetary Science Letters, 39, 13–22.CrossRefGoogle Scholar
O'Nions, R. K., Hamilton, P. J., and Evensen, N. M. (1980). The chemical evolution of the Earth's mantle. Scientific American, 242, 120–133.CrossRefGoogle Scholar
Orville, P. M. (1962). Alkali metasomatism and the feldspars. Norsk Geologisk Tidsskrift, 42, 283–316.Google Scholar
Osberg, P. H. (1971). An equilibrium model for Buchan-type metamorphic rocks, south-central Maine. American Mineralogist, 56, 570–586.Google Scholar
Osborn, E. F., and Schairer, J. F. (1941). The ternary system pseudowollastonite–akermanite–gehlenite. American Journal of Science, 239, 715–763.CrossRefGoogle Scholar
Oxburgh, E. R. (1980). Heat flow and magma genesis. In Physics of Magmatic Processes, ed. Hargraves, R. B., Princeton, NJ: Princeton University Press, 161–200.Google Scholar
Oxburgh, E. R., and McRae, T. (1984). Physical constraints on magma contamination in the continental crust: an example, the Adamello complex. Philosophical Transactions of the Royal Society of London, A 310, 457–472.CrossRefGoogle Scholar
Oxburgh, E. R., and Turcotte, D. L. (1971). Origin of paired metamorphic belts and crustal dilation in island arc regions. Journal of Geophysical Research, 76, 1315–1327.CrossRefGoogle Scholar
Oxtoby, D. W., Gillis, H. P., and Nachtrieb, N. H. (1999). Principles of Modern Chemistry, 4th edn. New York: Saunders College.Google Scholar
Page, F. Z., Armstrong, L. S., Essene, E. J., and Mukasa, S. B. (2007). Prograde and retrograde history of the Junction School eclogite, California, and an evaluation of garnet–phengite–clinopyroxene thermobarometry. Contributions to Mineralogy and Petrology, 153, 533–555.CrossRefGoogle Scholar
Palin, J. M. (1992). Stable isotope studies of regional metamorphism in the Wepawaug Schist, Connecticut. Ph.D. thesis. New Haven, CT: Yale University.
Papale, P., Moretti, R., and Barbato, D. (2006). The compositional dependence of the saturation surface of H2O+CO2 fluids in silicate melts. Chemical Geology, 229, 78–95.CrossRefGoogle Scholar
Parsons, B. A. (1982). Causes and consequences of the relation between area and age of the ocean floor. Journal of Geophysical Research, 87, 289–302.CrossRefGoogle Scholar
Parsons, B., and McKenzie, D. (1978). Mantle convection and the thermal structure of the plates. Journal of Geophysical Research, 83, 4485–4496.CrossRefGoogle Scholar
Parsons, B., and Sclater, J. G. (1977). An analysis of the variation of ocean floor bathymetry and heat flow with age. Journal of Geophysical Research, 82, 803–827.CrossRefGoogle Scholar
Passchier, C. W., and Trouw, R. A. J. (1996). Microtectonics. Berlin: Springer-Verlag.Google Scholar
Patterson, E. M. (1951). A petrochemical study of the Tertiary lavas of northeast Ireland. Geochimica et Cosmochimica Acta, 2, 283–299.CrossRefGoogle Scholar
Pattison, D. R. M. (2001). Instability of Al2SiO5 “triple-point” assemblages in muscovite + biotite + quartz-bearing metapelites, with implications. American Mineralogist, 86, 1414–1422.CrossRefGoogle Scholar
Pattison, D. R. M., and Newton, R. C. (1989). Reversed experimental calibration of the garnet-clinopyroxene Fe–Mg exchange thermometer. Contributions to Mineralogy and Petrology, 101, 87–103.CrossRefGoogle Scholar
Peacock, S. A. (1990). Fluid processes in subduction zones. Science, 248, 329–337.CrossRefGoogle ScholarPubMed
Peacock, S. M. (1987). Thermal effects of metamorphic fluids in subduction zones. Geology, 15, 1057–1060.2.0.CO;2>CrossRefGoogle Scholar
Pearce, J. A., and Cann, J. R. (1973). Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19, 920–300.CrossRefGoogle Scholar
Pearce, J. A., and Parkinson, I. J. (1993). Trace element models for mantle melting: application to volcanic arc petrogenesis. Geological Society of London Special Publication, 76, 373–403.CrossRefGoogle Scholar
Pearce, J. A., and Peate, D. W. (1995). Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23, 251–285.CrossRefGoogle Scholar
Peck, D. L., Moore, J. G., and Kojima, G. (1964). Temperatures in the crust and melt of Alae lava lake, Hawaii, after the August 1963 eruption of Kilauea volcano – a preliminary report. U.S. Geological Survey Professional Paper 501D, 1–7.Google Scholar
Peck, W. H., King, E. M., and Valley, J. W. (2000). Oxygen isotope perspective on Precambrian crustal growth and maturation. Geology, 28, 363–366.2.0.CO;2>CrossRefGoogle Scholar
Peltier, W. R., and Andrews, J. T. (1976), Glacial isostatic adjustment, I: the forward problem. Geophysics Journal of the Royal Astronomical Society, 46, 605–646.CrossRefGoogle Scholar
Penniston-Dorland, S. C., and Ferry, J. M. (2006). Development of spatial variations in reaction progress during regional metamorphism of micaceous carbonate rocks, Northern New England. American Journal of Science, 306, 475–524.CrossRefGoogle Scholar
Peppard, B. T., Steele, I. M., Davis, A. M., Wallace, P. J., and Anderson, A. T. (2001). Zoned quartz phenocrysts from the rhyolitic Bishop Tuff. American Mineralogist, 86, 1034–1052.CrossRefGoogle Scholar
Perkins, M. E., and Nash, B. P. (2002). Explosive volcanism of the Yellowstone hotspot: the ash fall tuff record. Geological Society of America Bulletin, 114, 367–381.2.0.CO;2>CrossRefGoogle Scholar
Petford, N. (2003). Rheology of granitic magmas during ascent and emplacement. Annual Reviews of Earth and Planetary Science, 31, 399–427.CrossRefGoogle Scholar
Petford, N., and Clemens, J. D. (2000). Granites are not diapiric!Geology Today, Sept.-Oct., 180–184.CrossRefGoogle ScholarPubMed
Philbrick, S. S. (1936). The contact metamorphism of the Onawa pluton, Piscataquis County, Maine. American Journal of Science, 231, 1–40.CrossRefGoogle Scholar
Philpotts, A. R. (1964). Origin of pseudotachylites. American Journal of Science, 262, 1008–1035.CrossRefGoogle Scholar
Philpotts, A. R. (1968). Igneous structures and mechanism of emplacement of Mount Johnson, a Monteregian intrusion, Quebec. Canadian Journal of Earth Science, 5, 1131–1137.CrossRefGoogle Scholar
Philpotts, A. R. (1972). Density, surface tension, and viscosity of the immiscible phase in a basic alkaline magma. Lithos, 5, 1–18.CrossRefGoogle Scholar
Philpotts, A. R. (1974). The Monteregian Province. In The Alkaline Rocks, ed. Sørensen, H.. New York: Wiley-Interscience, 293–310.Google Scholar
Philpotts, A. R. (1976). Silicate liquid immiscibility: its probable extent and petrogenetic significance. American Journal of Science, 276, 1147–1177.CrossRefGoogle Scholar
Philpotts, A. R. (1981). A model for the generation of massif-type anorthosites. Canadian Mineralogist, 19, 233–253.Google Scholar
Philpotts, A. R. (1982). Compositions of immiscible liquids in volcanic rocks. Contributions to Mineralogy and Petrology, 80, 201–218.CrossRefGoogle Scholar
Philpotts, A. R. (1989). Petrography of Igneous and Metamorphic Rocks. Prospect Heights, IL: Waveland Press, 178 pp.Google Scholar
Philpotts, A. R. (1998). Nature of a flood-basalt-magma reservoir based on the compositional variation in a single flood-basalt flow and its feeder dike in the Mesozoic Hartford Basin, Connecticut. Contributions to Mineralogy and Petrology, 133, 69–82.CrossRefGoogle Scholar
Philpotts, A. R., and Asher, P. M. (1993). Wallrock melting and reaction effects along the Higganum diabase dike in Connecticut: contamination of a continental flood basalt feeder. Journal of Petrology, 34, 1029–1058.CrossRefGoogle Scholar
Philpotts, A. R., and Asher, P. M. (1994). Magmatic flow-direction indicators in a giant diabase feeder dike, Connecticut. Geology, 22, 363–366.2.3.CO;2>CrossRefGoogle Scholar
Philpotts, A. R., and Doyle, C. D. (1983). Effect of magma oxidation state on the extent of silicate liquid immiscibility in a tholeiitic basalt. American Journal of Science, 283, 967–986.CrossRefGoogle Scholar
Philpotts, A. R., and Lewis, C. L. (1987). Pipe vesicles – an alternate model for their origin. Geology, 15, 971–974.2.0.CO;2>CrossRefGoogle Scholar
Philpotts, A. R., and Martello, A. (1986). Diabase feeder dikes for the Mesozoic basalts in southern New England. American Journal of Science, 286, 105–126.CrossRefGoogle Scholar
Philpotts, A. R., and Philpotts, D. E. (2005). Crystal-mush compaction in the Cohassett flood-basalt flow, Hanford, Washington. Journal of Volcanology and Geothermal Research, 145, 2005.CrossRefGoogle Scholar
Philpotts, A. R., and Philpotts, D. E. (2007). Upward and downward flow in a camptonite dike as recorded by deformed vesicles and the anisotropy of magnetic susceptibility (AMS). Journal of Volcanology and Geothermal Research, 161, 81–94.CrossRefGoogle Scholar
Philpotts, A. R., Shi, J., and Brustman, C. M. (1998). Role of plagioclase crystal chains in the differentiation of partly crystallized basaltic magma. Nature, 395, 343–346.CrossRefGoogle Scholar
Philpotts, A. R., Brustman, C. M., Shi, J., Carlson, W. D., and Denison, C. (1999). Plagioclase-chain networks in slowly cooled basaltic magma. American Mineralogist, 84, 1819–1829.CrossRefGoogle Scholar
Pierce, K. L., and Morgan, L. A. (1992). The rack of the Yellowstone hot spot: volcanism, faulting, and uplift. In Regional Geology of Eastern and Western Wyoming, ed Link, P. K., Kuntz, M. A., and Platt, L. B.. Geological Society of America Memoir, 179, 1–53.Google Scholar
Pitcher, W. S. (1997). The Nature and Origin of Granite. New York: Chapman & Hall.CrossRefGoogle Scholar
Plank, T., and Langmuir, C. H. (1988). An evaluation of the global variations in the major element chemistry of arc basalts. Earth and Planetary Science Letters, 90, 290–300.CrossRefGoogle Scholar
Plank, T., and Langmuir, C. H. (1993). Tracing trace elements from sediment input to volcanic output at subduction zones. Nature, 362, 739–743.CrossRefGoogle Scholar
Platt, J. P. (1986). Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geological Society of America Bulletin, 97, 1037–1053.2.0.CO;2>CrossRefGoogle Scholar
Poe, B. T., Romano, C., Liebske, C., et al. (2006). High-temperature viscosity measurements of hydrous albite liquid using in-situ falling-sphere viscometry at 2.5 GPa. Chemical Geology, 229, 2–9.CrossRefGoogle Scholar
Pollack, H. N., and Chapman, D. S. (1977). On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics, 38, 279–296.CrossRefGoogle Scholar
Pollack, H. N., Hurter, S. J., and Johnson, J. R. (1993). Heat flow from the Earth's interior: analysis of the global data set. Reviews of Geophysics, 31, 267–280.CrossRefGoogle Scholar
Pollard, D. D. (1973). Derivation and evaluation of a mechanical model for sheet intrusions. Tectonophysics, 19, 233–269.CrossRefGoogle Scholar
Pollard, D. D., and Johnson, A. M. (1973). Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah: II. Tectonophysics, 18, 311–354.CrossRefGoogle Scholar
Pollard, D. D., Muller, O. H., and Dockstader, D. R. (1975). The form and growth of fingered sheet intrusions. Geological Society of America Bulletin, 86, 351–363.2.0.CO;2>CrossRefGoogle Scholar
Polyak, B. G., and Smirnov, Y. B. (1968). Relationship between terrestrial heat flow and the tectonics of continents. Geotectonics, 4, 205–213.Google Scholar
Powell, R., Holland, T. J. B., and Worley, B. (1998). Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. Journal of Metamorphic Geology, 16, 577–588.CrossRefGoogle Scholar
Presnall, D. C., and Bateman, P. C. (1973). Fusion relations in the system NaAlSi3O8–CaAl2Si2O8–KAlSi3O8–SiO2–H2O and generation of granitic magmas in the Sierra Nevada batholith. Geological Society of America Bulletin, 84, 3181–3202.2.0.CO;2>CrossRefGoogle Scholar
Presnall, D. C., Dixon, S. A., Dixon, J. R., et al. (1978). Liquidus phase relations on the join diopside-forsterite-anorthite from 1 atm to 20 kbar: their bearing on the generation and crystallization of basaltic magmas. Contributions to Mineralogy and Petrology, 66, 203–220.CrossRefGoogle Scholar
Presnall, D. C., Dixon, J. R., O'Donnell, T. H., and Dixon, S. A. (1979). Generation of mid-ocean ridge tholeiites. Journal of Petrology, 20, 3–35.CrossRefGoogle Scholar
Putirka, K. (2005). Mantle potential temperatures at Hawaii, Iceland and the mid-ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally-driven mantle plumes. Geochemistry, Geophysics, Geosystems. Doi:10.1029/2005GCGC000915.CrossRef
Putnis, A. and Holland, T. J. B. (1986). Sector trilling in cordierite and equilibrium overstepping in metamorphism. Contributions to Mineralogy and Petrology, 93, 265–272.CrossRefGoogle Scholar
Pyke, D. R., Naldrett, A. J., and Eckstrand, O. R. (1973). Archean ultramafic flows in Munro Township, Ontario. Geological Society of America Bulletin, 84, 955–978.2.0.CO;2>CrossRefGoogle Scholar
Rabinowicz, M., and Vigneresse, J. L. (2004). Melt segregation under compaction and shear channeling: application to granitic magma segregation in a continental crust. Journal of Geophysical Research, 109, 4407.CrossRefGoogle Scholar
Ramberg, H. (1981). Gravity, Deformation and the Earth's Crust, 2nd edn. London: Academic Press, 452 pp.Google Scholar
Ramberg, I. B. (1976). Gravity interpretation of the Oslo Graben and associated igneous rocks. Norges Geologiske Undersøkelse, 325, 194 pp.Google Scholar
Ramsay, J. (1980). The crack-seal mechanism of rock deformation. Nature, 284, 135–139.CrossRefGoogle Scholar
Randolph, A. D., and Larson, M. A. (1971). Theory of Particulate Processes. New York: Academic Press, 251 pp.Google Scholar
Rankin, A. H., and Bas, M. J. (1974). Liquid immiscibility between silicate and carbonate melts in naturally occurring ijolite magma. Nature, 250, 206–209.CrossRefGoogle Scholar
Ravna, E. J. K. (2000). The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration. Journal of Metamorphic Geology, 18, 211–219.CrossRefGoogle Scholar
Ravna, E. J. K., and Terry, M. P. (2004). Geothermobarometry of UHP and HP eclogites and schists – an evaluation of equilibria among garnet–clinopyroxene–kyanite–phengite–coesite/quartz. Journal of Metamorphic Geology, 22, 579–592.CrossRefGoogle Scholar
Read, H. H. (1923). Petrology of the Arnage district. Journal of the Geological Society London, 79, 447–486.Google Scholar
Read, H. H. (1957). The Granite Controversy. London: Murby.Google Scholar
Reagan, M. K., Sims, K. W. W., Erich, J., et al. (2003). Time-scales of differentiation from mafic parents to rhyolite in the North American continental arcs. Journal of Petrology, 44, 1703–1726.CrossRefGoogle Scholar
Reches, Z., and Fink, J. (1988). The mechanism of intrusion of the Inyo dike, Long Valley caldera, California. Journal of Geophysical Research, 93, 4321–4334.CrossRefGoogle Scholar
Reidel, S. P., Tolan, T. L., and Beeson, M. H. (1994). Factors that influenced the eruptive and emplacement history of flood basalt flows: a field guide to selected vents and flows of the Columbia River Basalt Group. In Geologic Field Trips in the Pacific Northwest, ed. Swanson, D. A. and Haugerud, R. A.. Seattle, WA: University of Washington, 1, 1–18.Google Scholar
Reiners, P. W., Nelson, B. K., and Ghiorso, M. S. (1995). Assimilation of felsic crust by basaltic magma: thermal limits and extents of crustal contamination of mantle-derived magmas. Geology, 23, 563–566.2.3.CO;2>CrossRefGoogle Scholar
Reynolds, D. L. (1954). Fluidization as a geological process and its bearing on the problem of intrusive granites. American Journal of Science, 252, 577–613.CrossRefGoogle Scholar
Rhodes, J. M., Dungan, M. A., Blanchard, D. P., and Long, P. E. (1979). Magma mixing at mid-ocean ridges: evidence from basalts drilled near 22°N on the Mid-Atlantic Ridge. Tectonophysics, 55, 35–62.CrossRefGoogle Scholar
Rhodes, R. C. (1975). New evidence for impact origin of the Bushveld Complex, South Africa. Geology, 3, 549–554.2.0.CO;2>CrossRefGoogle Scholar
Rice, A. H. N., and Mitchell, J. I. (1991). Porphyroblast textural sector-zoning and matrix displacement. Mineralogical Magazine, 55, 379–396.CrossRefGoogle Scholar
Rice, J. M., and Ferry, J. M. (1982). Buffering, infiltration, and the control of intensive variables during metamorphism. In Characterization of Metamorphism through Mineral Equilibria, ed. Ferry, J. M.. vol. 10 of Reviews in Mineralogy. Washington, DC: Mineralogical Society of America 263–326.Google Scholar
Richard, G., Bercovici, D., and Karato, S. (2006). Slab dehydration in the Earth's mantle transition zone. Earth and Planetary Science Letters, 251, 156–167.CrossRefGoogle Scholar
Richardson, S. W., Gilbert, M. C., and Bell, P. M. (1969). Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria: the aluminum silicate triple point. American Journal of Science, 267, 259–272.CrossRefGoogle Scholar
Richter, D. H., Eaton, J. P., Murata, K. J., Ault, W. U., and Krivoy, H. L. (1970). Chronological narrative of the 1959–60 eruption of Kilauea Volcano, Hawaii. U.S. Geological Survey Professional Paper, 537-E, 73 pp.Google Scholar
Richter, F. M., and McKenzie, D. (1981). On some consequences and possible causes of layered mantle convection. Journal of Geophysical Research, 86, 6133–6142.CrossRefGoogle Scholar
Ridley, J. and Thompson, A. B. (1986). The role of mineral kinetics in the development of metamorphic microtextures. In Fluid-rock Interactions During Metamorphism, ed. Walther, J. V., and Wood, B. J.. New York: Springer, 154–193.Google Scholar
Righter, K. (2003). Metal-silicate partitioning of siderophile elements and core formation in the early Earth. Annual Review of Earth and Planetary Sciences, 31, 135–174.CrossRefGoogle Scholar
Ringwood, A. E. (1975). Composition and Petrology of the Earth's Mantle. New York: McGraw-Hill, 618 pp.Google Scholar
Roberts, J. L. (1970). The intrusion of magma into brittle rocks. In Mechanisms of Igneous Intrusion, ed. Newall, G., and Rast, H.. Geological Journal Special Issue, 2. Liverpool, Lancashire: Liverpool Geological Society, 287–338.Google Scholar
Robertson, P. B., Dence, M. R., and Vos, M. A. (1968). Deformation in rock-forming minerals from Canadian craters. In Shock Metamorphism of Natural Materials, ed. French, B. M., and Short, N. M.. Baltimore, MD: Mono Book Corp., 433–452.Google Scholar
Robie, R. A., Hemingway, B. S., and Fisher, J. R. (1978). Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at high temperatures. U.S. Geological Survey Bulletin, 1452, 456 pp.Google Scholar
Robinson, P., Jaffe, W., Ross, M., and Klein, C. (1971). Orientation of exsolution lamellae in clinopyroxenes and clinoamphiboles: consideration of optimal phase boundaries. American Mineralogist, 56, 68–94.Google Scholar
Robinson, P., Hollocher, K. T., Tracy, R. J., and Dietsch, C. W. (1982). High grade Acadian regional metamorphism in south-central Massachusetts. In Guidebook for Fieldtrips in Connecticut and South Central Massachusetts, ed. Joesten, R. J., and Quarrier, S. S.. New England Intercollegiate Geological Conference, 74th Annual Meeting. Hartford, CT: State Geological and Natural History Survey of Connecticut, Guidebook No. 5, 289–339.
Roedder, E. (1951). Low temperature liquid immiscibility in the system K2O–FeO–Al2O3–SiO2. American Mineralogist, 36, 282–286.Google Scholar
Roedder, E. (1979). Silicate liquid immiscibility in magmas. In The Evolution of the Igneous Rocks, Fiftieth Anniversary Perspectives, ed. Yoder, H. S.Princeton, NJ: Princeton University Press, 15–57.Google Scholar
Roeder, P. L., and Emslie, R. F. (1970). Olivine liquid equilibrium. Contributions to Mineralogy and Petrology, 29, 275–289.CrossRefGoogle Scholar
Roman, D. C., and Cashman, K. V. (2006). The origin of volcano-tectonic earthquake swarms. Geology, 34, 457–460.CrossRefGoogle Scholar
Romanowicz, B. (2003). Global mantle tomography. Annual Review of Earth and Planetary Sciences, 31, 303–328.CrossRefGoogle Scholar
Rosenfeld, J. L. (1968). Garnet rotations due to the major Paleozoic deformations in southeast Vermont. In Studies in Appalachian Geology, Northern and Maritime, ed. Zen, E-an, White, W. S., Hadley, J. B., and Thompson, Jr. J. B.New York: Wiley-Interscience, 185–202.Google Scholar
Rosenfeld, J. L. (1970). Rotated garnets in metamorphic rocks. Geological Society of America, Special Paper, 129, 105 pp.Google Scholar
Ross, M. E. (1986). Flow differentiation, phenocryst alignment, and compositional trends within a dolerite dike at Rockport, Massachusetts. Geological Society of America Bulletin, 97, 232–240.2.0.CO;2>CrossRefGoogle Scholar
Rowley, D. B. (2002). Rate of plate creation and destruction: 180 Ma to present. Geological Society of America Bulletin, 114, 927–933.2.0.CO;2>CrossRefGoogle Scholar
Rubatto, D., and Hermann, J. (2001). Exhumation as fast as subduction?Geology, 29, 3–6.2.0.CO;2>CrossRefGoogle Scholar
Rubie, D. C. (1998). Disequilibrium during metamorphism: the role of nucleation kinetics. In What Drives Metamorphism and Metamorphic Reactions?, ed. Treloar, P. J., and O'Brien, P. J.. Geological Society, London, Special Publications, 138. 199–214.Google Scholar
Rubin, A. M. (1995). Propagation of magma-filled cracks. Annual Review of Earth and Planetary Sciences, 23, 287–336.CrossRefGoogle Scholar
Rudnick, R. L., and Fountain, D. M. 1995. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33, 267–309.CrossRefGoogle Scholar
Rumble, D., Ferry, J. M., Hoering, T. C., and Boucot, A. J. (1982). Fluid flow during metamorphism at the Beaver Brook fossil locality, New Hampshire. American Journal of Science, 282, 886–919.CrossRefGoogle Scholar
Ryan, M. P. (1993). Neutral buoyancy and the structure of mid-ocean ridge magma reservoirs. Journal of Geophysical Research, 98, 321–328.CrossRefGoogle Scholar
Ryan, M. P. (1994). Neutral-buoyancy controlled magma transport and storage in mid-ocean ridge magma reservoirs and their sheeted-dike complex: a summary of basic relationships. In Magmatic Systems, ed. Ryan, M. P.. San Diego, CA: Academic Press, 97–138.CrossRefGoogle Scholar
Ryan, M. P., Koyanagi, R. Y., and Fiske, R. S. (1981). Modeling the three dimensional structure of macroscopic magma transport systems: application to Kilauea Volcano, Hawaii. Journal of Geophysical Research, 86, 7111–7129.CrossRefGoogle Scholar
Rye, R. O., Schuiling, R. D., Rye, D. M., and Jansen, J. B. H. (1976). Carbon, hydrogen, and oxygen isotope studies of the regional metamorphic complex on Naxos, Greece. Geochimica et Cosmochimica Acta, 40, 1031–1049.CrossRefGoogle Scholar
Ryerson, F. J., and Hess, P. C. (1978). Implication of liquid-liquid distribution coefficients to mineral-liquid partitioning. Geochimica et Cosmochimica Acta, 42, 921–932.CrossRefGoogle Scholar
Sanchez-Navas, A. (1999). Sequential kinetics of a muscovite-out reaction: a natural example. American Mineralogist, 84, 1270–1286.CrossRefGoogle Scholar
Sasaki, S., and Nakazawa, K. (1986). Metal silicate fractionation in the growing Earth: energy source for the terrestrial magma ocean. Journal of Geophysical Research, 91, 9231–9238.CrossRefGoogle Scholar
Saunders, A. D. (2005). Large igneous provinces: origin and environmental consequences. Elements, 1, 259–263.CrossRefGoogle Scholar
Sautter, V., Jaoul, O., and Abel, F. (1988). Aluminum diffusion in diopside using the 27Al(p, γ)28Si nuclear reaction: preliminary results. Earth and Planetary Science Letters, 89,109–114.CrossRefGoogle Scholar
Saxena, S. K. (1973). Thermodynamics of rock-forming crystalline solutions. New York: Springer-Verlag, 188 pp.CrossRefGoogle Scholar
Scarfe, C. M., Luth, W. C., and Tuttle, O. F. (1966). An experimental study bearing on the absence of leucite in plutonic rocks. American Mineralogist, 51, 726–735.Google Scholar
Schairer, J. F., and Bowen, N. L. (1955). The system K2O–Al2O3–SiO2. American Journal of Science, 253, 681–746.CrossRefGoogle Scholar
Schairer, J. F., and Bowen, N. L. (1956). The system Na2O–Al2O3–SiO2. American Journal of Science, 254, 129–195.CrossRefGoogle Scholar
Schairer, J. F., and Yoder, H. S.(1960). The nature of residual liquids from crystallization, with data on the system nepheline–diopside–silica. American Journal of Science, 258A, 273–283.Google Scholar
Schairer, J. F., and Yoder, H. S. (1961). Crystallization in the system nepheline–forsterite–silica at one atmosphere pressure. Carnegie Institution of Washington Yearbook, 60, 141–144.Google Scholar
Schairer, J. F., and Yoder, H. S. (1964). Crystal and liquid trends in simplified alkali basalts. Carnegie Institution of Washington Yearbook, 63, 65–74.Google Scholar
Schmidt, M. W. (2003). Generation of mobile components during subduction of oceanic crust. In The Crust, ed Rudnick, R. L., vol. 3 of Treatise on Geochemistry, ed. Holland, H. D., and Turekian, K. K.. Amsterdam: Elsevier, 567–591.Google Scholar
Schramke, J. A., Kerrick, D. M., and Lasaga, A. C. (1987). The reaction muscovite + quartz = andalusite + K-feldspar + water. Part I. Growth kinetics and mechanism. American Journal of Science, 287, 517–559.CrossRefGoogle Scholar
Sclater, J. G., Jaupart, C., and Galson, D. (1980). The heat flow through oceanic and continental crust and the heat loss of the Earth. Reviews of Geophysics and Space Physics, 18, 269–311.CrossRefGoogle Scholar
Sclater, J. G., Parsons, B., and Jaupart, C. (1981). Oceans and continents: similarities and differences in the mechanisms of heat loss. Journal of Geophysical Research, 86, 11535–11552.CrossRefGoogle Scholar
Scott, D. R., and Stevenson, D. J. (1986). Magma ascent by porous flow. Journal of Geophysical Research, 91, 9283–9296.CrossRefGoogle Scholar
Self, S., Thordarson, T., Keszthelyi, L., et al. (1996). A new model for the emplacement of Columbia River basalts as large, inflated pahoehoe lava flow fields. Geophysical Research Letters, 23, 2689–2692.CrossRefGoogle Scholar
Self, S., Thordarson, T., and Widdowson, M. (2005). Gas flux from flood basalt eruptions. Elements, 1, 283–287.CrossRefGoogle Scholar
Selig, F. (1965). A theoretical prediction of salt-dome patterns. Geophysics, 30, 633–643.CrossRefGoogle Scholar
Selverstone, J. (1985). Petrologic constraints on imbrication, metamorphism, and uplift in the SW Tauern Window, eastern Alps. Tectonics, 4, 687–704.CrossRefGoogle Scholar
Selverstone, J. and Spear, F. S. (1985). Metamorphic P–T paths from pelitic schists and greenstones from the south-west Tauern Window, eastern Alps. Journal of Metamorphic Geology, 3, 439–465.CrossRefGoogle Scholar
Selverstone, J., Spear, F. S., Franz, G., and Morteani, G. (1984). High-pressure metamorphism in the SW Tauern Window, Austria: P–T paths from hornblende-kyanite-staurolite schists. Journal of Petrology, 25, 501–531.CrossRefGoogle Scholar
Shand, S. J. (1917). The pseudotachylyte of Parijs (Orange Free State), and its relation to “trap-shotten-gneiss” and “flinty-crush-rock”. Geological Society of London Quarterly Journal, 72, 198–221.CrossRefGoogle Scholar
Sharp, Z. D. (1995). Oxygen isotope geochemistry of the Al2SiO5 polymorphs. American Journal of Science, 295, 1058–1076.CrossRefGoogle Scholar
Sharp, Z. D. (2006). Stable Isotope Geochemistry. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Sharp, Z. D., Essene, E. J., and Hunziker, J. C. (1993). Stable isotope geochemistry and phase equilibria of coesite-bearing whiteschists, Dora Maira Massif, western Alps. Contributions to Mineralogy and Petrology, 114, 1–12.CrossRefGoogle Scholar
Shaw, H. R. (1965). Comments on viscosity, crystal settling, and convection in granitic magmas. American Journal of Science, 263, 120–152.CrossRefGoogle Scholar
Shaw, H. R. (1969). Rheology of basalt in the melting range. Journal of Petrology, 10, 510–535.CrossRefGoogle Scholar
Shaw, H. R. (1980). The fracture mechanism of magma transport from the mantle to the surface. In Physics of Magmatic Processes, ed. Hargraves, R. B.. Princeton, NJ: Princeton University Press, 201–264.Google Scholar
Shaw, H. R., and Swanson, D. A. (1970). Eruption and flow rates of flood basalts. In Proceedings, 2nd Columbia River Basalts Symposium, ed. Gilmour, E. H. and Stradling, D.. Cheney, WA: Eastern Washington State College Press, 271–299.Google Scholar
Shaw, H. R., Hamilton, M. S., and Peck, D. L. (1977). Numerical analysis of lava lake cooling models: I. Description of the method. American Journal of Science, 277, 384–414.CrossRefGoogle Scholar
Shaw, J. E., Baker, J. A., Menzies, M. A., Thirlwall, M. F., and Ibrahim, K. M. (2003). Petrogenesis of the largest intraplate volcanic field on the Arabian plate (Jordan): a mixed lithosphere–asthenosphere source activated by lithospheric extension. Journal of Petrology, 44, 1657–1679.CrossRefGoogle Scholar
Sheridan, M. F. (1979). Emplacement of pyroclastic flows: a review. In Ash-Flow Tuffs, ed. Chapin, C. E. and Elston, W. E.. Geological Society of America Special Paper, 180, 125–138.CrossRef
Sheridan, M. F., and Wohletz, K. H. (1983). Hydrovolcanism: basic considerations and review. Journal of Volcanology and Geothermal Research, 17, 1–29.CrossRefGoogle Scholar
Shi, P., and Saxena, S. K. (1992). Thermodynamic modeling of the C-H-O-S fluid system. American Mineralogist, 77, 1038–1049.Google Scholar
Shirey, S. B., and Walker, R. J. (1998). The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth and Planetary Sciences, 26, 423–500.CrossRefGoogle Scholar
Shirley, D. N. (1987). Differentiation and compaction in the Palisades Sill, New Jersey. Journal of Petrology, 28, 835–865.CrossRefGoogle Scholar
Short, N. M. (1966). Effects of shock pressures from a nuclear explosion on mechanical and optical properties of granodiorite. Journal of Geophysical Research, 71, 1195–1215.CrossRefGoogle Scholar
Sibson, R. H., McMoore, J., and Rankin, R. H. (1975). Seismic pumping – a hydrothermal fluid transport mechanism. Journal of the Geological Society, London, 131, 653–659.CrossRefGoogle Scholar
Sigurdsson, H., and Sparks, S. (1978). Lateral magma flow within rifted Icelandic crust. Nature, 274, 126–130.CrossRefGoogle Scholar
Sigurdsson, H., Cashdollar, S. and Sparks, S. R. J. (1982). The eruption of Vesuvius in A.D. 79: reconstruction from historical and volcanological evidence. American Journal of Archaeology, 86, 39–51.CrossRefGoogle Scholar
Silver, L., and Stolper, E. M. (1989). Water in albitic glass. Journal of Petrology, 30, 667–709.CrossRefGoogle Scholar
Silver, P. G., Carlson, W., and Olson, P. (1988). Deep slabs, geochemical heterogeneity, and the large-scale structure of mantle convection: investigation of an enduring paradox. Annual Review of Earth and Planetary Sciences, 16, 477–541.CrossRefGoogle Scholar
Simpson, C. (1985). Deformation of granitic rocks across the brittle-ductile transition. Journal of Structural Geology, 7, 503–511.CrossRefGoogle Scholar
Sinton, J. M., and Detrick, R. S. (1992). Mid-ocean ridge magma chambers. Journal of Geophysical Research, 97, 197–216.CrossRefGoogle Scholar
Sisson, V. B., and Hollister, L. S. (1988). Low-pressure facies series metamorphism in an accretionary sedimentary prism, southern Alaska. Geology, 16, 358–361.2.3.CO;2>CrossRefGoogle Scholar
Skelton, A. D. L., Graham, C. M., and Bickle, M. J. (1995). Lithological and structural controls on regional 3-D fluid flow patterns during greenschist facies metamorphism of the Dalradian of the SW Scottish Highlands. Journal of Petrology, 36, 563–586.CrossRefGoogle Scholar
Skinner, E. M. W., and Marsh, J. S. (2004). Distinct kimberlite classes with contrasting eruption processes. Lithos, 76, 183–200.CrossRefGoogle Scholar
Skippen, G. B. (1974). An experimental model for low pressure metamorphism of siliceous dolomitic marble. American Journal of Science, 274, 487–509.CrossRefGoogle Scholar
Sleep, N. H. (1992). Hotspot volcanism and mantle plumes. Annual Review of Earth and Planetary Sciences, 20, 119–143.CrossRefGoogle Scholar
Smith, R. B., and Christiansen, R. L. (1980). Yellowstone Park as a window on the Earth's interior. Scientific American, 242, 84–95.CrossRefGoogle Scholar
Smith, R. L. (1979). Ash-flow magmatism. In Ash-flow Tuffs, ed. Chapin, C. E. and Elston, W. E.. Geological Society of America Special Paper, 180, 5–27.CrossRef
Smith, R. L., and Bailey, R. A. (1968). Resurgent cauldrons. Geological Society of America Memoir, 116, 613–663.CrossRefGoogle Scholar
Snoeyenbos, D. R., Williams, M. L., and Hanmer, S. (1995). Archean high-pressure metamorphism in the western Canadian Shield. European Journal of Mineralogy, 7, 1251–1272.CrossRefGoogle Scholar
Solomatov, V. S. (2000). Fluid dynamics of terrestrial magma ocean. In Origin of the Earth and Moon, ed. Canup, R. M., and Righter, K.. Tucson, AZ: University of Arizona Press, 323–338.Google Scholar
Solomon, S. C. (1979). Formation, history and energetics of cores in the terrestrial planets. Physics of the Earth and Planetary Interiors, 19, 168–182.CrossRefGoogle Scholar
Sørensen, H. (ed.) (1974a). The Alkaline Rocks. London: John Wiley, 622 pp.
Sørensen, H. (1974b). Alkali syenites, feldspathoidal syenites and related lavas. In The Alkaline Rocks, ed. Sørensen, H.. London: John Wiley, 22–52.Google Scholar
Sorensen, S. S., and Grossman, J. N. (1989). Enrichment of trace elements in garnet-amphibolites from a paleo-subduction zone: Catalina Schist, Southern California. Geochimica et Cosmochimica Acta, 53, 3155–3177.CrossRefGoogle Scholar
Snyder, D., and Tait, S. (1995). Replenishment of magma chambers: comparison of fluid-mechanic experiments with field relations. Contributions to Mineralogy and Petrology, 122, 230–240.CrossRefGoogle Scholar
Spandler, C., Mavrogenes, J., and Hermann, J. (2007). Experimental constraints on element mobility from subducted sediments using high-P synthetic fluid/melt inclusions. Chemical Geology, 239, 228–249.CrossRefGoogle Scholar
Sparks, R. S. J. (1978). The dynamics of bubble formation and growth in magmas: a review and analysis. Journal of Volcanology and Geothermal Research, 3, 1–37.CrossRefGoogle Scholar
Sparks, R. S. J. (1986). The role of crustal contamination in magma evolution through geological time. Earth and Planetary Science Letters, 78, 211–223.CrossRefGoogle Scholar
Sparks, R. S. J. (1990). Crystal capture, sorting, and retention in convecting magma: discussion and reply. Geological Society of America Bulletin, 102, 847–850.2.3.CO;2>CrossRefGoogle Scholar
Sparks, R. S. J., and Marshall, L. (1986). Thermal and mechanical constraints on mixing between mafic and silicic magmas. Journal of Volcanology and Geothermal Research, 29, 99–124.CrossRefGoogle Scholar
Sparks, R. S. J., and Young, S. R. (2002). The eruption of Soufrière Hills volcano, Montserrat (1995–1999): overview of scientific results. In The Eruption of the Soufrière Hills Volcano, Montserrat From 1995 to 1999, ed. Druitt, T. H. and Kokelaar, B. P.. Geological Society, London, Memoirs, 21, 45–69.CrossRef
Sparks, R. S. J., Huppert, H. E., and Turner, J. S. (1984). The fluid dynamics of evolving magma chambers. Philosophical Transactions of the Royal Society of London, A 310, 511–534.CrossRefGoogle Scholar
Sparks, R. S. J., Huppert, H. E., Kerr, R. C., McKenzie, D. P., and Tait, S. R. (1985). Postcumulus processes in layered intrusions. Geological Magazine, 122, 555–568.CrossRefGoogle Scholar
Sparks, R. S. J., Baker, L., Brown, R. J., et al. (2006). Dynamical constraints on kimberlite volcanism. Journal of Volcanology and Geothermal Research, 155, 18–48.CrossRefGoogle Scholar
Spear, F. S. (1993). Metamorphic Phase Equilibria and Pressure-temperature-time Paths. Monograph no. 1. Washington, DC: Mineralogical Society of America.Google Scholar
Spear, F. S., and Cheney, J. T. (1989). A petrogenetic grid for pelitic schists in the system SiO2–A12O3–FeO–MgO–K2O–H2O. Contributions to Mineralogy and Petrology, 101, 149–164.CrossRefGoogle Scholar
Spear, F. S., and Selverstone, J. (1983). Quantitative P–T paths from zoned minerals: theory and tectonic applications. Contributions to Mineralogy and Petrology, 83, 348–357.CrossRefGoogle Scholar
Spear, F. S., Selverstone, J., Hickmott, D., Crowley, P., and Hodges, K. V. (1984). P–T paths from garnet zoning: a new technique for deciphering tectonic processes in crystalline terranes. Geology, 12, 87–90.2.0.CO;2>CrossRefGoogle Scholar
Spear, F. S., Peacock, S. M., Kohn, M. J., Florence, F. P. and Menard, T. (1991). Computer programs for petrologic P-T-t path calculations. American Mineralogist, 76, 2009–2012.Google Scholar
Spera, F. J. (1980). Aspects of magma transport. In Physics of Magmatic Processes, ed. Hargraves, R. B.. Princeton, NJ: Princeton University Press, 265–323.Google Scholar
Spera, F. J., Yuen, D. A., and Kirschvink, S. J. (1982). Thermal boundary layer convection in silicic magma chambers: effects of temperature-dependent rheology and implications for thermogravitational chemical fractionation. Journal of Geophysical Research, 87, 8755–8767.CrossRefGoogle Scholar
Spiegelman, M., Kelemen, P. B., and Aharonov, E. (2001). Causes and consequences of flow organization during melt transport: the reaction infiltration instability in compactible media. Journal of Geophysical Research, 106, 2061–2078.CrossRefGoogle Scholar
Spry, A. (1969). Metamorphic Textures. Oxford: Pergamon Press.Google Scholar
Staudigel, H., Hart, S., Schmincke, H., and Smith, B. (1989). Cretaceous ocean crust at DSDP sites 417 and 418: carbon uptake from weathering versus loss by magmatic outgassing. Geochimica et Cosmochimica Acta, 53, 3091–3094.CrossRefGoogle Scholar
Steefel, C. I., and Lasaga, A. C. (1994). A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. American Journal of Science, 294, 529–592.CrossRefGoogle Scholar
Stein, C. A., and Stein, S. (1992). A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123–129.CrossRefGoogle Scholar
Stein, C. A., and Stein, S. (1994). Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. Journal of Geophysical Research, 99, 3081–3095.CrossRefGoogle Scholar
Stevenson, D. J. (1989). Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophysical Research Letters, 16, 1067–1070.CrossRefGoogle Scholar
Stixrude, L., and Karki, B. (2005). Structure and freezing of MgSiO3 liquid in Earth's lower mantle. Science, 310, 297–299.CrossRefGoogle ScholarPubMed
Stolper, E., and Asimow, P. (2007). Insights into mantle melting from graphical analysis of one-component systems. American Journal of Science, 307, 1051–1139.CrossRefGoogle Scholar
Stolper, E., and Walker, D. (1980). Melt density and the average composition of basalt. Contributions to Mineralogy and Petrology, 74, 7–12.CrossRefGoogle Scholar
Streckeisen, A. (1976). To each plutonic rock its proper name. Earth Science Reviews, 12, 1–33.CrossRefGoogle Scholar
Streckeisen, A. (1979). Classification and nomenclature of volcanic rocks, lamrophyres, carbonatites, andmelilitic rocks: recommendations and suggestions of the IUGS Subcommission on the Systematics of Igneous Rocks. Geology, 7, 331–335.2.0.CO;2>CrossRefGoogle Scholar
Strens, R. G. J. (1968). Stability of the Al2SiO5 solid solutions. Mineralogical Magazine. 36, 839–849.Google Scholar
Stüwe, K. (2002). Geodynamics of the Lithosphere. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Sunagawa, I. (1992). In situ investigation of nucleation, growth, and dissolution of silicate crystals at high temperatures. Annual Review of Earth and Planetary Sciences, 20, 113–142.CrossRefGoogle Scholar
Suppe, J. (1985). Principles of Structural Geology. Englewood Cliffs, NJ: Prentice-Hall, 537 pp.Google Scholar
Suzuki, A., and Ohtani, E. (2003). Density of peridotite melts at pressure. Physics and Chemistry of Minerals, 30, 449–456.CrossRefGoogle Scholar
Swanson, S. E. (1977). Relation of nucleation and crystal-growth rate to the development of granitic textures. American Mineralogist, 62, 966–978.Google Scholar
Swanson, S. E., and Fenn, P. M. (1992). The effect of F and Cl on albite crystallization: a model for granitic pegmatites?Canadian Mineralogist, 30, 549–559.Google Scholar
Symmes, G. H., and Ferry, J. M. (1995). Metamorphism, fluid flow, and partial melting in pelitic rocks from the Onawa contact aureole, central Maine, USA. Journal of Petrology, 36, 587–612.CrossRefGoogle Scholar
Tait, S., and Jaupart, C. (1992). Compositional convection in a reactive crystalline mush and melt differentiation. Journal of Geophysical Research, 97, 6735–6756.CrossRefGoogle Scholar
Takahashi, E. (1986). Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. Journal of Geophysical Research, 91, 9367–9382.CrossRefGoogle Scholar
Takahashi, E., and Scarfe, C. M. (1985). Melting of peridotite to 14 GPa and the genesis of komatiite. Nature, 315, 566–568.CrossRefGoogle Scholar
Tarduno, J. A. (2007). On the motion of Hawaii and other mantle plumes. Chemical Geology, 241, 234–247.CrossRefGoogle Scholar
Tarling, D. H. (1980). Lithosphere evolution and changing tectonic regimes. Geological Society of London Quarterly Journal, 137, 459–467.CrossRefGoogle Scholar
Tarling, D. H., and Hrouda, F. (1993). The Magnetic Anisotropy of Rocks. London: Chapman & Hall, 217 pp.Google Scholar
Taylor, H. P. (1990). Oxygen and hydrogen isotope constraints on the deep circulation of surface waters into zones of hydrothermal metamorphism and melting. In The Role of Fluids in Crustal Processes, ed. Bredehoeft, J. D., and Norton, D. L.. Studies in Geophysics. Washington, DC: National Academy Press, 72–95.Google Scholar
Tegner, C., Wilson, J. R., and Robins, B. (2005). Crustal assimilation in basalt and jotunite: constraints from layered intrusions. Lithos, 83, 299–316.CrossRefGoogle Scholar
Thayer, T. P. (1964). Principal features and origin of podiform chromite deposits and some observations on the Guleman-Soridag district, Turkey. Economic Geology, 59, 1497–1524.CrossRefGoogle Scholar
Thompson, A. B. (1976a). Mineral reactions in pelitic rocks: I. Predictions of P–T–X(Fe-Mg) phase relations. American Journal of Science, 276, 401–424.CrossRefGoogle Scholar
Thompson, A. B. (1976b). Mineral reactions in pelitic rocks: II. Calculation of some P–T–X(Fe-Mg) phase relations. American Journal of Science, 276, 425–454.CrossRefGoogle Scholar
Thompson, A. B., and England, P. C. (1984). Pressure-temperature-time paths of regional metamorphism: II. Their inference and interpretation using mineral assemblages in metamorphic rocks. Journal of Petrology, 25, 929–955.CrossRefGoogle Scholar
Thompson, J. B. (1957). The graphical analysis of mineral assemblages in pelitic schists. American Mineralogist, 42, 842–858.Google Scholar
Thompson, J. B. (1959). Local equilibrium in metasomatic processes. In Researches in Geochemistry, vol. 1, ed. Abelson, P. H.. New York: John Wiley, 427–457.Google Scholar
Thompson, J. B. (1967). Thermodynamic properties of simple solutions. In Researches in Geochemistry, vol. 2, ed. Abelson, P. H.. New York: John Wiley, 340–361.Google Scholar
Thompson, R. N., Morrison, M. A., Dickin, A. P., and Hendry, G. L. (1983). Continental flood basalts … arachnids rule OK? In Continental Basalts and Mantle Xenoliths, ed. Hawkesworth, C. J., and Norry, M. J.. Nantwich, Cheshire: Shiva Publishing, 158–185.Google Scholar
Thomson, W. (Lord Kelvin) (1863). The secular cooling of the Earth. Transactions of the Royal Society of Edinburgh, 23, 157–170.CrossRefGoogle Scholar
Thorarinsson, S. (1968). On the rate of lava- and tephra-production and the upward migration of magma in four Icelandic eruptions. International Journal of Earth Sciences, 57, 705–718.Google Scholar
Thorarinsson, S. (1981). Tephra studies and tephrochronology: a historical review with special reference to Iceland. In Tephra Studies, ed. Self, S., and Sparks, R. S. J.. Dordrecht: D. Reidel, 1–12.Google Scholar
Thornton, C. P., and Tuttle, O. F. (1960). Chemistry of igneous rocks, I: differentiation index. American Journal of Science, 258, 664–668.CrossRefGoogle Scholar
Thorpe, R. S. (ed.) (1982). Andesites: Orogenic Andesites and Related Rocks. Chichester, West Sussex: John Wiley.
Tilley, C. E. (1924). The facies classification of metamorphic rocks. Geological Magazine, 61, 167–171.CrossRefGoogle Scholar
Tilley, C. E. (1948). Earlier stages in the metamorphism of siliceous dolomite. Mineralogical Magazine, 28, 272–276.Google Scholar
Tilley, C. E. (1952). Some trends of basaltic magma in limestone syntexis. American Journal of Science, Bowen Volume, 529–545.Google Scholar
Tilling, R. I., and Dvorak, J. J. (1993). Anatomy of a basaltic volcano. Nature, 363, 125–133.CrossRefGoogle Scholar
Toksoz, M. N., and Hsui, A. T. (1978). Numerical studies of back-arc convection and the formation of marginal basins. Tectonophysics, 50, 177–196.CrossRefGoogle Scholar
Tolstikhin, I. N., Kramers, J. D., and Hofmann, A. W. (2006). A chemical Earth model with whole mantle convection: the importance of a core–mantle boundary layer (D″) and its early formation. Chemical Geology, 226, 79–99.CrossRefGoogle Scholar
Toplis, M. J. (2005). The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contributions to Mineralogy and Petrology, 149, 22–49.CrossRefGoogle Scholar
Touret, J. L. R. (1985). Fluid regime in southern Norway: the record of fluid inclusions. In The Deep Proterozoic Crust in the North Atlantic Provinces, ed. Tobi, A. C., and Touret, J. L. R.. Dordrecht: D. Reidel, 517–549.CrossRefGoogle Scholar
Tracy, R. J. (1982). Compositional zoning and inclusions in metamorphic minerals. In Characterization of Metamorphism Through Mineral Equilibria, ed. Ferry, J. M., vol. 2 of Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, 355–397.Google Scholar
Tracy, R. J., and Robinson, P. (1980). Evolution of metamorphic belts: information from detailed petrologic studies. In The Caledonides in the U.S.A., ed. Wones, D. J.. Virginia Polytechnic Institute and State University, Memoir 2, 189–195.Google Scholar
Tracy, R. J., Robinson, P., and Thompson, A. B. (1976). Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts. American Mineralogist, 61, 762–775.Google Scholar
Tracy, R. J., Rye, D. M., Hewitt, D. A., and Schiffries, C. M. (1983). Petrologic and stable-isotopic studies of fluid-rock interactions, south-central Connecticut, I: the role of infiltration in producing reaction assemblages in impure marbles. American Journal of Science, 283-A, 589–616.Google Scholar
Tritton, D. J. (1977). Physical Fluid Dynamics. Wokingham: Van Nostrand (UK), 362 pp.CrossRefGoogle Scholar
Tullis, J., and Yund, R. A. (1987). The brittle–ductile transition in feldspathic rocks. Eos Transactions, American Geophysical Union, 68, 1464.Google Scholar
Turcotte, D. L., and Schubert, G. (1982a). Fluid mechanics. In Geodynamics, Applications of Continuum Physics to Geological Problems. New York: John Wiley, Chap. 6, 226–291.Google Scholar
Turcotte, D. L., and Schubert, G. (1982b). Heat transfer. In Geodynamics, Applications of Continuum Physics to Geological Problems. New York: John Wiley, Chap. 4, 134–197.Google Scholar
Turner, D. C. (1963). Ring-structures in the Sara-Fier complex, northern Nigeria. Quarterly Journal of the Geological Society of London, 119, 345–366.CrossRefGoogle Scholar
Turner, F. J., and Weiss, L. E. (1963). Structural Analysis of Metamorphic Tectonites. New York: McGraw-Hill.Google Scholar
Turner, J. S. (1973). Buoyancy Effects in Fluids. Cambridge: Cambridge University Press, 368 pp.CrossRefGoogle Scholar
Turner, S. P., George, M. M., Evans, P. J., Hawkesworth, C. J., and Zellmer, G. F. (2000). Time-scales of magma formation, ascent and storage beneath subduction-zone volcanoes. Philosophical Transactions of the Royal Society of London, 358, 1443–1464.CrossRefGoogle Scholar
Turner, S. P., Evans, P. J., and Hawkesworth, C. J. (2001). Ultrafast source-to-surface movement of melt at island arcs from 226Ra-230Th systematics. Science, 292, 1363–1366.CrossRefGoogle ScholarPubMed
Tuttle, O. F. and Bowen, N. L. (1958). Origin of granite in the light of experimental studies in the system NaAlSi3O8–KalSi3O8–SiO2–H2O. Geological Society of America Memoir 74, 153 pp.Google Scholar
Tuttle, O. F., and Gittins, J. (ed.) (1966). Carbonatites. New York: John Wiley, 591 pp.
Ulmer, P. (2001). Partial melting in the mantle wedge: the role of H2O in the genesis of mantle-derived “arc-related” magmas. Physics of the Earth and Planetary Interiors, 127, 215–232.CrossRefGoogle Scholar
Valley, J. W. (2001). Stable isotope thermometry at high temperatures. In Stable Isotope Geochemistry, ed. Valley, J. W., and Cole, D. R., vol. 43 of Reviews in Mineralogy and Geochemistry. Washington DC: Mineralogical Society of America, 365–414.Google Scholar
Valley, J. W., Bohlen, S. W., Essene, E. J., and Lamb, W. (1990). Metamorphism in the Adirondacks, II: the role of fluids. Journal of Petrology, 31, 555–596.CrossRefGoogle Scholar
Hilst, R. D. and Kárason, H. (1999). Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: towards a hybrid convection model. Science, 283, 1885–1888.CrossRefGoogle Scholar
Genabeek, O., and Rothman, D. H. (1996). Macroscopic manifestations of microscopic flows through porous media: phenomenology from simulation. Annual Review of Earth and Planetary Sciences, 24, 63–87.CrossRefGoogle Scholar
Haren, J. L. M., Ague, J. J., and Rye, D. M. (1996). Oxygen isotope record of fluid infiltration and mass transfer during regional metamorphism of pelitic schist, Connecticut, USA. Geochimica et Cosmochimica Acta, 60, 3487–3504.CrossRefGoogle Scholar
Veksler, I. V., Dorfman, A. M., Danyushevsky, L. V., Jakobsen, J. K., and Dingwell, D. B. (2006). Immiscible silicate liquid partition coefficients: implications for crystal-melt element partitioning and basalt petrogenesis. Contributions to Mineralogy and Petrology, 152, 685–702.CrossRefGoogle Scholar
Velde, B. (1965). Phegite micas: synthesis, stability, and natural occurrence. American Journal of Science, 263, 886–913.CrossRefGoogle Scholar
Vernon, R. H., and Clarke, G. L. (2008). Principles of Metamorphic Petrology. Cambridge: Cambridge University Press.Google Scholar
Vidale, R. J. (1974). Vein assemblages and metamorphism in Dutchess County, New York. Geological Society of America Bulletin, 85, 303–306.2.0.CO;2>CrossRefGoogle Scholar
Viljoen, M. J., and Viljoen, R. P. (1969). Evidence for the existence of a mobile extrusive peridotitic magma from the Komati Formation of the Onverwacht group. Geological Society of South Africa Special Publication, 2, Upper Mantle Project, 87–112.Google Scholar
Vityk, M. O., and Bodnar, R. J. (1995). Do fluid inclusions in high-grade metamorphic terranes preserve peak metamorphic density during retrograde decompression? American Mineralogist, 80, 641–644.Google Scholar
Vogel, T. A., and Wilband, J. T. (1978). Coexisting acidic and basic melts: geochemistry of a composite dike. Journal of Geology, 86, 353–371.CrossRefGoogle Scholar
Bargen, N., and Waff, H. S. (1986). Permeabilites, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. Journal of Geophysical Research, 91, 9261–9276.CrossRefGoogle Scholar
Damm, K. L. (1990). Seafloor hydrothermal activity: black smoker chemistry and chimneys. Annual Review of Earth and Planetary Sciences, 18, 173–204.CrossRefGoogle Scholar
Waff, H. S. (1986). Introduction to special section on partial melting phenomena in Earth and planetary evolution. Journal of Geophysical Research, 91, 9217–9221.CrossRefGoogle Scholar
Wager, L. R., and Brown, G. M. (1967). Layered Igneous Rocks. Edinburgh: Oliver & Boyd, 588 pp.Google Scholar
Wager, L. R., and Deer, W. A. (1939). Geological investigations in East Greenland: III. The petrology of the Skaergaard Intrusion, Kangerdluqssuaq, East Greenland. Meddelelser om Grønland, 105, 1–352.Google Scholar
Wager, L. R., Brown, G. M., and Wadsworth, W. J. (1960). Types of igneous cumulates. Journal of Petrology, 1, 73–85.CrossRefGoogle Scholar
Waldbaum, D. R., and Thompson, J. B. (1969). Mixing properties of sanidine crystalline solutions. American Mineralogist, 54, 1274–1298.Google Scholar
Walder, J., and Nur, A. (1984). Porosity reduction and crustal pore pressure development. Journal of Geophysical Research, 89, 11 539–11 548.CrossRefGoogle Scholar
Walker, D. (1986). Melting equilibria in multicomponent systems and liquidus/solidus convergence in mantle peridotite. Contributions to Mineralogy and Petrology, 92, 303–307.CrossRefGoogle Scholar
Walker, D., and DeLong, S. E. (1982). Soret separation of mid-ocean ridge basalt magma. Contributions to Mineralogy and Petrology, 79, 231–240.CrossRefGoogle Scholar
Walker, G. P. L. (1965). Evidence of crustal drift from Icelandic geology. Philosophical Transactions of the Royal Society of London, A 258, 199–204.CrossRefGoogle Scholar
Walker, G. P. L. (1989). Gravitational (density) controls on volcanism, magma chambers and intrusions. Australian Journal of Earth Science, 36, 149–165.CrossRefGoogle Scholar
Wall, F., and Zaitsev, A. N. (ed.) (2004). Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province. Mineralogical Society Series, 10. London: Mineralogical Society, 503 pp.CrossRef
Wallace, P. and Carmichael, I. S. E. (1992). Sulfur in basaltic magmas. Geochimica et Cosmochimca Acta, 56, 1863–1874.CrossRefGoogle Scholar
Walther, J. V. (1990). Fluid dynamics during progressive regional metamorphism. In The Role of Fluids in Crustal Processes, ed. Bredehoeft, J. D., and Norton, D. L.. Studies in Geophysics. Washington, DC: National Academy Press 64–70.Google Scholar
Walther, J. V., and Orville, P. M. (1982). Volatile production and transport in regional metamorphism. Contributions to Mineralogy and Petrology, 79, 252–257.CrossRefGoogle Scholar
Walther, J. V., and Wood, B. J. (1984). Rate and mechanism in prograde metamorphism. Contributions to Mineralogy and Petrology, 88, 246–259.CrossRefGoogle Scholar
Wark, D. A., and Watson, E. B. (2004). Interdiffusion of H2O and CO2 in metamorphic fluids at ˜490 to 690 degrees C and 1 GPa. Geochimica et Cosmochimica Acta, 68, 2693–2698.CrossRefGoogle Scholar
Wark, D. A., and Watson, E. B. (2006). TitaniQ: a titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology, 152, 743–754.CrossRefGoogle Scholar
Wark, D. A., Williams, C. A., Watson, E. B., and Price, J. D. (2003). Reassessment of pore shapes in microstructurally equilibrated rocks, with implications for permeability of the upper mantle. Journal of Geophysical Research, 108, doi:10.1029/2001JB001575.CrossRefGoogle Scholar
Wark, D. A., Hildreth, W., Spear, F. S., Cherniak, D. J., and Watson, E. B. (2007). Pre-eruption recharge of the Bishop magma system. Geology, 35, 235–238.CrossRefGoogle Scholar
Waters, A. C. (1955). Volcanic rocks and the tectonic cycle. Geological Society of America, Special Paper, 62, 703–722.CrossRefGoogle Scholar
Watson, E. B. (1976). Two-liquid partition coefficients: experimental data and geochemical implications. Contributions to Mineralogy and Petrology, 56, 119–134.CrossRefGoogle Scholar
Watson, E. B. (1982). Melt infiltration and magma evolution. Geology, 10, 236–240.2.0.CO;2>CrossRefGoogle Scholar
Watson, E. B. (1999). Lithologic partitioning of fluids and melts. American Mineralogist, 84, 1693–1710.CrossRefGoogle Scholar
Watson, E. B., and Brenan, J. M. (1987). Fluids in the lithosphere, 1: experimentally-determined wetting characteristics of CO2–H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth and Planetary Science Letters, 85, 497–515.CrossRefGoogle Scholar
Watson, E. B., Harrison, T. M., Ryerson, F. J. (1985). Diffusion of Sm, Sr, and Pb in fluorapatite. Geochimica et Cosmochimica Acta, 49, 1813–1823.CrossRefGoogle Scholar
Watson, E. B., Wark, D. A., and Thomas, J. B. (2006). Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413–433.CrossRefGoogle Scholar
Weigand, P. W., and Ragland, P. C. (1970). Geochemistry of Mesozoic dolerite dikes from eastern North America. Contributions to Mineralogy and Petrology, 29, 195–214.CrossRefGoogle Scholar
Weill, D. F., Hon, R., and Navrotsky, A. (1980). The igneous system CaMgSi2O6–CaAl2Si2O8–NaAlSi3O8: variations on a classic theme by Bowen. In Physics of Magmatic Processes, ed. Hargraves, R. B.. Princeton, NJ: Princeton University Press, 49–92.Google Scholar
Wetherill, G. W. (1990). Formation of the Earth. Annual Review of Earth and Planetary Sciences, 18, 205–256.CrossRefGoogle Scholar
White, A. J. R., and Chappell, B. W. (1983). Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. Geological Society of America Memoir, 159, 21–34.CrossRefGoogle Scholar
White, N. (1989). Nature of lithospheric extension in the North Sea. Geology, 17, 111–114.2.3.CO;2>CrossRefGoogle Scholar
White, R. S., and McKenzie, D. (1989). Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research, 94, 7685–7729.CrossRefGoogle Scholar
White, W. M., Dupre, B., and Vidal, P. (1985). Isotope and trace element geochemistry of sediments from the Barbados Ridge–Demerara Plain region, Atlantic Ocean. Geochimica et Cosmochimica Acta, 49, 1875–1886.CrossRefGoogle Scholar
Whitney, D. L., Mechum, T. A., Dilek, Y., and Kuehner, S. M. (1996). Modification of garnet by fluid infiltration during regional metamorphism in garnet through sillimanite zone rocks, Dutchess County, New York. American Mineralogist, 81, 696–705.CrossRefGoogle Scholar
Whitney, J. A. (1988). The origin of granite: the role and source of water in the evolution of granitic magmas. Geological Society of America Bulletin, 100, 1886–1897.2.3.CO;2>CrossRefGoogle Scholar
Wickham, S. M., and Oxburgh, E. R. (1985). Continental rifts as a setting for regional metamorphism. Nature, 318, 330–333.CrossRefGoogle Scholar
Wicks, C., Thatcher, W., and Dzurisin, D. (1998). Migration of fluids beneath Yellowstone caldera inferred from satellite radar interferometry. Science, 282, 458–462.CrossRefGoogle ScholarPubMed
Wicks, C., Thatcher, W., Dzurisin, D., and Svarc, J. (2006). Uplift, thermal unrest and magma intrusion at Yellowstone caldera. Nature, 440, 72–75.CrossRefGoogle ScholarPubMed
Wiebe, R. A. (1993). The Pleasant Bay layered gabbro–diorite, coastal Maine: ponding and crystallization of basaltic injections into a silicic magma chamber. Journal of Petrology, 34, 461–489.CrossRefGoogle Scholar
Wiebe, R. A., Manon, M. R., Hawkins, D. P., and McDonough, W. F. (2004). Late-stage mafic injection and thermal rejuvination of the Vinalhaven granite, coastal Maine. Journal of Petrology, 45, 2133–2153.CrossRefGoogle Scholar
Wieczorek, M. A., Zuber, M. T., and Phillips, R. J. (2001). The role of magma buoyancy on the eruption of lunar basalts. Earth and Planetary Science Letters, 185, 71–83.CrossRefGoogle Scholar
Wignall, P. (2005). The link between large igneous province eruptions and mass extinctions. Elements, 1, 293–267.CrossRefGoogle Scholar
Wijbrans, J. R., and McDougall, I. (1986). 40Ar/39Ar dating of white micas from an Alpine high-pressure metamorphic belt on Naxos (Greece): the resetting of the argon isotopic system. Contributions to Mineralogy and Petrology, 93, 187–194.CrossRefGoogle Scholar
Wijbrans, J. R., and McDougall, I. (1988). Metamorphic evolution of the Attic Cycladic Metamorphic Belt on Naxos (Cyclades, Greece) utilizing 40Ar/39Ar age spectrum measurements. Journal of Metamorphic Geology, 6, 571–594.CrossRefGoogle Scholar
Wilbur, D. E., and Ague, J. J. (2006). Chemical disequilibrium during garnet growth: Monte Carlo simulations of natural crystal morphologies. Geology, 34, 689–692.CrossRefGoogle Scholar
Wilbur, D. E., and Ague, J. J. (2007). Chemical disequilibrium during garnet growth: Monte Carlo simulations of natural crystal morphologies – Reply. Geology, 35, doi: 10.1130/G23787Y, e125.CrossRefGoogle Scholar
Wilcox, R. E. (1954). Petrology of Paricutin volcano, Mexico. U.S. Geological Survey Bulletin, 965-C, 281–353.Google Scholar
Wilde, S. A., Valley, J. W., Peck, W. H., and Graham, C. M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409, 175–178.CrossRefGoogle ScholarPubMed
Williams, A. F. (1932). The Genesis of Diamonds. London: Ernest Benn, 2 vols., 636 pp.Google Scholar
Williams, H. M., Turner, S. P., Pearce, J. A., Kelley, S. P., and Harris, N. B. W. (2004). Nature of the source regions of post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modeling. Journal of Petrology, 45, 555–607.CrossRefGoogle Scholar
Williams, M. L., Jercinovic, M. J., and Hetherington, C. J. (2007). Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annual Review of Earth and Planetary Sciences, 35, 137–175.CrossRefGoogle Scholar
Wilson, C. J. N. (1984). The role of fluidization in the emplacement of pyroclastic flows, 2: experimental results and their interpretation. Journal of Volcanology and Geothermal Research, 20, 55–84.CrossRefGoogle Scholar
Wilson, J. R., and Larsen, S. B. (1985). Two-dimensional study of a layered intrusion – the Hyllingen Series, Norway. Geological Magazine, 122, 97–124.CrossRefGoogle Scholar
Wilson, J. R., Robins, B., Nielsen, F. M.Duchesne, J.-C., and Vander Auwera, J. (1996). The Bjerkreim–Sokndal layered intrusion. In Layered Intrusions, ed. Cawthorn, R. G.. Amsterdam: Elsevier, 303–329.CrossRefGoogle Scholar
Wilson, J. T. (1963). A possible origin of the Hawaiian Islands. Canadian Journal of Physics, 41, 863–870.CrossRefGoogle Scholar
Wilson, J. T. (1973). Mantle plumes and plate motions. Tectonophysics, 19, 149–164.CrossRefGoogle Scholar
Wilson, L., and Head, J. W., III (1981). Ascent and eruption of basaltic magma on the Earth and Moon. Journal of Geophysical Research, 86, 2971–3001.CrossRefGoogle Scholar
Wing, B. A., and Ferry, J. M. (2007). Magnitude and geometry of reactive fluid flow from direct inversion of spatial patterns of geochemical alteration. American Journal of Science, 307, 793–832.CrossRefGoogle Scholar
Winkler, H. G. F. (1949). Crystallization of basaltic magma as recorded by variations of crystal size in dikes. Mineralogical Magazine, 28, 557–574.Google Scholar
Wolfe, C. J. and Solomon, S. C. (1998). Shear-wave splitting and implications for mantle flow beneath the MELT region of the East Pacific Rise. Science, 280, 1230–1232.CrossRefGoogle ScholarPubMed
Wood, B. J., and Fraser, D. G. (1976). Elementary Thermodynamics for Geologists. Oxford: Oxford University Press, 303 pp.Google Scholar
Woolsey, T. S., McCallum, M. E., and Schumm, S. A. (1975). Modelling of diatreme emplacement by fluidization. Physics and Chemistry of the Earth, 9, 30–42.CrossRefGoogle Scholar
Wopenka, B., and Pasteris, J. D. (1993). Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. American Mineralogist, 78, 533–557.Google Scholar
Wright, T. L., and Doherty, P. C. (1970). A linear programming and least squares computer method for solving petrologic mixing problems. Geological Society of America Bulletin, 81, 1995–2008.CrossRefGoogle Scholar
Wright, T. L., and Fiske, R. S. (1971). Origin of the differentiated and hybrid lavas of Kilauea volcano, Hawaii. Journal of Petrology, 12, 1–65.CrossRefGoogle Scholar
Wright, T. J., Ebinger, C., Biggs, J., et al. (2006). Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. Nature, 442, 291–294.CrossRefGoogle ScholarPubMed
Wyllie, P. J. (1977). Crustal anatexis: an experimental review. Tectonophysics, 13, 41–71.CrossRefGoogle Scholar
Wyllie, P. J. (1980). The origin of kimberlites. Journal of Geophysical Research, 85, 6702–6910.CrossRefGoogle Scholar
Wyllie, P. J. (1988). Magma genesis, plate tectonics, and chemical differentiation of the Earth. Reviews of Geophysics, 26, 370–404.CrossRefGoogle Scholar
Wyllie, P. J., and Huang, W. L. (1976). Carbonation and melting reactions in the system CaO–MgO–SiO2–CO2 at mantle pressures with geophysical and petrological applications. Contributions to Mineralogy and Petrology, 54, 79–107.CrossRefGoogle Scholar
Wyllie, P. J., and Tuttle, O. F. (1960). The system CaO-CO2-H2O and the origin of carbonatites. Journal of Petrology, 1, 1–46.CrossRefGoogle Scholar
Yardley, B. W. D. (1975). On some quartz-plagioclase veins in the Connemara Schists, Ireland. Geological Magazine, 112, 183–190.CrossRefGoogle Scholar
Yardley, B. W. D. (1986a). Fluid migration and veining in the Connemara Schists, Ireland. In Fluid-rock Interactions During Metamorphism, ed. Walther, J. V., and Wood, B. J.. New York: Springer, 109–131.CrossRefGoogle Scholar
Yardley, B. W. D. (1986b). Is there water in the deep continental crust? Nature, 323, 111.CrossRefGoogle Scholar
Yirgu, G. (2007). Manda Hararo. Smithsonian Bulletin of the Global Volcanism Network, 32(7), 2–3.Google Scholar
Yochelson, E. L. (1980). The scientific ideas of G. K. Gilbert. Geological Society of America Special Paper, 183, 148 pp.Google Scholar
Yoder, H. S. (1965). Diopside–anorthite–water at five and ten kilobars and its bearing on explosive volcanism. Carnegie Institution of Washington Yearbook, 64, 82–89.Google Scholar
Yoder, H. S., (1976). Generation of Basaltic Magma. Washington, DC: National Academy of Sciences, 265 pp.Google Scholar
Yoder, H. S., and Tilley, C. E. (1962). Origin of basalt magmas: an experimental study of natural and synthetic rock systems. Journal of Petrology, 3, 342–532.CrossRefGoogle Scholar
Yoder, H. S., Stewart, D. B., and Smith, J. R. (1957). Ternary feldspars. Carnegie Institution of Washington Yearbook, 55, 206–214.Google Scholar
Young, E. D., and Rumble, D. (1993). The origin of correlated variations in in-situ 18O/16O and elemental concentrations in metamorphic garnet from southeastern Vermont, USA. Geochimica et Cosmochimica Acta, 57, 2585–2597.CrossRefGoogle Scholar
Zack, T., Moraes, R., and Kronz, A. (2005). Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology, 148, 471–488.CrossRefGoogle Scholar
Zegers, T. E., and Keken, P. E. (2001). Middle Archean continent formation by crustal delamination. Geology, 29, 1083–1086.2.0.CO;2>CrossRefGoogle Scholar
Zen, E-an. (1966). Construction of pressure temperature diagrams for multicomponent systems after the method of Schreinemakers – a geometric approach. U.S. Geological Survey Bulletin, 1225, 56 pp.Google Scholar
Zhang, Y. (2002). The age and accretion of the Earth. Earth Science Reviews, 59, 235–263.CrossRefGoogle Scholar
Zieg, M. J., and Marsh, B. D. (2002). Crystal size distributions and scaling laws in the quantification of igneous textures. Journal of Petrology, 43, 85–101.CrossRefGoogle Scholar
Zindler, A., and Hart, S. (1986). Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493–571.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Anthony Philpotts, Yale University, Connecticut, Jay Ague, Yale University, Connecticut
  • Book: Principles of Igneous and Metamorphic Petrology
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813429.026
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Anthony Philpotts, Yale University, Connecticut, Jay Ague, Yale University, Connecticut
  • Book: Principles of Igneous and Metamorphic Petrology
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813429.026
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Anthony Philpotts, Yale University, Connecticut, Jay Ague, Yale University, Connecticut
  • Book: Principles of Igneous and Metamorphic Petrology
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813429.026
Available formats
×