Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-11T19:19:40.057Z Has data issue: false hasContentIssue false

8 - Effects of dissolved gas and other solutes on hydrophobic interactions

from Part I - Molecular forces

Published online by Cambridge University Press:  06 January 2011

Barry W. Ninham
Affiliation:
Australian National University, Canberra
Pierandrea Lo Nostro
Affiliation:
Università degli Studi di Firenze, Italy
Get access

Summary

Bubble–bubble coalescence

Effect of electrolytes

The Hofmeister effects we have just discussed required a complete revision of theoretical ideas, and a revision of the way we interpret measurements that date back a century or more. We come now to some neglected phenomena that throw the entire theoretical applecart upside down again.

It is an extraordinary fact that an explanation of what appears the simplest conceivable experiment remains elusive. Breaking waves in the ocean are foamy, those in fresh water are not. Bubbles in salt water do not fuse, those in fresh water do. The experiment – illustrated in Figs. 8.1 and 8.2 – quantifies this effect, which is quite dramatic.

Bubbles of nitrogen pass through a glass frit, as in a fish tank, and ascend a column. As they do they collide and fuse, and the column stays clear. (There is no problem with impurities that might affect matters. The column is self-cleaning.)

If salt is added, nothing much occurs until around 0.1 M. Suddenly the bubbles do not fuse, they remain small and the column becomes a mass of small bubbles. The change can be monitored by a laser diode that measures transmission of light through the column, and the scale gives per cent coalescence vs. salt concentration. (The same experiments can be done with single bubble–bubble interactions.)

Type
Chapter
Information
Molecular Forces and Self Assembly
In Colloid, Nano Sciences and Biology
, pp. 232 - 250
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Craig, V. S. J., Ninham, B. W. and Pashley, R. M., J. Phys. Chem. 97 (1993), 10192–10197.CrossRef
Henry, C. L., Dalton, C. N., Scruton, L. and Craig, V. S. J., J. Phys. Chem. C 111 (2007), 1015–1023.CrossRef
Henry, C. L. and Craig, V. S. J., Langmuir 24 (2008), 7979–7985.CrossRef
Henry, C. L., Parkinson, L., Ralston, J. R. and Craig, V. S. J., J. Phys. Chem. C 112 (2008), 15094–15097.CrossRef
Ninham, B. W., Adv. Coll. Interface Sci. 16 (1982), 3–15.CrossRef
Craig, V. S. J., Ninham, B. W. and Pashley, R. M., Nature 364 (1993), 317–319.CrossRef
Alfridsson, M., Ninham, B. W. and Wall, S., Langmuir 16 (2000), 10087–10091.CrossRef
Pashley, R. M., Francis, M. J. and Rzechowicz, M., Curr. Op. Coll. Interface Sci. 13 (2008), 236–244.CrossRef
Karaman, M. E., Ninham, B. W. and Pashley, R. M., J. Phys. Chem. 100 (1996), 15503–15507.CrossRef
Lagi, M., Nostro, P. Lo, Fratini, E., Ninham, B. W. and Baglioni, P., J. Phys. Chem. B 111 (2007), 589–597.CrossRef
Nostro, P. Lo, Giustini, L., Fratini, E., Ninham, B. W., Ridi, F. and Baglioni, P., J. Phys. Chem. B 112 (2008), 1071–1081.CrossRef
Dai, Z., Fornasiero, D. and Ralston, J., J. Chem. Soc. Faraday Trans. 94 (1998), 1983–1987.CrossRef
Corti, H. R., Krenzer, M. E., Pablo, J. J. and Prausnitz, J. M., Ind. Eng. Chem. Res. 29 (1990), 1043–1050.CrossRef
Vinogradova, O. I., Bunkin, N. F., Churaev, N. V., Kiseleva, O. A., Lobeyev, A. V. and Ninham, B. W., J. Coll. Interface Sci. 173 (1995), 443–447.CrossRef
Bunkin, N. F., Kochergin, A. V., Lobeyev, A. V., Ninham, B. W. and Vinogradova, O. I., Coll. Surfaces A 10 (1996), 207–212.CrossRef
Bunkin, N. F., Kiseleva, O. A., Lobeyev, A. V., Movchan, T. G., Ninham, B. W. and Vinogradova, O. I., Langmuir 13 (1997), 3024–3028.CrossRef
Ninham, B. W., Kurihara, K. and Vinogradova, O. I., Coll. Surfaces A 123 (1997), 7–12.CrossRef
Bunkin, N. F., Lobeyev, A. V., Lyakhov, G. A. and Ninham, B. W., Phys. Rev. E 60 (1999), 1681–1690.CrossRef
Yaminski, V. V. and Ninham, B. W., Langmuir 9 (1993), 3618–3624.CrossRef
Kabalnov, A. S. and Wennerström, H., Langmuir 12 (1996), 276–292.CrossRef
Israelachvili, J. N. and Pashley, R. M., Nature 300 (1982), 341–342.CrossRef
Israelachvili, J. N. and Pashley, R. M., J. Coll. Interface Sci. 98 (1984), 500–514.CrossRef
Pashley, R. M., McGuiggan, P. M., Ninham, B. W. and Evans, D. F., Science 229 (1985), 1088–1089.CrossRef
Rayleigh, Lord, Scientific Papers by Lord Rayleigh. New York: Dover (1964), vol. IV, p. 430.Google Scholar
Yaminsky, V. V., Ohnishi, S. and Ninham, B. W., Long-range hydrophobic forces due to capillary bridging. In Handbook of Surfaces and Interfaces of Materials, ed. Nalwa, H. S.. New York: Academic Press (2001), vol. 4, Ch. 3.Google Scholar
Yaminsky, V. V. and Ninham, B. W., Adv. Coll. Interface Sci. 83 (1999), 227–311.CrossRef
Pchelin, V. A., Vestn. Mosk. Univ. 13 (1972), 131–142; 14 (1973), 131–141 (in Russian).
Laskowski, J. and Kitchener, J. A., J. Coll. Interface Sci. 29 (1969), 670–679.CrossRef
Deryaguin, B. V. and Churaev, N. V., J. Coll. Interface Sci. 49 (1974), 249–255.CrossRef
Pashley, R. M. and Kitchener, J. A., J. Coll. Interface Sci. 71 (1979), 491–500.CrossRef
Franks, F., Polywater. Cambridge, MA: MIT Press (1983).Google Scholar
Henry, M., Cell. Mol. Biol. 51 (2005), 677–702.
Pollack, G. H., Cells, Gels and the Engines of Life: a new, unifying approach to cell function. Seattle: Ebner and Sons (2001).Google Scholar
Yaminski, V. V., Ninham, B. W. and Pashley, R. M., Langmuir 14 (1998), 3223–3235.CrossRef
Atkins, D. T. and Ninham, B. W., Coll. Surfaces A 129 (1998), 23–30.
Yaminsky, V. V., Ninham, B. W., Christenson, H. K. and Pashley, R. M., Langmuir 12 (1996), 1936–1943.CrossRef
Yaminsky, V. V., Jones, C., Yaminsky, F. and Ninham, B. W., Langmuir 12 (1996), 3531–3535.CrossRef
Pashley, R. M., McGuiggan, P. M., Ninham, B. W., Evans, D. F. and Brady, J., J. Phys. Chem. 90 (1986), 1637–1642.CrossRef
Claesson, P. M., Herder, P. C., Blom, C. E. and Ninham, B. W., J. Coll. Interface Sci. 114 (1986), 234–244.CrossRef
Craig, V. S. J., Ninham, B. W. and Pashley, R. M., Langmuir 15 (1999), 1562–1569.CrossRef
Christenson, H. K. and Claesson, P. M., Science 239 (1988), 390–392.CrossRef
Christenson, H. K., Fang, J., Ninham, B. W. and Parker, J. L., J. Phys. Chem. 94 (1990), 8004–8006.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×